一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

改进的大规模免疫磁性分离装置的制作方法

2022-08-13 15:52:47 来源:中国专利 TAG:

改进的大规模免疫磁性分离装置
1.相关申请的交叉应用
2.本技术要求2019年11月5日提交的美国临时申请no.62/930,917的优先权,该申请的全部内容通过引用结合于此。
技术领域
3.本发明涉及大规模细胞分离,且尤其涉及细胞的免疫磁性分离,以及使这种分离更快速、更有效和更经济的方法创新。


背景技术:

4.随着能够提取哺乳动物细胞并将其转化为能够去除宿主中的有害细胞的活性药物的方法学和新技术的出现,人们对从外周血单核细胞(pbmc)中分离用于这些过程的关键原始细胞亚群重新产生了兴趣。大规模临床细胞分离通常能够每批处理109至10
11
个细胞。t细胞是在细胞和基因治疗的这一新领域中产生转基因细胞(car t细胞)的关键亚群,t细胞通常占白细胞分离产物的30-45%。为了获得足够的t细胞以开始制造这些活性药物的接种物,10
10
个pbmc(外周血单核细胞)即可足够。另一方面,分离占原始细胞群0.5-2%的干细胞需要十倍以上的初始细胞。在任一情况下,免疫磁性分离需要三个基本步骤:(1)用磁性材料标记靶细胞;(2)从混合物中分离这种细胞;以及(3)靶细胞的回收。可能需要潜在的第四步骤,即希望从靶细胞中分离磁性材料。
5.wo 2016/183032(以下称为
“‘
3032”)中描述的共有分离系统1在图1中示出,并且包括以下元件:(1)组合的孵育、分离且薄的直线流体腔室(fc)2,其在其中点枢转以促进纯化过程中的处理步骤,比如混合试剂、克服重力进行磁性分离、在收集表面上方移动缓冲液和缓冲液弯月面(buffer menisci)以及使用有益的定向来填充和排空腔室,(2)磁性阵列55,当与fc 2接触时,该磁性阵列尤其适于执行(a)增强加载到靶细胞上的磁性纳米颗粒,(b)细胞分离以及(c)这些磁性固定分离细胞的后续纯化处理步骤。如在

3032中所公开的,项目“(c)”涉及去除通常在磁性分离过程中夹带的旁细胞的处理步骤,与其他外场磁性分离不同,该步骤无需悬浮和磁性分离的循环来去除这些旁细胞的产物。相反,夹带的旁细胞通过上方的缓冲液和缓冲液弯月面从磁性保持细胞中去除。因此,

3032公开详细描述了用最少的步骤有效地进行免疫磁性细胞分离的方法和操作。

3032的系统1也能够在其他实体上进行类似的分离。应当注意,

3032公开了一种系统1,其中磁性阵列55和fc 2能够耦合和解耦,以便执行分离过程中采用的各种步骤。
6.‘
3032中描述的系统1不仅可用于大规模分离的隔离,而且还可用于较少量的分离,由于可采用不同收集表面积的fc 2,因此,它能够简单地放大或缩小。所公开的系统1还被设计用于标记有高磁性胶体纳米颗粒的细胞,所述高磁性胶体纳米颗粒能够使用外部梯度磁场从容器中分离。使用明显更大的磁珠(约1-5μm)进行细胞标记的细胞分离也能够通过

3032中公开的方法有利地进行,但通常需要额外的步骤。
7.所有这些考虑的结果在图1中示出,其示出了

3032中公开的细胞分离系统1的关
键部件的3/4视图。项目2是具有薄刚性侧面的收集腔室,其具有用于引入或移除流体的端口3。如

3032中所公开的,腔室2装配在框架4中,以便能够连接到旋转致动器组件和线性致动器组件托架。因此,处理腔室2的平面能够旋转和横向平移,如箭头9(横向运动)和10(旋转运动)所示。系统l中还示出了具有铁背板6的磁性阵列5,该铁背板提供配轭(yoking)并保持固定的磁性元件7,其中磁性元件能够以各种方式布置,例如面向背板6的具有北极和南极的平行的成排的磁性元件。如

3032中所公开的,这种布置产生了强磁场梯度,该磁场梯度将磁性元件吸引到由那些磁极表面限定的平面表面。还公开了各种磁性布置的有限元计算分析,这表明能够很好地控制磁场梯度,将梯度视为距平面表面的距离以及磁到达和保持(magnetic reach and hold)的函数。磁性阵列5可以优选地以45
°
角固定在空间中,其中磁体7面向下。替代地,磁体可以固定到磁性阵列5,使磁性阵列5与处理腔室2直接接触,使得磁性阵列和处理腔室能够作为一个单元旋转或平移。显然,当磁性阵列5与处理腔室2接触时,强磁场梯度施加在处理腔室的内容物上。
8.在

3032中公开了使用系统1从外周血单核细胞(pbmc)中分离cd3 t细胞的详细方案和方法,以及处理腔室2的旋转和平移特性的优点。简而言之,处于接近竖直位置的处理腔室2填充有一定体积的pbmc和第二体积的抗cd3 ff,并通过处理腔室2的旋转和/或平移振荡进行混合,在此期间cd3 t细胞将被磁性标记。接下来,将处理腔室2平移到与磁性阵列5接触,这使得磁性标记的细胞到达处理腔室2的上部内表面上,其中磁性标记细胞被足够牢固地保持,使得在处理腔室2内流经它们的流体不会将它们驱逐。在

