一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

钴纳米颗粒包埋氮掺杂碳多孔催化剂及其制备方法与应用与流程

2022-08-28 04:54:44 来源:中国专利 TAG:


1.本发明属于先进材料以及环保技术领域,涉及钴纳米颗粒包埋氮掺杂碳多孔催化剂及其制备方法与应用。


背景技术:

2.公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
3.磺胺类抗生素(sas)具有较高的化学稳定性和在水中的溶解度,在自然条件下难以降解,导致在水生环境中有大量残留物。sas可导致甲壳类动物中毒、细菌耐药性和潜在的致癌性。亟需新型先进的抗生素废水处理技术,实现高效合理处置。
4.过氧单硫酸盐(pms)是基于硫酸盐的高级氧化工艺(sr-aops)中一种环保、稳定、无毒、易运输的氧化剂。然而,发明人研究发现,仅采用过氧单硫酸盐(pms)对磺胺甲嘧啶(smz)等磺胺类抗生素的降解效率较低,因而需要一种能够磺胺类抗生素降解的过氧单硫酸盐的催化剂。


技术实现要素:

5.为了解决现有技术的不足,本发明的目的是提供钴纳米颗粒包埋氮掺杂碳多孔催化剂及其制备方法与应用,该催化剂在在pms活化对smz等磺胺类抗生素的降解方面表现出优异的催化性能。
6.为了实现上述目的,本发明的技术方案为:
7.一方面,一种钴纳米颗粒包埋氮掺杂碳多孔催化剂的制备方法,在冰醋酸引发下,1,3,5-三(4-氨基苯基)苯(tpb)和2,5-二乙烯基对苯二甲醛(dva)在有机溶剂中进行席夫碱反应获得cof前体,将所述cof前体与钴盐在水中混合,加热搅拌至水蒸发完全获得固体产物,在惰性气氛条件下将固体产物加热至600~800℃进行热解,即得。
8.本发明采用tpb与dva能够形成六角状骨架结构,具有较高比表面积,同时具有n原子,能够为钴纳米粒子提供更多的活性位点。另外,其形成的孔结构能够限制钴纳米粒子在cof骨架中的生长,避免过渡钴纳米粒子过度聚集,提高分散度,使钴纳米粒子复合cofs纳米材料具有更高的催化性能。
9.本发明采用tpb与dva通过席夫碱反应形成cof前体中,含有亚胺,通过周期性堆叠纳米片形成,这种排列具有高度共轭的π电子体系,从而提高了氧化过程中的电子传质效率。
10.因而本发明将钴纳米粒子与tpb与dva通过席夫碱反应形成cof前体进行复合的材料具有稳定性好、活性位点多、分散性高等优点,经过进一步600~800℃热解后具有co0、吡啶n和石墨n等多个活性位点,从而在pms活化对磺胺甲基嘧啶smz等磺胺类抗生素的降解方面表现出优异的催化性能。
11.另一方面,一种钴纳米颗粒包埋氮掺杂碳多孔催化剂,由上述制备方法获得。
12.第三方面,一种上述钴纳米颗粒包埋氮掺杂碳多孔催化剂在活化过氧单硫酸盐降解磺胺类抗生素中的应用。
13.第四方面,一种降解磺胺类抗生素的试剂盒,包括上述钴纳米颗粒包埋氮掺杂碳多孔催化剂、过氧单硫酸盐。
14.第五方面,一种含有磺胺类抗生素的废水的处理方法,将上钴纳米颗粒包埋氮掺杂碳多孔催化剂和过氧单硫酸盐加入至待处理的含有磺胺类抗生素的废水中进行处理。
15.本发明的有益效果为:
16.本发明以tpb与dva形成高结晶度、大比表面积的cofs材料,并以该cofs材料作为钴纳米粒子的载体,通过cofs材料的高温热解制备钴纳米颗粒包埋氮掺杂碳多孔催化剂(co@cof),形成的催化剂具有多个活性位点(co0、吡啶n和石墨n),在pms活化对smz降解方面表现出优异的催化性能。
17.经过实验表明,smz在10min内降解效率达到92.4%,toc去除率在30min内达到70.3%。毒性评价表明,smz被有效去除,生物毒性降低,表明co@cof/pms是一种有效且有前景的smz污染废水处理技术。
18.本发明提供的co@cof可有效激活pms降解各种sas,具有良好的适用性。
附图说明
19.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
20.图1为本发明实施例中催化剂合成工艺示意图;
