一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于血管内设备的导线的制作方法

2022-08-13 15:56:00 来源:中国专利 TAG:


1.本发明涉及通过使用超声激活导线或其它细长元件穿过血管中的堵塞并促进后续治疗装置的引入来治疗局部缺血。
2.先前专利申请
3.本发明发展了在公布为wo 2020/094747的国际专利申请和尚未公布的gb专利申请第2006665.0中表达的概念,所述专利申请的内容通过引用并入本文。


背景技术:

4.在血管内手术中,选择并募集动脉以用于获得进入脉管系统的通路。选择基于动脉适应预期诊断或治疗装置到目标部位的通道的能力以及其可以最大限度地减少组织和患者创伤的程度。
5.在例如在外周动脉或静脉中的血运重建手术中,通常通过股动脉、腘动脉、胫动脉和/或足动脉外科手术切口和穿刺来进行通路,这在医学术语中通常称为塞尔丁格技术(seldinger technique)。一旦进入,将导引器导线和导引器护套插入到血管中并且固定在所述部位处。此护套充当装置的引入、撤出和更换的端口,并且使对动脉组织的磨损最小化。然后将引导导管和导丝引入到动脉中,以提供进一步的保护并协助装置导航和向目标部位提供治疗。
6.沿着血管内腔小心地推动导丝,以避免对血管壁造成任何创伤,并将导丝导航到梗阻部位。在成功的手术中,然后将导丝推动跨过或穿过梗阻并保持在原位以充当引导件,通过所述引导件将如球囊导管和支架等诊断或治疗装置追踪到阻塞部位。导丝用于其它微创手术,以将其它装置和仪器引入到血管或身体的其它腔内,以实现检查、诊断和不同类型的治疗。
7.导丝例如用于球囊血管成形术、胃肠道、泌尿外科和妇科手术。所有这些手术都需要穿过堵塞形成的通道,以促进于更大且通常更笨重的装置通到体内的病变部位或病变远侧的其它目标组织。
8.导丝是治疗干预的关键,并且由不同的材料制成,最典型的是不锈钢和各种合金,包含niti(镍钛诺)、钴铬合金(cocr)等,具有许多不同的设计。它们的制造涉及改变材料的化学组成和微观结构形态,例如通过冷加工材料同时将其形成为导线,并且然后将所述导线加工成不同的尺寸设计并应用不同的热处理以实现期望的性能。作为实例,可以在导线的长度上加工出特定的锥度以沿着导线的长度产生微分程度的柔性。因此,导线在其远端处将具有足够的柔性以符合血管的形状,并且具有将力传递到尖端的强度(“尖端强度”)或穿过病变的力。
9.在常规导丝中,渐缩段被包裹在线圈或护套材料中,这允许通过渐缩具有柔性,同时能够通过线圈将力传递到导线的远侧尖端。如将要解释的,在本发明的导线中,此类线圈或护套材料不是必需的,因为即使导线没有涂层或没有护套,力也通过超声波能量传递以发掘内腔。
10.血管内手术中使用的导线的长度也取决于其被认为可能操作的距离而变化。作为实例,长度通常为750mm直到900mm的导线用于许多外周应用,其中它们可能被引入股骨解剖结构或腘解剖结构,或者需要追踪到并穿过同侧髂骨股腘动脉和腘下动脉中的堵塞。在同侧和冠状动脉应用中使用的导线的长度往往是大约1200mm、1500mm或1700mm。实际上,可以对侧追踪的导线可能更长,长度可能为大约2000mm到2250mm或2500mm或3000mm。市场上最常见的导线长度为1750mm、1950mm和3000mm。
11.在许多情况下,延长导线可以用于促进某些被称为丝上(otw)装置的治疗装置的部署。在此情况下,导线的近端可能需要某些特征。
12.许多常规血管内导线是没有有源部件的无源机械装置。除了由临床医生施加的能量外,无源导线不传递任何能量。它们通过它们的近端被推动、拉动和扭转以导航到堵塞部位来操作,并且然后被推动穿过或围绕堵塞。它们具有不同的构造和设计,以便于进入和穿过不同解剖结构中的病变,并且用于不同的装置。然而,在很多情况下,对于常规导线来说,阻塞太具有挑战性而无法穿过。这些无源导线并不像导丝被预期的那样工作,或者当试图穿过也可能显著钙化的接近阻塞或完全阻塞的堵塞时,这些无源导线受到限制。在这些无源导线围绕阻塞被追踪的情况下,例如在内膜下的情况下,此类导线在重新进入真正的内腔时通常不成功。
13.本发明涉及使用沿导线传递的超声振动来穿过堵塞。us 3433226中公开了沿小直径导管和组合件传递超声振动。us 5971949描述了通过不同配置和尖端几何形状的波导传递超声能量。us 5427118描述了一种超声导丝系统,但没有详细讨论导线的近侧几何形状或其如何经由通过导线方法促进后续装置。
14.许多当前的单换能器系统不是超声激活导丝,而是含有用以搅动和消融材料的导线构件的超声激活导管。us 6855123和us 4979939描述了此类系统。这些导管本身需要单独的无源导丝来帮助它们导航,并且因此,它们是促进单独导丝穿过堵塞的工具。us 9629643示出了一种系统,所述系统具有一系列远侧尖端配置,但都需要单独的导丝来进入。
15.这些装置旨在递送血运重建的替代性方法,并且通常被描述为粥样斑块切除术装置、交叉装置或血管准备装置。在有限的例外的情况的,这些装置与穿过病变以及充当装置递送系统的目的不一致。在本领域中,这些超声装置和管道再造导线装置增强血运重建,并且通过去除形成病变的斑块来减少病变的体积,从而提供或实现粥样斑块切除术。
16.在早期、后期和当前的设计中,超声发生器系统由于所使用的声学而变得很大,并且它们已成为大型单元,按比例缩放以产生多个频率并控制脉冲波。另外,实用性考虑意味着已知系统通常包括单独元件。例如,许多系统被设计成信号发生器容纳在与换能器分开的单元中,一些被安装在大型手推车单元、控制台或支架上,这些手推车单元控制台或支架占据临床环境中的显著空间。us 6450975、us 2008/0228111和us 9282984全部描述了此类系统。
