一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种氧化锆假牙制备方法与流程

2022-09-14 22:50:23 来源:中国专利 TAG:

1.本技术涉及义齿加工技术领域,更具体地说,它涉及一种氧化锆假牙制备方法。


背景技术:

2.随着世界人口老龄化的进程和生活水平的提高,现阶段不仅仅是老人出现牙列缺失和缺损的现象,许多小孩及青少年也面临换牙或补牙的情形,不但影响日常生活还影响人的形象,这对义齿的适用性和美观性有了更高的标准。
3.3d打印技术作为一种新型快速成形技术,已逐渐被应用于口腔修复领域中。3d打印技术可以用来制作义齿模型、可摘除局部义齿支架、种植牙导板等,常用工艺是采用氧化锆陶瓷粉体与粘合剂混合,调配成一种适用于挤出型3d打印成型浆料,然后通过3d打印成型,高温烧结后得到高硬度、耐磨性好的氧化锆义齿材料。
4.对于现有的氧化锆浆料,由于氧化锆粉体的比表面积大,相互之间容易出现团聚,并且与粘结剂等组分之间的亲和性差,在浆料中难以分散均匀,致使打印后的坯体均匀性和致密度差,容易产生性能缺陷。


技术实现要素:

5.为了改善氧化锆打印浆料分散均匀性差的问题,本技术提供一种氧化锆假牙制备方法。
6.本技术提供一种氧化锆假牙制备方法,采用如下的技术方案:一种氧化锆假牙制备方法,包括如下步骤:s1:对患者的口腔状况进行扫描,经过优化和调整后建立义齿的数字化模型,然后将模型传输至3d打印机;s2:将氧化锆浆料装入3d打印机内,设置好打印参数,根据数字化模型进行逐层打印和固化,得到打印件;所述氧化锆浆料主要由如下重量份数的原料制成:氧化锆陶瓷粉55-65份、纳米氧化钇3-5份、纳米羟基磷灰石1-1.5份、纳米氧化镁0.5-1份、粘结剂15-30份、溶剂10-20份、分散剂3-5份;所述分散剂由亚胺基二乙酸钠、杂多酸、3-巯基丙烷磺酸钠按摩尔比(5-8):(0.5-0.8):(7-10)组成;s3:将打印件清洁、整形、干燥后得到坯体;s4:将坯体进行烧结后得到陶瓷坯;s5:将陶瓷坯打磨、上釉后即得。
7.通过采用上述技术方案,利用扫描仪对患者口腔情况进行详细的记录,然后进行数字化模型建立,可以大大减少人工操作误差。并且,本技术中采用氧化锆陶瓷粉混合纳米氧化钇、纳米羟基磷灰石和纳米氧化镁共同使用,在烧结过程中,氧化锆发生相变,其余多种组分的粉体以固溶体的形式存在于氧化锆晶体、晶界之间,可以提高氧化锆相变稳定性,改善氧化锆晶体之间的界面结合状态,进而提升成品的致密性和均匀性。另外,在浆料中加入分散剂后,分散剂中的3-巯基丙烷磺酸钠在亚胺基二乙酸钠和杂多酸的协助下能够在颗
粒粉体原料外表面形成一层包覆层,降低氧化锆等粉体颗粒的固液表面能,使得颗粒粉体的分散均匀性更好,坯体在烧结时晶粒的排布更加致密均匀。而且,颗粒粉体表面的包覆层可以在脱脂阶段促进溶剂成分的挥发扩散,降低浆料中颗粒因摩擦而位置锁死的几率,进而减少烧结阶段晶粒的异常生长,提升固相界面,降低了坯体的气孔率,进一步提高了成品的致密性和均匀性。
8.优选的,所述杂多酸为钨磷酸、钼磷酸中的至少一种。
9.通过采用上述技术方案,优化和调整杂多酸的种类组成,杂多酸的笼状分子结构可以在包覆层内起到很好的空间位阻效应和润滑性,进一步改善颗粒粉体原料之间的界面结合性和分散均匀性。