21.图2为本发明实施例中cof(a)、cof-1(b)和cof-2(c)的sem图,x射线衍射图(d),n2吸附-脱附等温线(e),co@cof0、co@cof1、co@cof2的孔径分布图(f),co@cof0(g)、co@cof1(h)和co@cof2(i)的sem图像;
22.图3为本发明实施例中co@cof2的tem及xps光谱图,(a)tem,(b)tem,(c)hrtem,(d)元素映射,(e)c 1s,(f)o 1s,(g)n 1s,(h)co 2p;
23.图4为本发明实施例中催化活性表征图,(a)三种cof前体对smz的降解曲线,(b)三种催化剂对smz的降解曲线,(c)co@cof2/pms对smz降解的toc去除率,(d)co@cof2/pms对其他几种sas的降解曲线,反应参数:sas=20mg/l,pms=0.4mm,co@cof2=0.04g/l;
24.图5为本发明实施例中co@cof2/pms体系反应物种的鉴定的表征图,(a)不同清除剂的猝灭曲线,(b)pms在不同清除剂下的消耗曲线,以dmpo(c)和temp(d)为自旋捕捉剂的epr光谱,反应参数:(a)smz=20mg/l,co@cof2=0.04g/l,pms=0.4mm;
25.图6为本发明实施例中反应条件对co@cof2/pms降解smz的影响图,(a)pms用量,(b)催化剂负载量,(c)初始ph,(d)cl-,(e)hco
3-,(f)ha,反应参数:(a)smz=20mg/l,co@cof2=0.04g/l,pms=0.2mm-0.6mm;(b)smz=20mg/l,co@cof2=0.01g/l-0.06g/l,pms=0.4mm;(c-f)smz=20mg/l,co@cof2=0.04g/l,pms=0.4mm;
26.图7为本发明实施例中co@cof2/pms体系降解smz的机理表征图,(a)稳定性,(b)co@cof2反应前后的xps图谱,(c)co@cof2反应前后的xps图谱,(d)co@cof2反应前后的xps图谱,(e)电化学阻抗谱,(f)线性扫描伏安(lsv)曲线;反应参数:(a)smz=20mg/l,co@cof2=
0.04g/l,pms=0.4mm;
27.图8为本发明实施例中co@cof2/pms体系降解smz的机理示意图;
28.图9为本发明实施例中co@cof2/pms体系降解smz的途径图。
具体实施方式
29.应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
30.需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
31.正如背景技术所介绍的,需要一种能够磺胺类抗生素降解的过氧单硫酸盐的催化剂,本发明提出了钴纳米颗粒包埋氮掺杂碳多孔催化剂及其制备方法与应用。
32.本发明的一种典型实施方式,提供了一种钴纳米颗粒包埋氮掺杂碳多孔催化剂的制备方法,在冰醋酸引发下,tpb和dva在有机溶剂中进行席夫碱反应获得cof前体,将所述cof前体与钴盐在水中混合,加热搅拌至水蒸发完全获得固体产物,在惰性气氛条件下将固体产物加热至600~800℃进行热解,即得。
33.本发明将钴纳米粒子与tpb与dva通过席夫碱反应形成cof前体进行复合的材料具有稳定性好、活性位点多、分散性高等优点,经过进一步600~800℃热解后具有co0、吡啶n和石墨n等多个活性位点,从而在pms活化对磺胺甲基嘧啶smz等磺胺类抗生素的降解方面表现出优异的催化性能。
34.本发明所述的钴盐是指阳离子为二价钴离子的化合物,例如硝酸钴、氯化钴、醋酸钴等。
35.在一些实施例中,席夫碱反应中添加钴盐。研究表明,将tpb、dva与钴盐进行席夫碱反应获得的cof前体制备的催化剂的催化性能更好。
36.在一种或多种实施例中,席夫碱反应中,tpb与钴盐的摩尔比为1:0.5~2.0。当tpb与钴盐的摩尔比为1:1.20~1.40时,获得的催化剂的催化性能更加优异。
37.在一些实施例中,席夫碱反应中,tpb与dva的摩尔比为1:1.5~3.0。
38.在一些实施例中,席夫碱反应中,有机溶剂为乙腈。
39.在一些实施例中,席夫碱反应中,在室温下静置48~96h。本发明所述的室温是指室内环境的温度,一般为15~30℃。