17.超声激活的导管和导线系统在过去被认为是穿过方法或粥样斑块切除术和准备血管以用于血管成形术治疗的方法。一些产品过去可商购获得,一些产品仍然可在市场上获得,并且一些新系统最近已经上市。此类导管和导线系统通常包含超声发生器和超声换能器。超声发生器将市电电力转换成超声波形,由其电压幅度、电流和频率限定。超声换能
器,并且通常是放大角状物,将电能转换为高频机械振动,由振动的频率和幅度限定。
18.小直径导线波导在其近端直接耦接到换能器,或通过任何角状物,并将机械振动传递到导线的远侧尖端。这导致导线波导的远侧尖端以期望的振幅和频率振动,目的是消融材料并最终促进全身血管和解剖结构的血运重建或管道再造。远侧尖端附近的组织和材料受到尖端的超声移动及其直接机械磨损、消融以及来自压力波分量的空化和从尖端周围的区域去除消融材料的声流的组合的影响。
19.在已知的超声激活的血管内导线系统中,导丝的近端连接到换能器。在公布为wo 2020/094747的专利申请中,导线穿过换能器并且不仅从其向远侧延伸,而且从近侧延伸。这允许用户在任何期望的位置将换能器耦接到导线,并调整导线的远侧部分的总长度,而无需对其进行切割。导线行进或延伸穿过换能器并在多个位置处耦接到换能器的能力具有非常有用的实际益处,这源于调节导线的远侧部分的总长度,例如适配导线尖端在患者身体内行进所需的预期轨迹长度的能力。同样,在调整或重新连接激活源的同时,增强了对导线的控制,以保持其在血管内腔中的原位放置。另外地,导线的可调节长度远侧部分有助于在远侧尖端处以任何期望的频率实现和优化共振。
20.在开发wo 2020/094747中所公开的概念时,发明人已经认识到需要在各个方面改进预先存在的血管内导线,无论是用于wo 2020/094747的概念还是其它方面。需要可以更容易制造、可以更容易地导航到病变部位、可以更简单有效地激活和控制并且可以更有效地穿过病变同时形成能够更好地促进沿血管的流动并适应后续治疗的更大的内腔的血管内导线。
21.本发明的目的在于解决与现有技术相关联的一个或多个缺点。


技术实现要素:

22.根据本发明的一个方面,提供了一种用于穿过血管中的梗阻的细长血管内元件。所述元件包括:
23.近侧区段;
24.远侧尖端区段,所述远侧尖端区段的直径小于所述近侧区段的直径;以及
25.向远侧渐缩的中间区段,所述向远侧渐缩的中间区段在所述近侧区段与所述远侧尖端区段之间延伸;
26.其中所述渐缩的中间区段的长度基本上为序列λ/4、λ/8...中的λ/2或λ/2的倍数或偶数分母分数,其中λ是将在所述元件中产生纵向共振的驱动频率的波长。
27.本发明还驻留在一种用于穿过血管中的梗阻的血管内设备中,所述设备包括本发明的细长血管内元件以及机械地耦接到所述元件的超声换能器,以超声激励所述细长血管内元件的所述远侧尖端区段以促进穿过所述梗阻。
28.本发明还提供了一种超声激励细长波导元件的远侧尖端区段的方法,所述方法包括:以激励所述元件中的纵向共振的驱动频率将超声能量输入到所述元件的近侧区段中;以及除了纵向振动之外,还在所述远侧尖端区段中产生侧向次谐波振动。
29.本发明的超声发掘导丝在许多重要方面不同于其它超声导线和常规导丝。
30.本发明有助于将导线导航穿过解剖结构、穿过病变并打开内腔,所述内腔的直径大于导线或球或导线的远端处的任何其它扩大特征的直径。出于此目的,可以是渐缩的或
直径具有比导线的近侧部分更窄的远端部分保持裸露以便于在远侧区域中侧向发掘。在常规导线中以及在竞争性超声导丝中,导线的远端渐缩至较窄的直径,以帮助所述导线导航穿过曲折的解剖结构。然而,导线的这些部分套有弹簧状线圈和/或聚合物夹套,以使此类柔性元件能够被推动穿过解剖结构。
31.现有技术导线的线圈或夹套允许纵向载荷的传送,并且可以具有在导线的长度上维持恒定直径的次要功能,以便通过导丝引入到脉管系统中的后续治疗装置可以在最大工作长度上这样做。然而,在本发明的超声导线中,通过导线传送的超声位移波形形式的能量提供了使得导线能够穿过梗阻的方式,并且因此导线的远端部分中的线圈或夹套不是必需的。
32.为了提供阻塞材料的侧向发掘,本发明中不存在远侧线圈或夹套以及渐缩的和远侧焊盘(land)长度和直径的优化提供了通过导线的纵向和侧向位移实现空化、磨损和消融的双重发掘。除了纵向方向,本发明还允许在侧向方向或径向方向上优先选择次谐波。
33.为了在远端处选择将以侧向模式发掘的次谐波频率,将导线的远端部分加工成根据本发明的形式以适应优先选择的主要次谐波谐振频率。这通过设计导线的成形轮廓相对于其渐缩和其远侧焊盘长度和直径的长度,使远端部分的侧向位移最大化。
34.对于针对弹性、韧性和机械性质选择的在37c下具有特征声学性能给定材料,导线相对于总长度的最佳特性是奇数倍(n=1、3、5、...n)的λ/4,其中λ是材料中针对给定输入频率和特定材料性质的波长。
35.渐缩的过渡提供了在导线中向远侧传送的超声能量的阶跃增益或放大。然而,发明人已经注意到,主要次谐波的自然选择可以通过使渐缩长度为λ/2来实现。还发现,通过远侧焊盘长度λ获得导线的最佳侧向传送。
36.决定可用性的重要方面是本发明的导线具有尖端柔性,从而允许所述导线符合其导航的动脉或其它血管的形状并且是柔性的,使得侧向振荡模式影响显著的力位移。因此,优选的是远侧焊盘直径为0.005"到0.008"的导线,其中0.007"在具有特定af(例如,在5℃与18℃之间)的1型镍钛诺导线中提供最佳性能。