10.优选的,所述杂多酸由钨磷酸、钼磷酸按摩尔比(2-5):(1.8-2.5)组成。
11.通过采用上述技术方案,进一步试验和调整杂多酸的组成配比,平衡杂多酸的电子离域性能和空间位阻效应,提升颗粒粉体的分散均匀性。
12.优选的,所述粘结剂为双酚a环氧丙烯酸酯、1,6-己二醇二丙烯酸酯中的一种。
13.通过采用上述技术方案,优化和调整粘结剂的种类,在分散剂的作用下,提升氧化锆等颗粒粉体与粘结剂之间的相容性,减少颗粒粉体出现反团聚的几率。
14.优选的,所述氧化锆陶瓷粉与分散剂的质量比为(13-18):1。
15.通过采用上述技术方案,优化和调整氧化锆陶瓷粉与分散剂的质量比,调整颗粒粉体表面包覆层的厚度,改善颗粒粉体之间的界面结合状态,促进烧结过程中晶内物质的扩散,进而提升成品的致密度。
16.优选的,所述氧化锆浆料原料中还包括0.2-0.5重量份数的乙酰丙酮。
17.通过采用上述技术方案,加入乙酰丙酮后可以进一步降低颗粒粉体的表面能,削弱粉体表面的氢键等作用力,阻碍粉体间的相互吸引,从而减少粉体团聚。
18.优选的,所述溶剂由去离子水、丙酮按摩尔比(10-15):1组成。
19.通过采用上述技术方案,优化和调整溶剂的组成配比,混合型的溶剂组分扩散在颗粒粉体界面之间,改善氧化锆等颗粒组分与粘结剂体系的亲和性,降低浆料的粘度,进一步提升成品的各向同性。
20.优选的,所述步骤s4中,烧结是先以1℃/min升温至450-550℃保温1.5-3h,接着在升温至700℃保温2h,然后再以1.5℃/min升温至1400-1460℃保温6.5-8h,冷却至室温得到陶瓷坯。
21.通过采用上述技术方案,优化和调整坯体的烧结工艺,提高坯体烧结过程中的固化深度,改善层与层之间的结合状态,以获得致密、均匀、无缺陷的氧化锆假牙成品。
22.优选的,所述氧化锆陶瓷粉由平均粒径为50-100μm的氧化锆陶瓷粉与平均粒径为1-5μm的氧化陶瓷粉按质量比(1-1.5):(20-35)组成。
23.通过采用上述技术方案,优化和调整氧化锆陶瓷粉的平均粒径,改善烧结过程中相变状态,促进晶粒充分生长,使得成品具有更加均匀清晰的晶界结构,从而显著的增加了致密度。
24.综上所述,本技术具有以下有益效果:1、由于本技术采用氧化锆陶瓷粉搭配多种颗粒粉料共同混合烧结,并在分散剂的促进作用下使得颗粒粉体组分与粘结剂、溶剂体系充分的混合均匀,大大提升了成品的致
密度和各向同性。
25.2、本技术中优选采用合适的杂多酸、粘结剂以及合适溶剂,进一步改善浆料体系内颗粒粉体之间的分散均匀性和相容性,提升坯体的均匀度。
26.3、采用本技术的制备方法制得的氧化锆假牙具有较高的致密度和均匀性。
具体实施方式
27.以下结合实施例对本技术作进一步详细说明。
28.本技术实施例及对比例的原料除特殊说明以外均为普通市售。实施例
29.实施例1本实施例的氧化锆假牙制备方法,包括如下步骤:s1:采用彩色口腔扫描仪对患者的口腔状况进行扫描,经过图像处理软件优化和调整后建立义齿的数字化模型,增加打印基托,然后将模型传输至3d打印机,本实施例的3d打印机为dlp 3d打印机;s2:将氧化锆浆料装入3d打印机的料缸内,设置好打印参数,根据数字化模型进行逐层打印和固化,打印层厚度为40μm,得到打印件;s3:将打印件进行清洁,接枝对轮廓和形体进行整形,修整,然后干燥得到坯体;s4:将坯体放入烧结炉内,设定好烧结工艺,先以1℃/min升温至700℃,保温6h,然后再以1.8℃/min升温至1500℃,保温12h,冷却后得到陶瓷坯;s5:将陶瓷坯打磨、上釉染色后即得。