40.在一些实施例中,cof前体的纯化过程为:离心分离、洗涤、干燥。其中,洗涤分别采用四氢呋喃和乙醇进行多次洗涤。
41.在一些实施例中,cof前体与钴盐的质量比为10:0.50~2.00。
42.在一些实施例中,热解的升温速率为1~10℃/min。优选为3~7℃/min,进一步优选为4~6℃/min。
43.本发明的另一种实施方式,提供了一种钴纳米颗粒包埋氮掺杂碳多孔催化剂,由上述制备方法获得。
44.本发明的第三种实施方式,提供了一种上述钴纳米颗粒包埋氮掺杂碳多孔催化剂在活化过氧单硫酸盐降解磺胺类抗生素中的应用。
45.本发明的第四种实施方式,提供了一种降解磺胺类抗生素的试剂盒,包括上述钴纳米颗粒包埋氮掺杂碳多孔催化剂、过氧单硫酸盐。
46.在一些实施例中,包括淬灭剂。用于检测smz的降解效率。所述淬灭剂优选为乙醇。
47.本发明的第五种实施方式,提供了一种含有磺胺类抗生素的废水的处理方法,将上述钴纳米颗粒包埋氮掺杂碳多孔催化剂和过氧单硫酸盐加入至待处理的含有磺胺类抗生素的废水中进行处理。
48.在一些实施例中,催化剂和过氧单硫酸盐的添加比例为90~110:1,g:mol。
49.过氧单硫酸盐的浓度为0.2~0.6mm,研究表明过氧单硫酸盐的浓度越高,降解率越高,在一些实施例中,过氧单硫酸盐的浓度0.4~0.6mm。该条件下的降解率更高。
50.催化剂的添加量为0.01~0.06g/l,研究表明催化剂的添加量越高,降解率越高,在一些实施例中,催化剂的添加量为0.04~0.06g/l。该条件下的降解率更高。
51.在一些实施例中,ph为5~10。ph优选为5.40~9.05,该条件下降解率更高。
52.在一些实施例中,处理体系中含有氯离子,氯离子浓度为10~15mm。该条件下降解率更高。
53.在一些实施例中,处理体系中含有hco
3-,hco
3-浓度为5~10mm。该条件下降解率更高。
54.为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
55.实施例
56.原料:
57.1,3,5-三(4-氨基苯基)苯(tpb)、2,5-二乙烯基对苯二甲醛(dva)购自麦克林化学试剂有限公司(中国上海)。磺胺甲嘧啶(smz)、磺胺异恶唑、磺胺甲恶唑、磺胺吡啶、磺胺噻唑、六水合硝酸钴、过氧单硫酸盐(pms,khso5·
0.5khso4·
0.5k2so4,≥47%)和糠醇(ffa)购自阿拉丁试剂有限公司(上海,中国)。叔丁醇(tba)、乙醇(etoh)、对苯醌(p-bq)和甲醇(meoh)购自国药集团化学试剂有限公司(中国上海)。乙腈(acn)购自fisher化学试剂有限公司(中国上海)。在实施例整个过程中使用来自milli-q系统(millipore)的电阻率为18.25mωcm的超纯水。
58.cof、cof-1、cof-2的合成:
59.将tbp(0.0564g)和dva(0.0448g)添加到20ml 92%acn溶剂中,然后添加3.9ml冰醋酸以引发反应。超声分散后,将上述混合溶液在室温下静置72h。将得到的黄色沉淀以1000rpm离心5min,分别用四氢呋喃和乙醇洗涤3次。在60℃高真空下干燥6小时后,得到cof前体。
60.将tbp(0.0564g)、dva(0.0448g)和0.031gco(no3)2.6h2o添加到20ml92%acn溶剂中,然后添加3.9ml冰醋酸以引发反应。超声分散后,将上述混合溶液在室温下静置72h。将得到的黄色沉淀以1000rpm离心5min,分别用四氢呋喃和乙醇洗涤3次。在60℃高真空下干燥6小时后,得到cof-1前体。
61.将tbp(0.0564g)、dva(0.0448g)和0.062gco(no3)2.6h2o添加到20ml92%acn溶剂
中,然后添加3.9ml冰醋酸以引发反应。超声分散后,将上述混合溶液在室温下静置72h。将得到的黄色沉淀以1000rpm离心5min,分别用四氢呋喃和乙醇洗涤3次。在60℃高真空下干燥6小时后,得到cof-2前体。
62.co@cof0、co@cof1、co@cof2的合成:
63.将80mg不同的cof前体(cof、cof-1、cof-2)和10mg co(no3)2.6h2o与50ml去离子水混合。然后,将溶液在80℃加热并在油浴中连续搅拌直至所有水蒸发。然后,将获得的固体产物以5℃
·
min-1
的速率加热至700℃,并在氩气气氛下保持2小时。得到的相应催化剂分别命名为co@cof0、co@cof1和co@cof2。
64.co@cof0、co@cof1和co@cof2的合成过程如图1所示。
65.降解过程:
66.smz的降解实验是在25
±
1℃的20ml smz溶液中进行的。通常,将0.8mg催化剂分散在smz溶液(20mg/l)中,并添加0.16ml pms(50mm)以引发反应。在每个时间间隔取样1.0ml反应溶液并与0.3ml乙醇混合以淬灭反应。样品溶液通过0.22μm聚四氟乙烯(ptfe)膜过滤,并通过高效液相色谱法(hplc,ultimate 3000)分析smz浓度。
67.结果与讨论:
68.结构和形貌:
69.cof、cof-1、cof-2前体都在2.7
°
附近显示出强xrd衍射峰,其中,都在2.7
°
附近显示出强xrd衍射峰。cof、cof-1和cof-2的表面积(sbet)分别为2143.54、2465.43和2509.58m2/g。它们具有丰富的介孔结构,孔径主要分布在2.3nm左右。通过扫描电镜观察cof、cof-1和cof-2的形貌。如图2a-2c所示,cof、cof-1和cof-2具有不同的形态。图2a中cof的形貌为微花状球形结构,纳米颗粒的平均直径尺寸接近430nm。而cof-1和cof-2的纳米棒簇结构更为突出(图2b-c)。并且纳米粒子的平均直径尺寸对于cof-1增加到760nm,对于cof-2增加到900nm。这意味着钴的添加显着改变了cof前体的形态。
70.co@cof0、co@cof1和co@cof2由相应的cof前驱体和钴盐在高温下碳化得到,如图1所示。co@cof0、co@cof1和co@cof2的xrd图谱如图2d所示。在23.1
°
和43.9
°
处的衍射峰分别对应于碳的(002)和(100)面,表明在co@cof0、co@cof1和co@cof2中形成了石墨框架。并且没有出现钴物质的其他衍射峰。co@cof0、co@cof1和co@cof2的s
bet
分别为573.11、504.32和707.69m2/g(图2e,表s1)。它们低于相应的cof前体,这意味着部分中孔结构在碳化过程中消失了。co@cof0、co@cof1和co@cof2的孔径主要分布在4.0nm附近(图2f)。通过扫描电镜观察co@cof0、co@cof1和co@cof2的形貌。图2g-2i表明co@cof0、co@cof1和co@cof2的形貌与其相应的cof前驱体接近。图3a中co@cof2的tem图像显示co@cof2是由纳米薄片的组合形成的。对于co@cof2,在图3b中观察到尺寸接近20nm的均匀分散的小纳米粒子。图3c中这些纳米粒子的晶格条纹间距分别为0.202nm和0.191nm,分别指向钴的(002)和(101)平面,证实这些纳米粒子是co。图3d中的eds元素映射直观地显示了c、n和o元素在co@cof2结构上的均匀分布,而co元素主要分布在由cof结构支撑的小co纳米颗粒上。
71.xps用于进一步验证co@cof的表面状态和化学成分。图s2展示了co@cof2的xps测量光谱,证明了元素c、n、o和co的存在。如图3e所示,c 1s光谱可分为位于284.75ev,285.60ev,287.38ev,和289.10ev对应于c原子的不同化学状态的四个峰:c-c/c=c,c-o/c=n,c=o/c-n,和π-π*卫星峰。o 1s的xps光谱(图3f)可以解卷积为三种类型的氧:-c=o
(530.90ev)、c-o-c(532.38ev)、c-oh(533.80ev)。如图3g所示,co@cof2的n 1s的xps光谱可以解卷积为n原子不同化学状态的四个峰:吡啶n(398.3ev)、吡咯n(400.5ev)、石墨n(401.1ev))和氧化n(402.34ev)。图3h中co 2p的xps光谱在780.48ev和782.87ev处有两个峰,分别对应co0和co
2