37.有必要在纵向和侧向方向上利用激励建立的位移模式,而不使导线暴露于可能导致导线灾难性断裂的高应力或应变水平。因此,导线机械地耦接到超声换能器,并且主要以规定的频率和位移幅度在纵向方向上被激励。选择导线几何形状,从而以此输入驱动频率或接近此输入驱动频率主要以纵向模式共振,这在共振时沿导线长度在所述导线中设置驻波。这导致在远侧尖端附近的振动的显著纵向分量。
38.另一个挑战是,虽然侧向位移模式可以沿导线的长度在任何地方发生,但期望将能量传送并集中到远端。具体地,除了处于或接近系统驱动频率的纵向模式之外,还存在各种另外的纵向次谐波,在所述另外的纵向次谐波下,长度适合于解剖进入的导线将被激励。进一步地,导线在纵向主频率和其次谐波频率附近具有侧向或横向振动模式。导线的各向异性或构造或几何形状中引入的任何偏移或不平衡都将促进这些侧向振动模式,尤其是如果这些侧向模式处于或接近纵向模式。然而,期望鼓励侧向激发优先发生在导线的远侧区域中。
39.侧向位移发生在低于驱动或输入频率的频率下,所述侧向位移对导线的移动的减弱和放大主要取决于驱动频率和导线中使用的几何形状和材料。此类侧向模式叠加在远侧
区域的纵向运动上,并且根据本发明,可以通过将特定设计特征结合到导线中来优先选择。虽然原则上这些侧向位移可能存在于导线中,但特定频率和振动模式的选择可以通过定制导线的几何形状(包含渐缩的位置和长度)来实现,并且移动的幅度可以由导线的远侧部分的直径和材料性质确定。
40.需要优化导线以使导线以最佳水平的力和位移来位移以发掘堵塞。因此,在本发明的经优化的导线中,沿导线长度的不同渐缩和不同焊盘的构造可以在导线的远端区域产生不同的侧向和纵向响应。然后可以针对不同解剖结构和不同类型病变中设想的不同用例优化这些响应。
41.还需要可以快速导航到由硬钙化病变构成的慢性完全阻塞并穿过所述慢性完全阻塞的导丝,并且因此提供足够大的内腔以允许通过导线通入后续治疗装置。因此,本发明的目的是选择性地发掘血管内的阻塞材料并打开基本上大于导线的横截面积的孔或内腔以促进后续疗法的递送。为此,导线的远侧尖端区域中的发掘机制包括耦接到侧向运动的直接纵向振动,所述侧向运动一致地作用以消融和打开病变中的内腔。这种消融或其它发掘机制不仅可以发生在导线的远侧尖端接触病变的地方,而且还可以发生在导线的远侧区域在第一次穿透病变后接触病变的地方。
42.可以根据本发明修改各种相互关联的变量以优化病变的发掘。具体地,导线将超声能量从导线耦接到换能器的位置引导到导线的远端。导线的此远侧尖端区域的发掘由导线中能量呈现的模式(即侧向和纵向移动)和幅度确定,并且因此由以下确定:在导线中驱动超声信号/位移穿过其长度的驱动频率和振幅;导线中的声学传送的特性;以及导线的不同区段,即近侧焊盘区段中、中间渐缩区段中以及远侧焊盘区段中的直径,当所述导线对激励做出响应时,所述直径影响沿导线长度的不同区域中的导线位移的放大和幅度。
43.因此,就以下方面而言,导线的尺寸和一致性会影响其响应:导线的内部组成和其材料的性质;导线的外部形状以及导线中的任何不连续性或形状特征或形成件;导线在其形状和尺寸方面的一致性,如长度公差;渐缩尺寸、过渡区段和其与所施加的超声能量的相关性;导线直径从其在换能器处的近侧直径到其远侧发掘焊盘的直径的变化;与导线的长度上的直径减小相关联的放大;以及渐缩区段的位置和长度以及它如何对应于波长。
44.选择导线的机械性质和设计以优化其性能使得认识到这些属性与横向或侧向运动的物理表现有关。
45.本发明的所有这些目的都必须通过具有足够柔性以确认其在使用中穿过的解剖结构的形状的导线来实现。具体地,导线的柔性和弹性或回弹性决定了导线是否可以装配在动脉或其它血管的内腔内。导线的直径和机械强度也决定了导线是否可以穿过或导航穿过曲折的解剖结构,并且从而遵循血管的形状,并且不会拥塞、停顿或更糟的,由于无法偏转并适配解剖结构的形状而穿透血管壁。在此方面,在股动脉的情况下,血管很大并且因此导线符合其形状的能力比在例如,曲折度类似于冠状动脉和一些更大的神经血管解剖结构的曲折度的足部动脉中的挑战要小。
46.可以共同地选择各导线设计参数来控制有多少能量耦接到纵向模式和侧向模式中。在优选实施例中,限定导线的工作长度的近侧段的直径与限定导线的发掘区段的远侧段的直径的比率为2:1与3:1之间,这提供了最佳增益或放大。
47.用于选择主次频率的渐缩区段的最佳长度为λ/2,即渐缩区段的长度与远侧焊盘
长度的比率为λ/2:λ,其中从耦接件到远侧尖端的导线的有效长度为λ/4((2n 1)λ/4)的奇数倍。
48.导线是可以用作波导或波递送系统的本发明的细长血管内元件的实例。例如,元件可以是导线和导管的混合体。特别地,元件的近侧部分,例如从近端起约第一米的元件,可以具有以类似于导管的方式封装的导线,而元件的延伸到远端的远侧部分可以是未封装的导线。本发明的导线或其它元件可以是整个波递送系统的内部组件。
49.传输构件或波导导线的设计被优化以控制波图案通过不同解剖结构到远侧尖端和通过不同材料的传输。所使用的材料的形态很重要,并且虽然它们可以在“宏观”水平上呈现为高度弹性的各向同性材料形态,但它们可以具有各向异性的微观形态特征,这些微观形态特征可以延迟起始裂纹的发生或抑制裂纹的进展。
50.在实施例中使用的材料是广泛冷加工的不锈钢、镍钛合金和/或钴/铬合金,例如,线弹性镍钛诺。具体地,在仅镍钛诺合金的情况下,对夹杂物大小和量进行严格控制以便限制断裂的可能性。在其它合金中,对可能促进导线过早失效的其它形态特征进行控制。