30.本实施例的氧化锆浆料,由如下重量的原料混合均匀制成:氧化锆陶瓷粉6.5kg、纳米氧化钇0.3kg、纳米羟基磷灰石0.15kg、纳米氧化镁0.05kg、粘结剂1.5kg、溶剂2kg、分散剂0.5kg;分散剂由亚胺基二乙酸钠、杂多酸、3-巯基丙烷磺酸钠按摩尔比5:0.8:7组成。
31.其中,氧化锆陶瓷粉的平均粒径为10μm。粘结剂为乙氧化三羟甲基丙烷三丙烯酸酯。溶剂为去离子水。杂多酸为硅钨酸。
32.实施例2本实施例的氧化锆假牙制备方法,包括如下步骤:s1:采用彩色口腔扫描仪对患者的口腔状况进行扫描,经过图像处理软件优化和调整后建立义齿的数字化模型,增加打印基托,然后将模型传输至3d打印机,本实施例的3d打印机为dlp 3d打印机;s2:将氧化锆浆料装入3d打印机的料缸内,设置好打印参数,根据数字化模型进行逐层打印和固化,打印层厚度为40μm,得到打印件;s3:将打印件进行清洁,接枝对轮廓和形体进行整形,修整,然后干燥得到坯体;s4:将坯体放入烧结炉内,设定好烧结工艺,先以1℃/min升温至650℃,保温8h,然后再以1.8℃/min升温至1500℃,保温18h,冷却后得到陶瓷坯;s5:将陶瓷坯打磨、上釉染色后即得。
33.本实施例的氧化锆浆料,由如下重量的原料混合均匀制成:氧化锆陶瓷粉5.5kg、纳米氧化钇0.5kg、纳米羟基磷灰石0.1kg、纳米氧化镁0.1kg、粘结剂3kg、溶剂2kg、分散剂0.3kg;分散剂由亚胺基二乙酸钠、杂多酸、3-巯基丙烷磺酸钠按摩尔比5:0.8:7组成。
34.其中,氧化锆陶瓷粉的平均粒径为10μm。粘结剂为双酚a环氧丙烯酸酯。溶剂为乙二醇。杂多酸为硅钨酸。
35.实施例3本实施例的氧化锆假牙制备方法,包括如下步骤:s1:采用彩色口腔扫描仪对患者的口腔状况进行扫描,经过图像处理软件优化和调整后建立义齿的数字化模型,增加打印基托,然后将模型传输至3d打印机,本实施例的3d打印机为dlp 3d打印机;s2:将氧化锆浆料装入3d打印机的料缸内,设置好打印参数,根据数字化模型进行逐层打印和固化,打印层厚度为40μm,得到打印件;s3:将打印件进行清洁,接枝对轮廓和形体进行整形,修整,然后干燥得到坯体;s4:将坯体放入烧结炉内,设定好烧结工艺,先以1℃/min升温至700℃,保温7.5h,然后再以1.8℃/min升温至1500℃,保温16h,冷却后得到陶瓷坯;s5:将陶瓷坯打磨、上釉染色后即得。
36.本实施例的氧化锆浆料,由如下重量的原料混合均匀制成:氧化锆陶瓷粉6.2kg、纳米氧化钇0.35kg、纳米羟基磷灰石0.12kg、纳米氧化镁0.08kg、粘结剂2.6kg、溶剂1.5kg、分散剂0.46kg;分散剂由亚胺基二乙酸钠、杂多酸、3-巯基丙烷磺酸钠按摩尔比5:0.8:7组成。
37.其中,氧化锆陶瓷粉的平均粒径为10μm。粘结剂为乙氧化三羟甲基丙烷三丙烯酸酯。溶剂为丙酮。杂多酸为硅钨酸。
38.实施例4本实施例的氧化锆假牙制备方法与实施例3的不同之处在于:氧化锆浆料的原料中,分散剂由亚胺基二乙酸钠、硅钨酸、3-巯基丙烷磺酸钠按摩尔比8:0.5:10组成,其余的与实施例3中相同。
39.实施例5本实施例的氧化锆假牙制备方法与实施例3的不同之处在于:氧化锆浆料的原料中,分散剂由亚胺基二乙酸钠、硅钨酸、3-巯基丙烷磺酸钠按摩尔比6.5:0.72:9组成,其余的与实施例3中相同。