3032中公开了缓慢地流经如此保持的靶细胞的缓冲液以及弯月面能够通过这种适度的搅动迫使在磁性分离步骤中夹带的旁细胞回到悬液中,从而获得非常高水平的纯度。在2次或3次这种清洗循环(或“弯月面擦除(meniscus scrubs)”)之后,处理腔室2可以处于其竖直方向,磁性阵列5可以被移除,并且利用系统1的旋转和横向平移特性,可以将产物细胞悬浮在一些所需体积的缓冲液中。


技术实现要素:

9.根据本发明,申请人已认识到,由于需要对处理腔室的内容物施加最大磁场梯度,所以处理腔室的收集壁需要非常薄,这是因为平面磁性阵列产生的梯度根据距那些平面表面的距离而急剧下降。薄度使得这种易碎腔室由于其难以制造和消毒不仅成本高,而且薄壁需要支撑系统以防止处理腔室在需要旋转或左右摇动处理腔室的处理步骤中变形,例如进行混合操作或“弯月面擦除”过程(指的是使缓冲液弯月面经过被磁性保持的靶细胞以获得高纯度的过程)。
10.根据本发明,申请人还认识到对这些腔室问题的富有想象力的解决方案,即由柔性袋(例如适当尺寸的血袋)形成窄矩形状刚性壁腔室。这可以通过将这种袋限制在基本平行的壁之间并将袋置于适度压力下来实现,这迫使柔性袋的壁与限制壁紧密接触,并提供具有无褶皱收集表面的刚性腔室。由于本文使用的这种类型的磁场梯度根据距平面磁体的距离而急剧下降,因此不能过分强调对这种平坦无褶皱表面的需求。这种收集表面中的褶皱会导致显著的靶细胞损失,因为它们在平面磁体阵列上方的高度处于减小的磁场梯度。应当注意,除了使用同步泵来保持收集处理腔室处于压力下以形成刚性腔室之外,还可以使用简单的压舱型辅助腔室,该辅助腔室具有适当的容积,填充有加压空气并装配有限压
阀。配备有适当限制阀的大型(2l)血袋已被成功地使用。
11.如下文进一步公开的,申请人创造性地设计了将磁性组件与窄矩形状刚性壁处理腔室耦合,该处理腔室呈袋的形式,比如血袋,放置在基本平行的壁之间,并且该袋可选地处于适度压力下。磁性组件与袋形式的处理腔室的耦合可以是永久性的,且磁性组件的梯度和袋完美地对准。
12.在本发明的另一方面中,本发明可以提供一种装置,其中i)以袋(比如血袋)形式的窄矩形状刚性壁处理腔室放置在基本平行的壁之间,以及ii)磁性组件能够任意地耦合和解耦,并且具有可重复处理所需的精确对准。由于以下原因,这种配置带来了重大挑战:(1)处理腔室是一个大型薄壁、窄直线状腔室,其在压力下操作,其必须在耦合和解耦的整个循环中保持其形状,以及(2)由磁性阵列产生的磁场梯度从其平面表面急剧下降,使其接近处理腔室的收集表面的所有区域成为一个关键问题。在其一个方面,本文公开了一种系统,该系统以可重复处理所需的精度完成耦合和解耦这些关键部件的任务。所公开的示例性系统的配置可以通过采用通常常见的致动器来促进自动化。此外,由于该分离系统可以经由其枢转能力在细胞分离过程中利用重力,因此重力也可以用于或有助于磁性阵列和处理腔室的耦合和解耦。
13.磁性组件和处理腔室的可逆耦合可以通过形成用于处理腔室的新颖且独立的壳体来实现,该壳体具有:坚固的盖,优选地为透明的,以便在处理过程中可以观察处理腔室;以及底板或底部平台,其被独特地构造以允许处理腔室与磁性组件(即处理腔室与磁性阵列)的紧密接触。该底部底板能够通过从刚性矩形板(优选为铝)开始而获得,该刚性矩形板的尺寸略大于磁体阵列的背板的尺寸,并且从该板上切割出大致中心的矩形区域,使得磁性阵列的磁体可以整体插入到该空间中,插入的程度使得各个磁体的顶部与板或底板的顶部表面处于同一水平。为了将处理腔室的底部受压表面保持在适当位置,需要支撑结构。这可以通过以下方式实现:(1)在切口空间中并且在与磁性阵列的各个磁体的方向相对应的方向上放置水平且平行放置的薄构件,所述薄构件被固定到由切口产生的两个相对表面,从而形成格栅状结构,(2)采用支撑构件,所述支撑构件能够以足够的公差装配在磁性阵列的各个磁体之间,以便能够容易地移入和移出该空间,(3)如此隔开的支撑构件,使得当开槽或格栅状底板放置在磁性阵列上方时,它们可以安装在相邻磁体之间或每隔一个磁体之间,以及(4)通过在格栅状支撑结构上方放置薄片,例如1mm的刚性丙烯酸片,以建立用于处理腔室的平滑、完全平坦的底部限制壁。通过适当选择刚性底部板或底板的厚度以及用于构造磁性阵列的块状磁体的高度,可以使这些阵列的平面表面在处理腔室的底部表面的0.5至1.0mm范围内,从而有效地允许将最大磁场梯度施加到该腔室的内容物上。
14.综上所述,鉴于本公开的教导,可以清楚地看到,