72.co@cof/pms对smz的降解评价:
73.通过smz降解评估co@cof催化剂在pms活化中的催化活性。图4a显示smz在pms系统中在10分钟内降解了21.6%。当三种cof前驱体作为催化剂激活pms时,smz在10min内的降解效率不高于34.5%,说明三种cof前驱体的催化性能较差。图4b显示,在co@cof0/pms、co@cof1/pms和co@cof2/pms体系中,smz在10min内的降解效率分别为63.6%、70.4%和92.4%,相应的k
obs
分别为0.081、0.097和0.236min-1
。表明上述催化剂能有效地活化pms,特别是co@cof2与pms的组合效果最好。因此,选择co@cof2作为后续实验的研究代表。此外,co@cof0、co@cof1和co@cof2对smz的吸附效率在10分钟内最多仅为10.9%,表明smz的去除主要来自催化降解,吸附影响可以忽略不计。如图4c所示,在co@cof2/pms系统中,30分钟内toc去除率为70.3%。在降解过程中,释放出少量的钴离子(2.7mg/l),浸出的钴离子对smz降解的贡献为43.1%,远低于92.4%,表明从co@cof2中浸出的钴离子在smz降解过程中的作用微不足道。此外,co@cof2/pms还可以有效降解其他与smz结构相似的磺胺类抗生素。图4d显示磺胺异恶唑、磺胺甲恶唑、磺胺吡啶和磺胺噻唑在10分钟内的降解效率分别为98%、88%、87%和98%。这表明co@cof2可以有效激活pms降解各种sas,具有良好的适用性。
74.co@cof2/pms体系反应物种的鉴定:
75.通过自由基猝灭实验和epr分析鉴定了co@cof2/pms系统中产生的活性物质。甲醇可以同时淬灭so4·-和
·
oh,tba可以有效淬灭
·
oh。如图5a所示,在反应体系中加入1.2m tba,smz的降解效率仅为57.7%。加入甲醇(1.2m)后,降解效率降至42.2%。表明体系中存在so4·-和
·
oh,它们是主要的自由基活性物种。5,5-二甲基-1-吡咯啉-n-氧化物(dmpo)被用作epr技术中
·
oh和so4·-的捕集剂。
·
oh和so4·-可以分别与dmpo形成自旋加合物dmpo-·
oh和dmpo-so4·-。如图5c所示,在co@cof2/pms系统中出现了dmpox自旋加合物(5,5-二甲基吡咯啉-(2)-oxyl-(1))的典型七峰信号,这可能是由二次氧化产生的。dmpo与强氧化剂之间的还原过程,信号强度随着时间的延长逐渐降低。
76.此外,对苯醌(p-bq)用于检查体系中是否存在超氧阴离子o2·-。如图5a所示,当p-bq(5.0mm)存在时,只有38.5%的smz被降解。然而,p-bq也可以快速消耗pms,大约61.6%的pms在10分钟内被消耗(图5b)。此外,dmpo没有捕捉到o2·-的特征信号峰,这意味着co@cof2/pms系统中可能不存在o2·-。ffa可用作1o2的有效猝灭剂。添加ffa后,仅28.8%的smz被降解。然而,ffa可以直接消耗pms。为了辨别ffa在猝灭过程中的作用,进行了ffa/pms的消耗实验(图5b)。10min内仅消耗了13.9%的pms,表明ffa对降解过程的抑制作用是猝灭1o2而不是消耗pms。这表明1o2是主要的非自由基活性物质。在epr技术中,4-氨基-2,2,6,6-四甲基哌啶(temp)被用作1o2的捕集剂。如图5d所示,观察到具有相等强度的三线光谱,分配给temp-1
o2加合物,这证实了1o2的存在。并且信号强度随着时间的延长逐渐增加。综上所述,co@cof2/pms体系中均生成了
·
oh、so4·-和非自由基活性1o2,而smz降解过程中以1o2为主。
77.反应条件对co@cof2/pms降解smz的影响:
78.对不同反应溶液条件下的co@cof2/pms进行了进一步的活性检测。研究了pms浓度
和催化剂用量对smz降解的影响。pms浓度对smz去除的影响如图6a所示。随着pms浓度(0.2mm-0.6mm)的增加,smz的降解效率从66.1%增加到96.6%,相应的k
obs
分别从0.095增加到0.308min-1
(图s7a)。结果表明,高浓度的pms可以产生更多的活性物质来攻击smz以促进降解过程。同样,催化剂用量也显着影响降解效率。降解效率也随着催化剂负载量的增加而增加(图6b)。当催化剂负载量从0.01增加到0.06g/l时,smz的降解效率从58.3%增加到95.5%,相应的k
obs
分别从0.079增加到0.288min-1