51.本发明允许引入在近端和远端处以及在其长度上加工到导线中的特定特征,以增强导线穿过病变的能力,加强导线,实现对导线的更大控制,实现导线的耦接以及通过导线的有效传送。设计的组成随所使用的材料和预期用途而改变。
52.导线的几何形状以及所使用的材料针对不同的应用用例进行了优化。导线被加工以使缺陷最小化并对通过严格控制的渐缩和键控花键在材料长度上和通过材料长度的区段的传递进行优化。
附图说明
53.现将参照附图借助于实例描述本发明的实施例,在所述附图中:
54.图1是根据本发明的超声导线系统的示意性透视图。
55.图2是手持式超声激活单元和带有定位标记的导线的透视图。
56.图3是根据本发明的导线的示意性侧视图。
57.图4是根据本发明的导线的远端部分的放大侧视图。
58.图5是本发明的变体中的导线的远端部分的放大视图。
59.图6和6a是本发明的导线的侧视图,示出了所述导线对激励的响应。
60.图7是具有成角度偏移的远端部分的有源导线的示意性侧视图。
61.图8a和图8b是本发明的包含标记带的另外有源导线的示意性侧视图。
62.图9是本发明的另一种有源导线的示意性侧视图。
63.图10和11是本发明的各自具有放大的球形远侧尖端的其它有源导线的示意性侧视图。
64.图12是本发明的导线的侧视图,示出了给导线带上夹套的效果。
65.图13a、13b和13c是示出本发明的变体中的导线的端部的示意性透视图。
66.图14a、14b和14c是示出本发明的进一步变体中的导线的端部的示意性透视图。
具体实施方式
67.附图中的图1示出了根据本发明的系统的总体配置,并且展示了此类系统的一些
主要组件。此实例以手持式超声激活单元2为特征,呈血管内导线4形式的柔性传送构件以中心对准方式延伸穿过所述手持式超声激活单元。
68.导线4可以插入到患者的脉管系统中并穿过以将其远端带到病变位置。一旦遇到阻碍导线4穿过的复杂病变,激活单元2可以在合适的纵向位置处耦接到导线4。当被激活时,激活单元2将超声振动传送到导线4并沿着所述导线,从而通过消融和其它机制增强导线4穿过病变的能力。导线4由此用作用于穿过血管中的阻塞的交叉导线,并且然后可以保持在原位以用作用于递送后续治疗装置的导丝以治疗病变。
69.典型地,导线4的长度例如可以大于2m并且至多3m。例如,进入足部中或穿过足部的病变可能涉及导线在脉管系统内行进通常1200mm到2000mm的距离,这取决于是选择同侧入路、对侧入路还是径向入路。在此方面,在其尖端处向远侧渐缩为细线的导线4可以导航到足动脉并在背动脉与足底动脉之间围绕足弓。然而,本发明不限于足部或其它外周应用并且可以例如用于冠状动脉应用中,其中导线4导航到曲折小直径动脉并在所述曲折小直径动脉内发掘的能力也是有益的。
70.导线4的远侧区段的直径将决定导线4的柔性以及其容易符合其打算穿过的解剖结构形状的能力。因此,例如,在曲折的(足部或冠状动脉)解剖结构中,直径为0.005"到0.007"的远侧区段组合了柔性和用于发掘阻塞材料的能力。
71.激活单元2包含用户控件6以及任选地还包含显示器。激活单元2进一步包括远侧手动套索扣8,用户可以围绕单元2和导线4的中心纵向轴线转动所述远侧手动套索扣。特别地,激活单元2可以在导线4上滑动并且可以通过施加扭矩转动套索扣8在多个纵向间隔的位置处耦接到导线4。为了实现耦接,套索扣8作用于激活单元2内的围绕导线4并与所述导线同轴的如筒夹等耦接件上。当套索扣8被拧紧时,筒夹夹住导线4,以任选地通过耦接到换能器的放大器角状物,从激活单元2内的集成式超声换能器传送超声能量。在一些实施例中,导线4可以直接耦接到换能器,在此情况下可以省略角状物。
72.套索扣8是可逆的以从导线4释放激活单元2。因此,为了不同的目的,设置为可以互换不同尺寸、配置或材料的导线4。还可以互换激活单元2内的换能器或角状物。
73.图1示出了分解的布置,其中超声信号发生器10与激活单元2分离。在此示例中,超声信号发生器10通过连接器电缆12连接到激活单元2。在替代性布置中,超声信号发生器10可以并入到激活单元2的外壳中。图1中示出的实例具有外部供电的超声信号发生器10,并且因此包括连接到外部电源的电力电缆14。替代性实施例可以由内部电池供电,例如,可以将所述内部电池并入到超声信号发生器单元10或激活单元2中。
74.通常,系统的组件优选地是便携式的并且更优选地是手持式的。这些组件可以是无线的、可充电的、可重复使用的和可回收的。任何用于传输电力或信号的外部电缆12、14都可以通过滑环耦接,以允许电缆12、14的自由旋转并且避免与导线4缠结,或者所述外部电缆可以为导线4的近侧部分提供导管。
75.半自动控制系统可以基于来自导线-组织交互的反馈来控制或调制来自发生器10的信号,所述信号应用于激活单元2的换能器和角状物并且因此应用于交叉导线4,以便控制被传送的信号以调整由于阻尼或增加的阻力或调制施加的力引起的损失。视觉和触觉反馈指示器可以向用户提供关于装置状态、被消融组织的性质的视觉、听觉和/或触觉反馈,并指示可以施加以实现组织消融和破坏的力的水平和穿过导线的进展。
76.所述系统可以含有用于提供手动超控的装置,以帮助控制递送到远侧尖端的振动的幅度。这允许系统由在手术的过程中操作装置的用户通过位于发生器和传输单元上的控制器和用户输入机制来控制,或者被自主控制。
77.如将要解释的,导线4的远端也被合适地优化以在超声成像模式下跟踪穿过解剖结构,以及具有标记带以在x射线下突出显示位置。所述导线可能具有不透射线的标记来指示工作长度和导线的穿过尖端。