3032中描述的许多优点,尤其是关于系统自动化和消除操作者任务的优点,都是通过这两个主要部件(处理腔室和磁性阵列)的解耦能力而产生的。这种方法还具有另一个非常显著的优点,因为它消除了在引入靶细胞之前用于磁性标记的靶细胞的单独处理站的需要,这对于偶联单元是需要的。使处理腔室和磁性阵列去耦合还简化了收获产物,仅通过将产物从处理腔室中排出即可。
15.在其一个方面中,本发明可以提供一种用于在处理腔室中从靶向生物实体和旁生物实体的流体悬液中磁性分离靶向生物实体的系统。处理腔室可以以血袋的形式提供。该
系统可以包括平台,该平台被配置为在平台的上表面处接收处理腔室,该腔室具有开口,通过该开口,处理腔室可以被填充以具有磁化或可磁化靶向生物实体的细胞悬液,其中处理腔室是具有收集表面的流体腔室。此外,该系统可以包括安装在平台上并可相对于平台移动的磁性元件,使得在平台的第一选定位置,磁性元件磁性地耦合到处理腔室,以向收集表面施加磁场,从而将靶向生物实体吸引到收集表面。还可以提供与处理腔室和磁性元件连接的腔室控制组件;腔室控制组件可操作以使分离腔室和磁性元件围绕轴线枢转,从而响应于平台的旋转将磁性元件从第一选定位置移动到第二选定位置,其中第二选定位置比第一选定位置更远离平台。磁性元件可以在垂直于上表面的方向上移动。
16.此外,平台可以包括一个或更多个支柱,磁性元件可移动地安装在支柱上,以允许磁性元件在一个或更多个支柱上从第一选定位置移动到第二选定位置,第二选定位置可以比第一选定位置更远离平台。磁性元件可以被配置为响应于平台的旋转而在一个或更多个支柱上从第一选定位置移动到第二选定位置。磁性元件可以被配置为响应于平台的旋转从第一选定位置移动到比第一选定位置更远离平台的第二选定位置。磁性元件可以包括磁体的阵列,并且平台可以包括延伸穿过其中的空腔,磁性元件的尺寸适于安装在该空腔内。
17.更进一步地,该系统可以包括多个纵向非磁性杆,这些纵向非磁性杆以间隔关系彼此平行地设置在空腔中,其中多个开口设置在相应成对的纵向非磁性杆之间。磁性元件可以包括纵向延伸的磁体的阵列,磁体的尺寸适于在磁性元件处于第一选定位置时装配在多个开口中的相应开口内。平台还可以包括设置在多个纵向非磁性杆上方并与之接触的非磁性片,以提供用于与处理腔室接合的平坦表面。盖可以设置在上表面上方,以在盖与上表面之间限定用于接收和保持处理腔室的空间。此外,可以提供与上表面和盖接触的凸轮,凸轮可旋转以改变上表面与盖之间的距离,并且盖可以沿垂直于上表面的方向移动以改变两者之间的距离。
18.在其又一方面,本发明可以提供一种用于在袋形式的处理腔室中从靶向生物实体和旁生物实体的流体悬液中磁性分离靶向生物实体的系统。该腔室可以具有开口,通过该开口,腔室可以被填充以具有磁化或可磁化靶向生物实体的细胞悬液,其中处理腔室是具有收集表面的流体腔室。该系统可以包括:平台,该平台具有从上表面贯穿延伸到相对的下表面的空腔;多个纵向非磁性杆,其以间隔关系彼此平行地设置在空腔中,其中多个开口设置在相应成对的纵向非磁性杆之间;以及多个磁体,其靠近上表面设置在空腔中的多个开口中,使得多个磁体可以磁性地耦合到处理腔室,以向收集表面施加磁场,从而将靶向生物实体吸引到收集表面。该系统还可以包括设置在上表面上并与多个纵向非磁性杆接触的非磁性片,以提供用于接收和支撑处理腔室的平坦表面。
附图说明
19.当结合附图阅读时,可以进一步理解本发明的示例性实施例的以上概述和以下详细描述,其中:
20.图1示意性地示出了