(图s7b)。该结果表明,高浓度的催化剂负载可以提供更多的活性位点来催化pms的氧化。
79.此外,反应体系的ph值也是影响smz降解效果的重要参数。因此,探讨了不同初始ph值(ph0)(3.09-11.07)对co@cof2/pms降解smz系统的影响(图6c)。当ph0在5.40-9.05范围内时,降解率没有明显变化,反应后溶液的ph值在3.6左右,说明co@cof2/pms体系在广泛的ph值范围。然而,当ph0=3.09或11.07时,降解率显着下降。这可能是由于在强酸环境下,co@cof2/pms体系中存在h2so5作为hso
5-的共轭酸具有明显优势,阻碍了hso
5-分解生成so4·-。在强碱性环境中,so4·-被oh-清除,氧化能力弱的
·
oh成为主要的活性自由基,导致smz去除率较低。
80.通常,实际水样中存在多种无机阴离子(cl-、hco
3-)和腐植酸(ha),这些都会影响co@cof2/pms系统对smz的降解过程和效率。如图6d所示,低浓度的cl-(5mm)抑制了smz的降解,这是由于cl-与so4·-和
·
oh反应生成具有弱氧化还原作用的cl
·
和cl2·-能力。然而,高浓度的cl-(10mm、15mm)提高了降解效率,因为cl-与hso
5-直接相互作用生成具有更长寿命和更强氧化能力的hocl。此外,低浓度的hco
3-(5mm、10mm)促进了smz的降解。并且高浓度的hco
3-(15mm)抑制了反应系统的进程(图6e),其中只有76.2%的smz被降解。高浓度的hco
3-导致降解系统处于碱性环境中,hco
3-还可以作为自由基清除剂与so4·-和
·
oh反应。如图6f所示,smz的降解被ha显着抑制。ha作为一种广泛存在于水中的含有羧基和酚羟基的物质,通常通过淬灭溶液中的自由基来抑制smz的降解,并与pms竞争吸附活性位点。
81.co@cof2的稳定性及降解机理:
82.图7a显示,经过三个循环后,降解效率从第一次的92.4%下降到55.1%。催化剂失活可能是由于吸附在活性位点上的中间体和pms阻塞了催化剂表面的活性位点,降低了co@cof2的催化性能,另一方面是由于活性物种的损失。第三次循环后,在ar气氛下将co@cof2加热至500℃,以部分恢复催化剂的活性。
83.为了更清楚地研究co@cof2/pms对smz的降解机理,对新鲜和使用过的co@cof2进行xps分析。与新鲜的co@cof2相比,使用过的co@cof2含有s元素,这是由催化剂吸附smz和中间体引起的(图7b)。图7c显示了新鲜和再利用材料中钴的相对含量的变化。重复使用后,co原子百分比从0.46%下降到0.25%,说明co作为活性位点参与反应,发生离子损失。如图7d所示,吡咯n从20.81%增加到52.9%,而吡啶n和石墨n分别从23.80%、45.23%减少到13.10%、29.10%。这表明石墨氮和吡啶氮在pms激活过程中充当活性位点。电化学测量中的电化学阻抗谱(图7e)表明,co@cof2的电子电阻小于co@cof0和co@cof1,表明co@cof2具有较低的电荷转移电阻和较大的电子转移能力,这有利于pms激活。图7f中的线性扫描伏安(lsv)曲线表明,当co@cof2作为催化剂电极时,co@cof2的电流密度最高。
84.在这方面,本发明提出了co@cof2/pms降解smz可能的催化机制。首先,co0作为一个活性位点可以与pms相互作用生成so4·-和
·
oh(方程式(1)-(2))。此外,碳层中的co0显着
改变了co@cof的电荷转移电阻,增强了pms活化的电子转移能力。石墨氮和吡啶氮对碳骨架的结构和电子特性也有积极影响,可以促进碳原子之间的电子转移,这将有助于激活pms以产生活性物种。非自由基氧化物质1o2可以由o2·-生成,也可以通过pms的直接裂解生成(方程式(3)-(8))。co、n连续产生的活性物种(so4·-、
·
oh和1o2)发挥出色的协同作用,将smz降解为中间产物,最终矿化为co2和h2o(式(9))。这种机制如图8所示。
85.co0@cof2 2hso
5-→
co
2
@cof2 2so4·- 2oh-ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
86.co0@cof2 2hso
5-→
co
2
@cof2 2
·
oh 2so
42-ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
87.hso
5- h2o