78.图2示出了导线4如何被蚀刻或以其它方式标记有一系列最佳区标记92以引导用户选择鼓励远侧激活的导线4的长度。然后,用户可以将激活单元2的耦接件与导线4上的区域标记92对准,任选地使用适当地位于激活单元2的外壳18上的其它标记。此方法适用于其中导线4的近侧部分轴向地从激活单元2的外壳18中露出的直通实施例和其中导线4的近侧部分在沿外壳18的长度的位置处侧向露出的其它实施例两者。
79.标记92解决了系统控制中的挑战,即超声能量耦接到导线的方式以及将连接点定位在将最佳耦接的特定区域的重要性。放置在导线4的近侧段上的标记92确保此对准对医生来说是清楚的。这些标记92还便于医生在手术期间在不同位置处将激活单元2重新连接到导线4。
80.为了解决激励的可见性和对准,标记92可以与激活单元2上的参考点对准,例如在外壳18的远端处的应变消除特征上的参考点以表示最佳位置点。标记92的可视化可以通过向激活单元2添加照明和/或透明或半透明窗口,例如,定位在单元2的远侧应变消除特征上来改进。
81.标记92易于通过激光蚀刻珠粒或如施加涂层和/或夹套等其它方式施加,以允许用户区分沿导线4的长度的最佳连接点的方式标记导线4的表面。认为修改氧化物表面层或导线4的饰面是实现此操作的最佳方式。这些标记的周期或纵向间距将为λ/2,并且所述标记的长度将是将能量耦接到导线4中的效率的函数,这也是其机械性质和尺寸性质的函数。
82.在本发明的实例中,导线4上的标记92可以指示从激活单元的外壳18露出的导线4的远侧区段处的多个长度中的任何长度处于或接近共振长度并且近侧区段未处于共振长度。换句话说,附接区标记92最佳地定位在导线4上,使得当耦接到声源时,从耦接点到远侧尖端的远侧部分的长度等于共振长度,而从耦接点到近侧尖端的近侧部分的长度等于非共振长度。在实践中,这些标记92可以位于为系统定制的位置处,以考虑弯曲和可能影响共振响应的其它设计特征。
83.当使用超声能量来激励导线4时,期望优化导线的远侧尖端部分处的位移幅度以发掘病变。相反,期望使导线的近端的位移或移动最小化,所述近端在患者身体外部并且实际上可以从激活单元2的近侧自由悬挂。
84.为了实现这一点,从远侧尖端到激活单元2耦接到导线4的位置的导线4的远侧长度应该是超声波的四分之一波长的奇数倍。这会在导线中产生驻波,并且在远侧尖端处具有振动波腹,因此使远侧尖端处的振动的幅度最大化。
85.因此,将换能器的远端定位在距导线4的远侧尖端四分之一波长的奇数倍处将使远侧尖端处的振动最大化。相反,确保近侧区段的长度是来自换能器固定的波长的一半的倍数,将使导线4的近端处的振动最小化。
86.当耦接到激活单元2中的超声换能器20时,本发明的导线4经历轴向超声振动并且
可以被认为是在纵向或轴向振动下的固定自由杆。固定自由杆在纵向或轴向振动下的固有频率由以下表达式给出:
[0087][0088]
其中c=导线材料中的声速;
[0089]
l为杆的长度;并且
[0090]
ω=系统的固有频率=2πf
[0091]
超声激活单元2施加恒定的已知频率,并且导线4的声速c可以实验式地测量或由以下表达式来近似:
[0092][0093]
其中e=导线材料的杨氏模量(youngs modulus);并且
[0094]
ρ=导线材料的密度
[0095]
对于应用恒定或接近恒定频率的系统,将发生共振的导线4长度l由以下给出:
[0096][0097]
实际上,在穿通线系统(through-wire system)中,从导线4的连接点到换能器,导线4可以被认为是经历纵向轴向振动的两个固定自由杆。一根杆向远侧延伸,并且另一根杆从激活单元2向近侧延伸。
[0098]
例如,特定的镍钛诺合金的声速为大约3400米/秒。对于40khz的驱动频率,可以计算出波长λ为大约85mm。因此,可以在导线4上的最佳位置处确定和标记共振长度。波长进一步影响沿导线4的渐缩位置和渐缩长度的选择。
[0099]
图3到7示出了导线4的各种优选的和任选的特征。
[0100]
通常,导线4具有允许其与手持式激活单元2集成的特征。例如,提供位置标记以引导激活单元2的最佳定位和附接,以促进在多个纵向位置处的附接和释放。因此,在其近侧区段的相当长的长度上,一系列最佳附接位置被蚀刻或以其它方式标记在导线4上,以指导用户定位和选择用于从激活单元2的远侧超声传送的最佳附接位置。激活单元2的外壳18还可以具有标记,所述标记可以在耦接之前与导线4标记对准。
[0101]
与所有血管内导线一样,需要在柔性或“可追踪性”与刚性或“可推动性”之间的平衡。然而,与无源导线不同,导线必须能够将超声能量传送到远侧区域,以帮助穿过病变。以此方式,导线4不仅在其尖端处而且沿其部分长度用作发掘器。导线4具有径向地充当用于打开孔的侧向发掘装置的远侧焊盘长度。导线可以具有远侧成形长度以放大径向发掘。
[0102]
导线4包含几何形状渐缩以影响直径变化(从较大直径到较小直径或从较小直径到较大直径)的区域。在需要渐缩的区域和其它位置,可以将区段焊接或以其它方式端对端连接在一起。除了正常的弯曲和循环疲劳的正常模式外,此类焊点或接头还必须能够承受由超声能量传递产生的应力。可替代地,可以将整个导线4或导线4的部分磨削或类似地处理以获得期望的几何形状。
[0103]
因此,导线4可以由端对端焊接在一起的区段制成。例如,近侧区段可以被加工为