3032中公开的细胞分离系统的某些部件的简化视图;
21.图2示意性地示出了标准血袋的俯视图,该血袋被修改以优化其在本发明的装置中作为用于免疫磁性细胞纯化的处理腔室的用途;
22.图3a示意性地示出了根据本发明的示例性配置的可充气柔性腔室的侧视图,该可
充气柔性腔室呈放气柔性血袋的形式,例如,设置在“有壁”框架内,其中充气气囊准备对血袋加压,以形成处理腔室;
23.图3b示意性地示出了显示图3a的柔性血袋在图3a的“有壁”框架内充气以形成刚性处理腔室的侧视图;
24.图4示意性地示出了根据本发明的开槽的刚性非磁性板的示例性配置的俯视图,该非磁性板可以支撑图3b的加压的可充气血袋处理腔室的一侧,其中非磁性板中的狭槽允许磁体阵列与处理腔室紧密接触;
25.图5a示意性地示出了根据本发明的平面磁性阵列的示例性配置的俯视图,该平面磁性阵列可以将平面磁性阵列的磁体“相互交错”到图4的非磁性板中;
26.图5b示意性地示出了图5a的平面磁体阵列的侧视图,描绘了位于背板上的磁体;
27.图6a示意性地示出了图5a-5b的平面磁体阵列的侧视图,该平面磁体阵列与图4的支撑板机械地链接,并在支撑板上方增加了盖板,从而形成用于保持可充气柔性腔室(比如柔性血袋)的框架;
28.图6b示意性地示出了图6a的系统的局部剖切视图,该视图相对于图6a所示的方向绕其旋转轴旋转180
°
,这使得磁体移动穿过开槽的非磁性板中的间距;
29.图7示意性地示出了根据本发明的可枢转磁性分离装置的示例性配置的分解立体图,其包括图4a-6b的平面磁性阵列和处理腔室,其中枢转/旋转动作用于使阵列的磁体在通过重力作用旋转时接合或脱离,并且其中容纳可充气柔性分离处理腔室的可枢转磁性分离装置的部分被分解显示;
30.图8示意性地示出了图7的装置在未分解时(即当框架支撑分离处理腔室并与平面磁性阵列紧密接触时)沿剖面线8-8的剖视图;
31.图9示意性地示出了根据本发明的凸轮机构的示例性配置,其可以改变分离处理腔室的深度;以及
32.图10示意性地示出了如何使用本发明的示例性系统的枢转来使处理腔室与磁性阵列接触或脱离,以便执行免疫磁性分离的程序步骤。
具体实施方式
33.现在参考附图,其中相同的元件在全文中编号相同,根据本发明,实现具有磁性阵列55的分离系统和柔性可充气处理腔室16(例如血袋)的许多优点的一种示例性方式是使这些部件永久地彼此固定,如图2、图3a、图3b所示。另一种示例性方法是使处理腔室/袋16和具有磁体阵列55的分离系统相对于彼此可移动,例如图2、6a、6b所示。
34.首先转到腔室16,图2描绘了根据本发明的示例性柔性可充气处理腔室16,其可以以适于在图3a和图6a的配置中使用的改进血袋16的形式提供。改进的血袋16可以包括在袋的相对侧上的入口端口17和出口端口18(但也可以采用其他位置),用于分别连接到入口泵和出口泵,以分别独立地或同步地将流体(溶液或气体)泵入袋16或从该袋中泵出。应当注意,袋16的角部19、20已熔接以阻挡流向袋的角部,其中不存在良好的流体流动可能会阻碍处理。分流器21和22可以设计成促进平推流通过袋16。在临床细胞分离中使用血袋或类似物作为处理腔室16的显著优点是,它们与血液制品相容,是无菌的,为用户所熟悉,并且是廉价的一次性产品。
35.参照图3a,示出了根据本发明的系统100,其包括放置在平行的保持壁之间的柔性可充气处理腔室16,图示为放气的血袋,其中一个保持壁为23’,另一个保持壁示出为磁性阵列55。可充气处理腔室16被加压以形成刚性处理腔室,其壁被制成与框架23内的保持壁23’和磁性阵列55齐平,如图3b所示。在适度的液压或气压(小于1.0psi)下,血袋16可以在整个处理步骤中保持刚性,并且柔性壁无褶皱。
36.如图3a所示,作为对血袋16加压的一种可能方法,压舱气囊25可以通过线夹26保持闭合。如上所述,框架的一个壁可以包括磁体57的磁性阵列55,例如,在其上放置有薄的(大约0.5至1mm厚)刚性非磁性片52,比如丙烯酸片,刚性非磁性片用于形成平滑的平坦表面。相对的壁23’可以容易地移除,使得柔性可充气处理腔室16可以插入并且一旦被加压就保持在框架23中的适当位置。
37.图3b示意性地示出了图3a中的装置,但柔性可充气处理腔室16在框架23内被充气。打开线夹26,来自气囊25的空气对血袋16进行充气和加压,形成刚性的充气腔室16。在血袋16被加压的情况下,可以实现壁23’、刚性非磁性片52、磁性阵列55和血袋16的适当布置,以将磁场传递到处理腔室/袋16,例如用于执行磁性细胞分离过程。与带有反馈的压力计链接的同步泵可以用于在整个过程中维持可充气柔性腔室16的刚性和恒定压力,该过程通常为50至160分钟,如果包括附加步骤,甚至更长。
38.对于通过将处理腔室16永久地耦合到磁性阵列55而构建的分离装置100,采用间接磁性标记的阳性细胞选择可以如下地执行:(1)细胞悬液可以与标记单克隆抗体(mab)混合,并在与系统100耦合的适当外部系统中孵育;(2)接下来,如果需要,可以通过离心法去除未结合的mab;(3)然后,可以将普通的捕获磁性纳米颗粒添加到mab标记的细胞中并孵育;(4)接下来,可以将步骤“(3)”中的混合物泵入加压处理腔室16中,在该加压处理腔室中可以立即进行分离,以及(5)然后,可以通过对分离的磁性保持细胞进行1-3次弯月面擦除循环(例如,如