40.实施例6本实施例的氧化锆假牙制备方法与实施例5的不同之处在于:氧化锆浆料的原料中,杂多酸为钨磷酸,其余的与实施例3中相同。
41.实施例7本实施例的氧化锆假牙制备方法与实施例5的不同之处在于:氧化锆浆料的原料中,杂多酸由钨磷酸、钼磷酸按摩尔比5:1.8组成,其余的与实施例3中相同。
42.实施例8本实施例的氧化锆假牙制备方法与实施例5的不同之处在于:氧化锆浆料的原料中,杂多酸由钨磷酸、钼磷酸按摩尔比2:2.5组成,其余的与实施例3中相同。
43.实施例9本实施例的氧化锆假牙制备方法与实施例8的不同之处在于:氧化锆浆料的原料中,粘结剂为1,6-己二醇二丙烯酸酯,其余的与实施例8中相同。
44.实施例10本实施例的氧化锆假牙制备方法与实施例10的不同之处在于:氧化锆浆料的原料中还包括0.02kg的乙酰丙酮,其余的与实施例10中相同。
45.实施例11本实施例的氧化锆假牙制备方法与实施例10的不同之处在于:氧化锆浆料的原料中还包括0.05kg的乙酰丙酮,其余的与实施例10中相同。
46.实施例12本实施例的氧化锆假牙制备方法与实施例10的不同之处在于:步骤s4中,烧结是先以1℃/min升温至550℃保温1.5h,接着以2℃/min升温至700℃保温2h,然后再以1.5℃/min升温至1460℃保温6.5h,冷却至室温得到陶瓷坯,其余的与实施例10中相同。
47.实施例13本实施例的氧化锆假牙制备方法与实施例10的不同之处在于:步骤s4中,烧结是先以1℃/min升温至450℃保温3h,接着以2℃/min升温至700℃保温2h,然后再以1.5℃/min升温至1400℃保温8h,冷却至室温得到陶瓷坯,其余的与实施例10中相同。
48.实施例14本实施例的氧化锆假牙制备方法与实施例13的不同之处在于:氧化锆陶瓷粉由平均粒径为100μm的氧化锆陶瓷粉与平均粒径为1μm的氧化陶瓷粉按质量比1:35组成,其余的与实施例13中相同。
49.实施例15本实施例的氧化锆假牙制备方法与实施例13的不同之处在于:氧化锆陶瓷粉由平均粒径为50μm的氧化锆陶瓷粉与平均粒径为5μm的氧化陶瓷粉按质量比1.5:20组成,其余的与实施例13中相同。
50.对比例对比例1本对比例的氧化锆假牙制备方法,包括如下步骤:s1:采用彩色口腔扫描仪对患者的口腔状况进行扫描,经过图像处理软件优化和调整后建立义齿的数字化模型,增加打印基托,然后将模型传输至3d打印机,本实施例的3d打印机为dlp 3d打印机;s2:将氧化锆浆料装入3d打印机的料缸内,设置好打印参数,根据数字化模型进行逐层打印和固化,打印层厚度为40μm,得到打印件;s3:将打印件进行清洁,接枝对轮廓和形体进行整形,修整,然后干燥得到坯体;s4:将坯体放入烧结炉内,设定好烧结工艺,先以1℃/min升温至700℃,保温6h,然后再以1.8℃/min升温至1500℃,保温12h,冷却后得到陶瓷坯;s5:将陶瓷坯打磨、上釉染色后即得。
51.本对比例的氧化锆浆料,由如下重量的原料混合均匀制成:氧化锆陶瓷粉6.5kg、纳米氧化钇0.3kg、纳米羟基磷灰石0.15kg、纳米氧化镁0.05kg、粘结剂1.5kg、溶剂2kg、分散剂0.5kg;分散剂为聚丙烯酸2000。
52.其中,氧化锆陶瓷粉的平均粒径为10μm。粘结剂为乙氧化三羟甲基丙烷三丙烯酸酯。溶剂为去离子水。