标准直径以提供放大以及为向近侧装载的激活单元2提供标准连接。近侧区段可以焊接到可以具有定制远端和远侧尖端的不同直径的导线的选择中的一种。因此,可以以各种方式选择和组合区段。这有利地减少了对保持具有各种导线直径的原料的要求,因为可以组装几个不同导线直径的区段以生产具有许多所需配置的导线4。如果在导线上进行后处理,则将近侧区段焊接到远侧区段促进更有效的制造和更有效的传送,并且如果期望的话,可以将不同的材料焊接到近侧的niti基部上。
[0104]
理想地,可以选择从等于或接近等于导线系统的半波长的倍数的长度开始的渐缩。这将渐缩的起点置于导线4中的驻波的波腹处,所述波腹处的振动幅度最大。优选地,渐缩区段的长度被选择为等于或几乎等于共振系统的半波长。通常,焊点或接头应位于应力最小的纵向位置处。由于焊点或接头处于低应力位置,因此在导线激活过程中施加于所述焊点或接头的载荷不会导致灾难性的疲劳失效。
[0105]
图3中示出的导线4包括近侧区段124、中心或中间区段128和用于穿过病变的远侧发掘区段130。中间区段128比近侧区段124更窄但比远侧区段130更宽。因此,中间区段128通过渐缩的近侧过渡132连接到近侧区段124,并且通过渐缩远侧过渡134连接到远侧区段。每个区段通过各自过渡的近侧上的焊点122焊接到下一个区段。
[0106]
近侧区段124具有一系列纵向间隔的区域标记92,类似于图2中的那些区域标记,以指导用户选择鼓励远侧激活和阻碍近侧激活的导线长度。导线4进一步包括不透射线的标记带136,以帮助在手术期间跟踪患者解剖结构内的中间区段128和远侧区段130。这些各种标记136易于通过等离子体气相沉积、原子层沉积或溅射(例如,溅射金)来产生,以抵抗超声装载。
[0107]
尽管基本上是柔性的以沿其长度弯曲,近侧区段124、中间区段128和远侧区段130都大体上是直的并且沿导线的中心纵向轴线相互对准。然而,导线4的复合远端部分138具有设置为在远侧区段130的其余部分中远离导线4的总体轴线弯曲的形状。除了导线4的纵向运动之外,这些弯曲或热定形形状还增强了侧向运动。
[0108]
具体地,也如图4中示出的,远端部分138包括内侧成角度的支腿140和在成角度的支腿140的远端处的外侧远侧尖端126。支腿140相对于导线4的总轴线倾斜,并且远侧尖端126相对于成角度的支腿140倾斜。远侧尖端126可以是如图4中示出的25的球形或以其它方式扩大的特征,并且涂层142可以沿成角度的支腿140的长度部分地延伸,留下成角度的支腿140的远侧末端和远侧尖端126无涂层。
[0109]
在此实例中,远侧尖端126比成角度的支腿140进一步倾斜远离导线4的总轴线。因此,远侧尖端126和成角度的支腿140都在远离导线4的总轴线的大致相同的方向上倾斜。然而,在其它实例中,远侧尖端126的倾斜比成角度的支腿140更靠近导线4的总轴线。潜在地,远侧尖端126甚至可以大致平行于远侧区段130的其余部分中的导线4的总轴线。
[0110]
为了扼要重述,从远侧尖端126到激活单元2的连接点或耦接件的导线4的远侧部分的总长度可以等于导线4的共振长度。理想地,渐缩长度等于半波长的倍数。除了能够允许标准尺寸的后续装置使用导线4作为导丝之外,导线4的各个区段的直径还被选择以实现可推动性与可跟踪性之间的最佳平衡。
[0111]
在此实例中,导线4包含定位在位置处的成角度的部分,以在追踪到病变位置时增强导线4的可操纵性。举例来说,成角度的支腿140的长度可以是15mm到25mm并且远侧尖端
126的长度可以是2mm到5mm。成角度的支腿140有助于通过解剖结构进行转向,而远侧尖端126有助于穿过小直径病变进行跟踪。成角度的支腿与远侧区段130的其余部分之间的角度通常为10
°
到40
°
。此角度提供了导航到分支中的方法,但不会大到促进超过导线4的疲劳极限的应力。远侧尖端126和成角度的支腿140之间的角度通常为10
°
到30
°
。这使得能够在患病的小直径血管中导航。
[0112]
导线4可以被热处理,例如通过在加工尖端126并使其成形之后进行退火,以优化其微观结构以抵抗疲劳。
[0113]
x射线或其它成像模式下的导线4的可见性可以通过添加不透射线的标记带或涂层136来增强,所述标记带或涂层被选择以在完善的成像模式下优化可见性。导线4还可以具有涂层142,如亲水涂层,以减少与周围导管或组织的摩擦。
[0114]
图5示出了导线4可以具有附接或结合在远侧区段130上的远侧线圈或聚合物夹套144。此处示出的夹套正好在导线4中的有利于远侧尖端126偏转的弯曲之前在远侧终止。导线4的远侧尖端126可以被涂覆或处理以硬化表面或增加其烧蚀性质。
[0115]
图6和6a示出了具有基本上直的近侧区段或焊盘124、向远侧渐缩的中间区段130和提供远侧尖端部分126用于穿过病变的基本上直的发掘部分或焊盘的导线4。由于它们之间的中间区段130的渐缩,远侧尖端部分126的直径比近侧区段124的直径更小。例如,近侧区段124的直径可以为0.43mm并且远侧尖端部分126的直径可以为0.18mm或0.25mm。中间区段130的渐缩很小,并且因此在这些附图中被极大地夸大。渐缩的中间区段130可以延伸长度为λ的倍数或长度λ的分数,所述该分数最好具有分子1和偶数分母,例如在序列1/2、1/4、1/8...中,而远侧尖端部分126的长度可以为λ/2或λ/2的倍数或λ/2的分数,例如λ/4。
[0116]
导线4的整体几何形状,包含其标称直径和长度以及系统的驱动频率,由导线材料中的特性声速确定。此特性是此材料的性质和其几何形状的函数。导线的直区段和渐缩区段的尺寸以波长的功能间隔加工。
[0117]