3032中所公开的),从磁性收集的细胞中去除磁性分离期间夹带的非靶旁细胞;以及(6)最后,将处理腔室从磁场梯度中移除,以回收细胞(在阳性选择的情况下)。
39.为了更方便地将图3a、图3b的系统100用于磁性处理,比如免疫磁性分离,需要一种使磁性阵列55的磁体57与改进的血袋16的至少一个壁紧密接触的方法。
40.就此而言,并且在其另一方面,本发明可以提供支撑结构30,该支撑结构为处理腔室/袋16提供了保持壁,并且创新性地实现了图4所示的需求。图4示出了大型刚性矩形非磁性底板31,例如7-8mm厚的铝板,其具有设置在其中的空腔32。如果要在袋16的所有部分上施加磁场梯度,则空腔32的尺寸可以稍大于处理腔室/袋16的尺寸。横跨空腔32的是多个非磁性杆33,例如1.5
×
12mm的铝制扁杆。杆33可以通过狭槽保持在空腔32中,这些狭槽围绕空腔32的外周设置在非磁性板31内,杆33的相应端部放置在狭槽中,如图4所示。
41.相邻杆33之间的间距34应足够大,使得平面磁性阵列55的一个或更多个块状磁体57可以平滑地插入该间距中,如图6a、图6b所示。孔36可以设置在底板31的四个角部处,以固定在底板31上方突出的支柱65,从而将封闭处理腔室/袋16的盖42保持在适当位置,如图4、图7所示。孔36还可以用于在四个角部处的每一个角部处固定在底板31下方突出的支柱43,如图7所示。支柱43可以用于悬挂磁性阵列55,如下文结合图7更全面描述的。在图4和图5a中,中线35描述了底板系统30将围绕其枢转以形成细胞纯化过程所需的方向的线。
42.在其又一方面,发明人认识到,通过使处理腔室16永久地与磁性阵列55耦合,图
3a、图3b的系统100存在一些处理缺陷。例如,如果处理腔室16和磁性阵列55可以容易地去耦合,则磁体57应与腔室16接触和脱离接触的某些过程可以如下地操作:在阵列55与腔室16之间的解耦状态下,可以将细胞混合物引入处理腔室16中(然后适当地围住和加压),随后标记单克隆抗体(mah)。然后,系统100可以围绕枢轴点左右摇动,以进行混合和孵育;接下来,将普通的捕获磁性材料引入处理腔室16,该处理腔室再次摇动以进行混合和孵育。应当注意,最后一个步骤不能在阵列55与腔室16之间的耦合状态下完成,因为在引入磁性材料后,并且很可能在系统充分混合之前,所添加的大量磁性材料将立即发生分离。继续地,在引入、混合和孵育磁性试剂与靶细胞之后,可能存在处理腔室16和磁性阵列55耦合和去耦合的步骤。例如,可以采用处理腔室16和磁性阵列55的间歇耦合(20至30秒),由于改变磁场梯度而增强了磁性纳米颗粒的移动,而较大的细胞保持相对静止,潜在地导致任何未结合的磁性纳米颗粒找到待结合的靶细胞,增强了靶细胞的磁性负载。
43.在阳性选择的情况下,在从处理腔室16中移除已用过细胞之后,且在腔室16和磁性阵列55保持接合的情况下,可以进行磁性保持细胞的缓冲液洗涤,随后进行弯月面擦除,以获得高度纯化的细胞产物。通过将磁性分离细胞(靶向的和夹带的)保持在适当位置,并使缓冲液和缓冲液弯月面置于其上方,可以容易地移除磁性分离中夹带的旁细胞,使夹带细胞移动到液相中,因此产生高纯度细胞,高纯度细胞可以简单地通过使处理腔室16和磁性阵列55去耦合并排空腔室16来获得。具有可以去耦合的磁性阵列55和腔室16的系统除了所有上述优点之外,还避免了将处理腔室16从耦合单元所需的围住空间中移除的额外步骤。
44.形成用于与磁性阵列55接触的处理腔室壁的支撑结构的挑战变得困难,不仅由于该壁很薄,优选地小于1.0mm,而且由于处理腔室16被加压。对于限制在8-10mm深度的这种腔室16,适应在2
×
107个细胞/ml的优化分离浓度下对1
×
10
10
个细胞进行磁性分离,薄壁收集表面积可以是大约500cm2。在0.8psi的内部压力下,该表面上大约有65磅的负载。当磁性阵列55未压向壁时,以及在阵列55和收集腔室16耦合和去耦合期间在该表面上可能发生变形,将加压收集腔室壁保持在适当位置并防止该壁变形可能导致靶细胞的不均匀收集。防止靶细胞的不均匀收集和/或腔室壁变形提出了重大挑战。此外,以相对简单的方式自动地耦合和去耦合阵列55和腔室16的装置将是最有利的。
45.重要的是应当注意,从上文计算的收集表面的表面积与本发明的系统的另一个重要考虑因素相吻合。已积累了大量实验数据,表明只有当所收集的细胞层数低于约6(可能是7层)时,磁性分离过程中夹带的旁细胞才能通过弯月面擦除被有效地去除。在这种情况下,很容易通过替代的考虑因素来示出,层中10
10
个总细胞的40-50%的分离需要大约520cm2的收集面积以满足该条件。因此,收集表面需要足够大,以便适应在少于7个细胞层中对所需细胞的收集。
46.响应于上文所认识到的可以将阵列55和腔室16耦合和去耦合的系统的优点,在本发明的另一个方面,提供了可以将柔性可充气处理腔室16与磁性阵列55可逆地耦合的装置。例如,在一个示例性配置中,本发明的装置可以包括经由圆柱形支柱43将磁性阵列55悬挂在底板31下方,相应的套筒轴承44安装在底板31的四个角部上,如图6a-8所示。支柱43的长度应足够长,以便当磁性阵列55处于其最底部位置时,不会有磁场梯度施加在处理腔室/袋16上,如图6a、图7所示。
47.也就是说,一方面,磁性阵列55在在支柱43和套筒轴承44上悬挂在底板31下方时,重力将使磁性阵列55处于其在圆柱形支柱上的最底部位置,即完全脱离处理腔室/袋16,如图6a、图7所示。另一方面,如果装置40翻转倒置,则重力将使磁性阵列55向下滑动并进入壳体底部的开槽栅格中,从而接合。因此,如此描述的耦合和解耦的一个实施例可以是重力驱动的,其中简单地旋转该系统即可完成该任务,并且对于磁性分离方案(比如在