53.对比例2本对比例的氧化锆假牙制备方法与实施例1的不同之处在于:分散剂由亚胺基二乙酸钠、3-巯基丙烷磺酸钠按摩尔比5:7组成,其余的与实施例1中相同。
54.对比例3本对比例的氧化锆假牙制备方法与实施例1的不同之处在于:分散剂由亚胺基二乙酸钠、杂多酸按摩尔比5:0.8组成,其余的与实施例1中相同。
55.对比例4本对比例的氧化锆假牙制备方法与实施例1的不同之处在于:分散剂为3-巯基丙烷磺酸钠,其余的与实施例1中相同。
56.对比例5本对比例的氧化锆假牙制备方法与实施例3的不同之处在于:氧化锆浆料的原料中,分散剂由亚胺基二乙酸钠、硅钨酸、3-巯基丙烷磺酸钠按摩尔比3:1:12组成,其余的与实施例3中相同。
57.对比例6本对比例的氧化锆假牙制备方法与实施例1的不同之处在于:本对比例的氧化锆浆料,由如下重量的原料混合均匀制成:氧化锆陶瓷粉6.5kg、纳米氧化钇0.3kg、纳米羟基磷灰石0.15kg、纳米氧化镁0.05kg、粘结剂1.5kg、溶剂2.5kg,其余的与实施例1中相同。
58.其中,氧化锆陶瓷粉的平均粒径为10μm。粘结剂为乙氧化三羟甲基丙烷三丙烯酸酯。溶剂为去离子水。
59.性能检测试验检测方法取实施例1-15以及对比例1-6中制得的氧化锆假牙制品采用阿基米德法测试致密度,测试结果如表1所示。
60.表1实施例1-15以及对比例1-6的氧化锆假牙制品性能测试数据序号致密度(%)实施例191.2实施例290.8实施例392.6实施例491.9实施例593.5实施例693.8实施例794.6实施例895.3实施例994.9实施例1096.8实施例1196.3实施例1297.0实施例1397.7
实施例1498.3实施例1598.6对比例175.2对比例283.6对比例385.1对比例480.5对比例591.3对比例656.7分析实施例1-3以及对比例1并结合表1可以看出,优化和调整氧化锆假牙的原料组成配比,然后在氧化锆浆料中加入分散剂后,相较于常规的聚丙烯酸分散剂,实施例3的假牙成品致密度提升了约23%,假牙成品的晶粒分布更加细密均匀。
61.分析实施例4-5、实施例6-8、对比例2-5并结合表1可以看出,优化和调整分散剂的组成配比,进一步改善浆料体系内颗粒粉体之间的界面结合力和分散状态,提升分散均匀性。并且,杂多酸的加入对颗粒粉体表面的包覆层的界面润滑性有着非常好的改善作用,可以进一步提升浆体内颗粒粉体的分散稳定性,实施例8相较于对比例4的假牙成品致密度提升了约18%。
62.分析实施例9、实施例10-11并结合表1可以看出,加入乙酰丙酮后进一步降低粉体颗粒之间的粘聚性,抑制颗粒粉体之间的团聚,进一步提升了假牙成品的致密度。
63.分析实施例12-13、实施例14-15、对比例6并结合表1可以看出,优化和调整坯体的烧结工艺以及氧化锆陶瓷粉体的粒径组成,进一步提升浆料内颗粒粉体的分散均匀性,可以看出相较于对比例6未添加分散剂,实施例15的假牙制品的致密度提升了约73.9%。
64.本具体实施例仅仅是对本技术的解释,其并不是对本技术的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本技术的权利要求范围内都受到专利法的保护。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献