h2o2 hso
4-ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
88.h2o2→2·
oh
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
89.·
oh h2o2→
ho2·
h2o
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
90.ho2·
→h
o2·-ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)
91.2o2·- 2h

→1o2 h2o2ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)
92.hso
5- so
52-→
hso
4- so
42- 1o2ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)
93.ros smz

intermediates

co2 h2o
ꢀꢀ
(9)
94.降解途径和毒性分析:
95.smz的降解产物通过hplc-tofms进行鉴定。鉴定了七种中间体(m/z=295、231、110、202、216、281和313)。smz的降解途径是基于确定的中间体提出的(图9)。首先,smz的末端-nh2被活性氧化剂氧化形成-no2,从而形成中间产物p1,其[m h]

峰在m/z 295(p1)。p1中的s-n键受到攻击,然后被破坏以生成p2。此外,p1可脱硫生成p3,其[m h]

峰位于m/z 231。n-c键断裂的发生和smz嘧啶环的开环反应导致p4和p5的产生。其次,smz分子可以被活化物质攻击,苯环被羟基化生成p6和p7([m h]

峰在m/z 281,313)。这些降解产物进一步氧化形成小分子物质,最终矿化成co2和h2o。
[0096]
使用ecosar程序(版本1.11)使用基于定量结构活性关系(qsar)的可用数据预测了smz及其降解中间体的毒性。根据表s3中估计的生态毒性值,smz对水蚤的慢性毒性(≤1mg/l)和对鱼类和绿藻的毒性(1-10mg/l)是高度有害的。p1和p6在慢性毒性中对鱼类具有高毒性,但幸运的是,p1和p6被降解为p2,对鱼类是无毒或底毒的产物。p5和p7在慢性毒性中仅对水蚤有害(≤1mg/l)。综上所述,smz可以通过co@cof2/pms系统降解为低危害或无害产品,进一步证明了co@cof2在水处理中的实际应用潜力。
[0097]
结论:
[0098]
本实施例以高结晶度、大比表面积的新型cofs材料为载钴载体,通过cofs材料的高温热解制备钴纳米颗粒包埋氮掺杂碳多孔催化剂(co@cof)钴盐。co@cof具有多个活性位点(co0、吡啶n和石墨n),在pms活化对smz降解方面表现出优异的催化性能。smz在10min内降解效率达到92.4%,toc去除率在30min内达到70.3%。结合自由基猝灭实验和epr分析,确定了该体系中的so4·-、
·
oh和1o2,而1o2在co@cof2/pms体系中的smz降解中起主要作用。此外,毒性评价表明,smz被有效去除,生物毒性降低,表明co@cof/pms是一种有效且有前景的smz污染废水处理技术。
[0099]
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献