作为杨氏模量约为75gpa的镍钛诺的实例,在此实例中,λ、λ/2和λ/4被确定为84mm、42mm和21mm。所选频率将沿导线长度产生谐波,并且导线尖端的负载将有助于为非特征性病变建立驻波。远侧区段126可以是渐缩的或者可以沿其长度在直径上是均匀的。所述系统可以在远离驱动频率的频率范围内产生侧向和纵向位移,通常发生在远侧区段126中频率的次谐波处。
[0118]
作为不排除其它尺寸值的实例,芯横截面直径为0.43mm的导线具有渐缩区段130,所述渐缩区段最佳地定位成过渡到远侧导线直径到0.18mm。可以选择导线的每个区段的长度,使其在驱动频率处或附近具有纵向共振模式,如40khz,并且在20khz、10khz或其它频率处或附近具有强次谐波。通过适当设计,在40khz和20khz或其它附近存在相邻的侧向模式。可能会跨渐缩放大大约2.4倍或其它合适的值。当导线从导管或护套中露出时,可能会通过悬臂作用引起另外的低频侧向振动。
[0119]
因此,通过适当选择导线材料、几何形状和远侧设计特征,即使在导线受纵向振动驱动时,也能激发理想的侧向模态。同时,纵向和侧向振动两者都有助于发掘病变并导致导线在病变中打开孔或内腔,所述病变的内径显著大于导线直径。
[0120]
就长度而言,导线的总长度可能是λ/4的奇数倍的函数。有效长度,即从近侧连接点到导线的远侧尖端的距离,也可以是λ/4的奇数倍的函数。
[0121]
渐缩的过渡130的目的是提供增益并维持能量通过导线的传送。渐缩的区段还将影响如何在导线的远侧焊盘区段126中建立侧向位移模式。
[0122]
引入渐缩的点也有助于促进导线的一部分与另一部分之间的材料的变化,这可能在远侧段与近侧段之间产生波长差异。
[0123]
渐缩的过渡的直径可以以阶梯式、指数式、径向或线性方式变化。出于放大的目的,横截面积的变化表示导线中的侧向和纵向位移幅度两者的增益水平。远侧区段126的长度和直径将决定在轴向和径向方向上的位移的模式和幅度。
[0124]
由于激活的导线4的目标是穿过和发掘病变,因此其尺寸经过优化,目的是在给定的输入下发掘尽可能大的孔。在这方面,图6示出导线4的远侧区段126一旦被激活,就以主要纵向模式移动,移动进出,并且还在径向方向上移动,这通过导线4的纵向移动在远端处映射出并发掘更大的体积。还看到导线4的远侧区段126在驱动频率处或附近以及以差分谐波的次级模式通过侧向和波状移动,这取决于激活频率以及远侧区段126的长度。这些波形可能会相互干扰,并且在不同时刻或多或少地有效发掘材料。
[0125]
图6进一步示出了导线4的远端区段126如何可以发掘直径大于导线的直径的孔,并且从而产生更大的内腔,通过所述内腔可以将疗法引入病变。在此实例中,导管套管或聚合物夹套144再次终止于导线的未带夹套的远侧区段130之前。导线4的远侧区段126一旦被激活,就以主要纵向模式移动,移动进出,并且还在径向方向上移动,这通过导线4的纵向移动在远端处映射出并发掘更大的体积。还看到导线4的远侧区段126在共振波146和差分谐波的次级模式下通过侧向和波状运动以其它模式移动,这取决于激活频率、远侧区段的长度和解剖结构的曲折度。
[0126]
因此,当用超声能量激活时,导线4借助于纵向移动,并且然后通过导线4在提供侧向偏移的脉管系统内的偏移平移或侧向运动充当发掘工具,以用于发掘在导线4的远侧尖端的远侧的材料。因此,导线4不仅在其远侧尖端处而且沿其从远侧尖端向近端延伸的部分长度磨损阻塞的内表面,并且因此形成用于通过导线4通入后续治疗装置的更宽的孔。随着导线4延伸超过病变的远端,侧向位移继续在病变体内发掘,并且因此形成更大的内腔。
[0127]
图7示出了导线4,所述导线形成或成形为具有用于穿过病变的成角度偏移的远侧发掘区段。在此实施例中,远侧区段不是直的而是由于热定形的成形尖端126而倾斜。尖端126的尺寸被优化以在操纵到病变和发掘病变方面提供改进的性能。具体地,尖端126相对于远侧区段的纵向轴线的角度以及尖端126的长度确定了导线4转换到特定侧支血管中的能力。尖端126的角度和长度也影响导线4一旦被激活就将发掘一段狭窄材料的方式。如果尖端126的尺寸是谐波的特性,例如,λ/8或长度约11mm,则导线4将在病变中打开比例如25mm尖端区段显著更大的隧道。波形的振幅和导线4的远侧区段穿过钙化区段的次数将确定被发掘的隧道的直径。
[0128]
导线4不一定在其尖端处成形或成角度,但在其尖端成形或成角度的情况下,仔细选择角度。如果尖端126的角度太大,则会产生更大的杠杆臂,并且因此会使导线4过度疲劳;相反,如果尖端126的角度太小,则可能无法有效地操纵导线4。在这方面,图7示出尖端126可以从导线4的纵向轴线偏移约15
°
到45
°
,从而允许尖端126破坏并发掘更大体积的病变。尖端126例如在超过500℃下被合适地热处理持续少于10分钟,以便产生可靠地抵抗裂纹扩展并因此抵抗疲劳的微观结构。
[0129]
图8a和8b示出如何通过使用例如金的标记带194来增强导线4在患者身体中的位置的可见性。例如,此类标记带194可以被固定在靠近导线4的远侧尖端126(例如,距其约3mm)并且还远离近侧区段184的远端的位置处,刚好在渐缩的中间区段186的开始之前。标记带194被放置在使用导线4时的最小负载的位置处。这使标记带194可以被拆卸或者导线4可能在这些位置处失效的可能性最小化。标记带194易于齐平装配到围绕导线4磨削的周向凹槽中。
[0130]
图9示出了其中导线4的远侧尖端126是圆形的、没有尖锐的过渡的变型。作为实例,在这种情况下,近侧区段184可以为1800mm长,渐缩的中间区段186可以为84mm长并且远侧区段188可以为10mm长。再次,标记带194靠近导线4的远侧尖端126和近侧区段184的远端环绕导线4。