3032中所公开的那些)来说是有利的。
48.显然,如果系统40安装在固定于磁性阵列55的枢轴杆上,则磁场梯度的接合将在与上述相反的方向上发生。尽管重力可以满足所有需求,但在任何方向都希望完全自动的接合/脱离的情况下,可以采用简单的致动器。重力辅助也可以是自动化系统的一部分,因为需要较少能量的致动器。此外,为所述系统提供锁定位置可能是有利的。例如,如果将所述系统旋转180
°
导致磁性阵列55位于顶部,则可以使用将两个部件保持在适当位置的锁定机构以保持它们接合,而无论系统如何定向。
49.通过具有允许磁场梯度与该加压的收集/处理系统耦合或去耦合的系统,在

3032中公开的所有实施例可以通过以下步骤容易地实现:(1)利用排空的加压处理腔室,在去耦合模式下,试剂和细胞将以适当角度(接近45
°
)泵入系统中;(2)在不存在磁场的情况下,通过使处理腔室枢转,试剂将与靶细胞混合和搅动;(3)可以克服重力进行靶细胞的磁性分离,这在将单元保持在一起的大范围的有利角度上发生;(4)比如磁性细胞的弯月面擦除的处理步骤可以在磁体接合的情况下执行,并且如果耦合为重力驱动的,则枢转通过磁体接合的那些角度;以及(5)使单元去耦合,以便可以获取产物。能够将处理腔室的内容物随意放置在梯度磁场中的系统也为该系统提供了另一种选择,即当磁体脱离时,在存在清洗缓冲液的情况下使磁性收集细胞悬浮,并枢转通过那些相应的角度,随后重新定向处理腔室以进行第二次或第三次悬浮和磁性分离的选择是可能的。因此,步骤4提供了另一种去除夹带的旁细胞的方法。
50.此外,公开了用于改变处理腔室的深度的方式,该方式可用于在执行磁性分离之后减少处理试剂。这种可能性允许将许多试剂和时间节省方法结合到分离方案中。例如,对于全面单采产物分离,在该系统中用于分离的典型体积将为大约330ml,并且该分离可以在7mm深度的处理腔室中进行。对于阳性分离,磁性收集细胞需要浸浴在干净的缓冲液中,且随后进行至少2次循环的弯月面擦除,这需要至少660ml的缓冲液。通过在磁性分离之后将处理腔室的深度降低到约3mm,以及在添加清洗缓冲液之前,将所需缓冲液的体积减少一半以上,因此减少了用于将缓冲液泵入和泵出处理腔室的时间,所有这些从经济角度以及细胞存活率来看都很显著,因为处理时间越短,必然意味着存活率越高。
51.术语柔性袋、收集或处理腔室以及带有端口的血袋可互换使用。外部磁场梯度是通过使用磁极片、磁极片的极性、磁极片的特殊布置和功率在自由空间中形成的磁场梯度,所有这些都能够用来在空间中创建非常不同的梯度场的频谱。

3032非常详细地公开了本文使用的平面磁性阵列的分析。
52.示例性应用
53.有许多磁性纳米颗粒能够利用本发明的装置用于免疫磁性分离。然而,在140nm尺寸范围内的高磁性胶体纳米颗粒(hmnp)(比如liberti等人的那些(us5,698,271;us 6,120,856),它们是胶体和高磁性的(约84%的磁性质量))是理想的,因为它们能够通过扩散
力来磁性标记细胞,并且用hmnp如此标记的细胞可以在梯度略高于4-6kgauss/cm的外部磁性装置中分离。这种尺寸(150nm)的磁性纳米颗粒是有利的,因为如此标记的这些材料或实体的磁性集合可以被很好地控制,并且事实上,正如我们所发现的,可以在均匀磁场梯度中被收集在各单层中,均匀磁场梯度在径向梯度四极磁性装置中很容易产生。
54.我们进一步发现,当靶细胞被磁性地收集在单层或接近单层中时,没有必要像本领域中常规的那样进行这种靶细胞的悬浮和磁性收集的循环来去除夹带的旁细胞。相反,以相当均匀的层收集的靶细胞仅通过缓冲液弯月面在其上通过就可以除去夹带的旁细胞,而那些收集的细胞被磁性地保持在适当位置。我们将纯化分离细胞的过程称为“弯月面擦除”。因此,似乎有理由建议,对于简单的二次纯化过程,表面张力可操作用于去除可能被微弱保持的夹带的非靶细胞。支持“弯月面擦除”是非常温和的过程的这一观点的证据是我们的发现,即该过程对细胞存活率没有负面影响。当然,这会导致更高的靶细胞产量。
55.基于这些基本发现和其他发现,可以将多种设计原则结合到本发明的装置中:(1)靶细胞需要行进到收集壁的距离希望尽可能小,使得旁细胞夹带最小化(基于显示距离越大旁夹带越大的实验数据);(2)原则“(1)”,结合适应大量细胞(10
9-10
11
个细胞)分离的需求,需要将细胞在具有较小深度(在磁场梯度内,小于15mm)的腔室中收集在一个足以将细胞相对均匀地分层为6-7个单层的表面积上;(3)以分层收集细胞的优点在于,消除或最小化任何已收集靶细胞的堆积,从而可以使用“弯月面擦除”,这基本上决定了足够大以将细胞层分层为6-7个单层的平坦表面被用于磁性收集,因为圆柱形表面(四极分离器)必须非常高,以适应所需的可处理体积。
56.为了将靶细胞收集在各层中,需要开发能够在大表面积上形成均匀的平面磁场梯度(大到足以将细胞分层为多达7个单层)。我们已经证明,通过形成这种梯度,可以在接近单层中收集靶细胞。为了使缓冲液弯月面方便地经过大面积的磁性保持细胞,创建了一个薄的直线收集处理腔室,该腔室在其中点枢转,使得其中的摇动流体和气泡可以流经这些细胞,从而真正地(literally)将旁细胞擦除。此外,该腔室的枢转能力用于以最佳方式执行免疫磁性分离的各种步骤。例如,可以将试剂添加到处理腔室中,并通过左右摇动来混合,可以将处理腔室倾斜到最佳角度进行填充或排空,并且可以克服重力进行磁性分离,我们已经证明这导致夹带的旁细胞减少。
57.转到图5a、图5b,图5a、图5b示意性地示出了在导磁背板56上最佳间隔开的块状磁体57,以在由那些块状磁体57限定的面积上对由块状磁体57的顶部限定的平面产生强大且基本均匀的梯度力。应当注意,该面积将与底板系统30的空腔32相当(略小)。钻入磁性阵列55中的小孔38保持支柱59(图9),如果袋源自顶部具有用于悬挂的孔或狭缝的血袋(如同许多血袋那样),则该支柱将保持处理腔室/袋16安全。在磁性阵列55的四个角部处的钻孔39容纳轴承(未示出),所述轴承将允许磁性阵列55与底板系统30联结,如下所述。线37表示磁性阵列5的中线。图5b描述了磁体阵列55的侧视图,示出了磁体57如何在导磁背板56上间隔开。
58.图6a示意性地示出了功能性自动分离系统40的示例性配置,以剖视图示出了平面磁性阵列55如何经由支柱43和套筒轴承44联结到底板31的下侧,使其可以向上滑动磁性阵列55,使得磁性阵列55的成对磁体57能够穿过底板31中的开放空间34。处理腔室/袋16被描述为在压力下显示。为了简化图6a、图6b的附图,未示出位于处理腔室/袋16下方和杆33顶
部的薄(0.5-1.0mm)刚性塑料片。(在后面的视图中示出和描述了刚性塑料片,例如图7中的片52。)我们已经表明,放置在这些支撑杆33上的这种刚性片52(图7)为处理腔室/袋16提供了完美的平坦表面,即使在高达4psi的压力下也不会变形。在图6a中,丙烯酸片的厚片42(可选地允许处理腔室/袋16的内容物可视化)提供了用于在处理期间限制处理腔室/袋16的顶壁。片42可以由蝶形螺母46保持在适当位置,并安装在固定于图3的钻孔36的支柱65上。通过在蝶形螺母46与片42之间放置弹簧51,可以对盖片42进行弹簧加载。
59.应当注意,图6a中的分离系统40描述为竖直的,其中磁性阵列55从底板31悬垂,在这种情况下,重力将磁性阵列55置于其最低位置,即,套筒44在支柱43上安置在止动件45上。如果现在分离系统40围绕枢轴点41枢转180
°
,则系统40将如图6b所示。图6b示出了重力将如何导致磁性阵列55向下滑动,使得磁体57将在板31的空间34中移动。通过适当选择磁体57的高度、底板31的厚度以及套筒轴承44的位置,磁体57可以设置成甚至与底板31的表面最靠近处理腔室/袋16。因此,仅仅通过使分离系统40枢转,我们已经创建了用于接合和脱离该系统的两个关键部件的系统:磁性阵列55和处理腔室/袋16。同样明显的是,对于图6a所示的方向,当向任一方向倾斜几乎90
°
时,磁性阵列55和处理腔室/袋16可以保持脱离。这允许分离系统40用于在不存在磁场梯度的情况下混合试剂。类似地,在图6b的方位中,磁性阵列55和处理腔室/袋16接触,存在一个很宽的角度范围,其中重力将它们保持连接。这种能力使得可以将分离系统40用于比如弯月面擦除的过程,例如在