[0131]
图10和11示出了导线4的其它变体,所述变体各自具有球形远侧尖端198,所述球形远侧尖端被倒圆以避免尖锐的过渡,但可以改为倒角的或具有小平面的,优选地在小平面之间具有钝角,具有简化导线通过解剖结构的通道的向远端会聚的小平面。如灯泡等扩大物可以位于远侧尖端处和/或与远侧尖端稍微间隔开,并且可以覆盖不透射线的线圈或其它材料。
[0132]
球形尖端198的长度可以为例如3mm到4mm,并且直径可以刚好超过0.4mm,或例如0.010"到0.035"。除了其球形尖端198,图10中示出的导线在其它方面类似于图9中示出的导线4。同样,图10和11中示出的导线4具有周向标记带194,所述周向标记带可以齐平装配到围绕导线4磨削的周向凹槽中。方便地,如图所示,球形尖端198可以被标记带194中的一者环绕。
[0133]
在图11中示出的实例中,导线具有近侧部分,所述近侧部分包括直区段200和向远侧渐缩的区段202。直区段200可以具有如图所示的脊状或其它纹理化表面,以改进与激活装置的接合。近侧部分被焊接到构成导线4的大部分长度的中间部分。中间部分还包括直区段204和短的向远侧渐缩的区段206。标记带194被示出为靠近中间部分194的向远侧渐缩的区段206环绕直区段204。最后,短而窄的远侧区段208从中间部分186向远侧延伸到球形尖端198。
[0134]
图12展示了例如用聚合物夹套或线圈144为导线带夹套或厚涂覆如何使期望的远侧长度保持畅通或未带护套并且如图所示侧向自由振荡。夹套或涂层的效果也可以通过围绕导线4的导管来模拟。已发现夹套的远侧范围控制由导线4的远侧发掘区段130产生的孔。导线4在夹套144的远端发掘病变直到套环或边缘148。已经发现,如果导线的未带夹套的远侧长度不够长,则可能会在病变处产生不大于导线的直径的孔,甚至抑制导线通过堵塞的进展。
[0135]
具体地,为导线4带夹套在共振或谐波长度以下或以上,使得夹套144的远侧边缘148与共振或谐波长度不重合,从而阻碍孔的形成。相反,为导线4带夹套至共振或谐波长度,使得夹套144的远侧边缘148与共振或谐波长度基本一致,从而允许导线4发掘更大的孔。
[0136]
图13a、13b和13c示出了远侧尖端126的布置的选择。图13a示出了由不透射线的带136环绕并设置有例如铍的圆形牛形尖端150的导线4。图13b示出了围绕导线4的远侧尖端区段126焊接的不透射线线圈151。图13c示出了超大的铍尖端152,以在穿过长钙化区段时
增加有效性。可以对远侧尖端区段126进行热处理以增加其抗疲劳性。
[0137]
图14a、14b、14c示出了远侧尖端126的其它布置。图14a示出了具有外表面的环状尖端154,所述外表面被涂覆或以其它方式修改以优化在环路上的钻孔或发掘,而不是被限制在尖端。所述环路还可以帮助导航到堵塞位置。图14b示出了金刚石涂覆的尖端毛刺156。图14c示出了涂覆有金刚石和/或碳化物涂层的钻孔端部尖端158或段。如这些涂层和硬化材料等涂层和硬化材料提供了对病变的积极加工。
[0138]
通常,本发明的导线4易于由超弹性合金制成,如镍钛诺(镍-钛),已知所述超弹性合金在超声传送中具有优先性质,同时提供柔性与可推动性的平衡。由于镍和钛合金加工的进步而产生的线性弹性镍钛诺也可以用于本发明的导线,β钛也可以。施加到导线4的表面饰面和涂层可以包含弹性含氟聚合物和亲水涂层以减少摩擦。
[0139]
在本发明概念内许多其它变化是可能的。例如,可以沿导线的离散段提供涂层,如通过涂覆导线的长度的中间区段以使导线的远端和近端部分未涂覆以分别用于发掘和用于夹持激活单元。沿导线的长度的连续和断裂的涂层段可以允许在期望位置处选择性地夹持激活单元和去除对所述激活单元的夹持。
[0140]
可以采用ptfe或替代性聚合物夹套来减少摩擦和损坏引导导管内部的风险。
[0141]
聚合物夹套可以在远侧区段中采用以改进射线不透性,更一般地沿导线提供润滑性,或提供标记点以连接到激活单元的换能器。
[0142]
表面改性可以涉及向远端部分的表面中添加条纹或锯齿以进一步咬入到钙化病变中,从而有助于发掘和抵抗损伤。此类形成可以是定向的,以便利用运动的方向并放大阻塞材料的切割或磨损效率。然而,个别形成件可以具有平滑而不是尖锐的轮廓,以免损坏血管壁。类似地,可以将材料施加到导线上以产生另外的磨损表面以帮助发掘材料。此类材料可以有用地减小与病变接触的导线的面积以促进切割并防止钙化材料阻碍导线的振动和移动。
[0143]
可以采用拉伸填充管(dft),其中niti芯被具有不同性质的第二金属,例如不锈钢围绕。由于可以控制所述第二层的相对厚度,所述第二层可以用于创建标记带、用于耦接导线或使导线成形或用于促进侧向阻尼。
[0144]
成型合金的夹套可以提供导航和/或不透明性。使用更具延展性的外夹套可以避免镍钛诺的冷加工和处理后热处理的需要。
[0145]
潜在地,可能有多个切割面,由位于导线的远侧尖端或远端区域处的多个焊盘定义。这可以促进不同且可能更适合解剖学的远端增益以及可能直径更大的第二近侧焊盘,以更好地处理病变。这是创建多个侧向发掘区的一种方式,其它方式是不同的截面直径、不同的渐缩和不同的发掘焊盘轮廓。
[0146]
应当注意,上文所描述的各种实施例的许多特征不仅限于那些具体实施例。技术人员将能够将来自一个实施例的特征与其它实施例的特征组合,只要这在技术上是可能的并且从实践的角度来看是有意义的。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献