3032中所公开的。
60.可以添加锁定机构以将磁性阵列55和处理腔室/袋16保持在一起或分开,从而扩展分离系统40的效用。例如,如果分离系统40如所描述的那样使用,为了执行磁性分离,系统40必须被倒置(如图6b中所述),以接合处理腔室/袋16和磁场梯度。尽管克服重力的分离已证明是有益的,但可能存在不是这样或者不是有益的情况。通过使锁定机构对抗重力效应,分离系统40可以被锁定在图6a的方位并旋转180
°
,以利用重力进行分离或一些其它操作。锁定机构的另一个优点是控制单元组合在一起或分开的方式。例如,在没有从图6a的方位开始的锁定机构的情况下,当单元转动并到达重力引起运动的方位时,在支柱和套筒轴承上存在扭曲力,这可能磨损这些部件。更简洁的方法是在锁定状态下将装置旋转180
°
,然后释放锁定。这种方法对部件的磨损最小,并且精确地控制施加或移除磁场的时间。
61.图7示出了分离系统40的再现部分(rendition)50,其安装在可旋转轴54上,并位于允许360
°
旋转的支撑结构53中。该再现部分以分解视图示出了系统50的各部件,这些部件产生了一个空间,作为刚性处理腔室16的柔性容器放置在该空间中。支撑被加压时的处理腔室/袋16的支撑杆33的格栅状结构是底板31的显著特征,并且清楚地示出了各个支撑杆33及它们之间的开放空间34。优选地厚度小于1.5mm的薄非磁性刚性片52覆盖在底板31的杆33上,为处理腔室/袋16的侧面提供平滑且平坦的表面,以便在受压时压紧。压缩弹簧51可以在固定于底板31的四个支撑支柱65上放置在盖42上方。当处理腔室/袋16被加压时,弹簧51应该匹配,并且力稍微更大,以抵抗盖42上的向上压力。为了固定柔性可充气处理腔室16的深度,可以在角部支柱65上放置高度可以为3-12mm的多组厚壁圆筒(未示出),以便最佳分离,这设定了盖42的下侧到达角部支柱65的顶部表面的距离限制。
62.图8示出了图7的系统50沿剖面线8-8截取的剖视图。磁体57成对地与支撑杆33相互交错并与支撑杆33的顶部齐平,这种方式表明,该示例性设计允许平面磁性阵列55的梯度场不受约束地将其力施加到处理腔室16上。
63.本文公开的设计和概念能够实现另一种实际应用。可能希望在所描述的分离方案所需的操作过程中能够改变收集腔室的深度。为了说明这一优点,考虑在该系统上的典型全单采产物(约7
×
109个有核细胞总数(tnc))将以350ml的最终体积分离(分离时为2
×
107个细胞/ml)。对于该分离,使用表面积为440cm2的适当修改的血袋,其深度固定在8mm。该系统的最大填充或排空速率为60ml/min,因为细胞将由剪切力以更高的速率被驱逐。这需要6分钟。此外,在摇动弯月面擦除程序后,静置6-8分钟,以使在该过程中驱逐的任何靶细胞重新收集。因此,对于3次弯月面擦除循环,需要6次填充/排空,加上两次静置阶段,总共60分钟。此外,在这些循环过程中,产生3
×
350ml的缓冲液废料,这些缓冲液废料成为危险废料的一部分。
64.另一方面,如果处理腔室深度在初始分离时设定为8mm深度(以适应被处理细胞的总数,并在分离时达到最佳细胞浓度),随后在后续处理步骤中降低至3或4mm深度,这不仅减小了总腔室体积,而且我们还在模拟系统中发现,较小的深度实际上为那些后续纯化步骤提供了更有效的弯月面擦除。
65.因此,对于上述深度变化,每次填充/排空的体积减少到131ml,从而将这些步骤的时间要求减少一半以上。此外,重新收集时的“静置”时间也减少,因为被驱逐细胞更靠近收集表面,其中3mm深度处的梯度几乎是8mm深度处的2倍。在上述56分钟的处理步骤中,估计可以减少到20分钟,这对于产量非常显著。
66.图9示出了用于改变处理腔室的深度的机构,该机构采用附接到操纵杆61的椭圆形凸轮60。通过选择椭圆的尺寸,例如8
×
4mm,可以将操纵杆61从最初的8mm方位移动到4mm尺寸或任何所需的比例。四个这样的凸轮60和操纵杆61可以放置在腔室壳体单元的每个角部处。图9还示出了支柱59,其延伸穿过磁性阵列55和底板31,以将处理腔室/袋16保持在分离系统40中的适当位置,如果该袋源自顶部具有用于悬挂的孔或狭缝的血袋的话,如同许多血袋那样。
67.有几种方法可以减小在上述底板31处和在插入的充气血袋16上的深度。首先考虑,如果将柔性袋(比如血袋16)插入系统40的横截面中,它将承受大约0.7psi的压力。因此,如上所述,对于大袋,盖42可以施加大约60lbs的总力。该力需要由将盖42保持在适当位置的压缩弹簧51抵消。将需要明显更强劲的弹簧来排出来自收集腔室的流体。更好的方法可能是将凸轮60调整到其较小的尺寸,并使用流出泵来执行排空处理腔室的大部分,以便能够减小深度。尽管如此,通过这种简单的机构,可以减少这些过程的填充和排空循环,就像在弯月面擦除过程中可能被迫悬浮的靶细胞返回收集表面所需的时间一样。
68.图10示出了采用定向在系统50上执行免疫磁性分离的示意图,该系统采用重力来接合或脱离腔室复合体62,该腔室复合体包括可充气处理腔室16、丙烯酸厚片42和薄的刚性非磁性片52,其中磁性阵列55用于方案的不同步骤。在图10中,平行矩形的第一画面示出了分离的腔室复合体62和平面磁性阵列55,因为磁性阵列55因重力而保持在其较低配置中的适当位置。在这种配置中,分离单元处于约-45
°
,依次加入单采产物、mab和铁磁流体,并在-/ 45
°
之间摇动系统以混合和孵育(上部中间画面)。在右上画面中,系统旋转,使得磁性阵列55在顶部,并且现在已与腔室复合体62配合,并且发生磁性标记实体的克服重力的分离(理想)。在相同方位上,产物可以被回收(阴性选择)或者可以将用过的pbmc泵入废料中。此外,在相同配置中,可以将缓冲液添加到收集腔室中,并且系统摇动,因为磁
性阵列55与腔室复合体62保持配合,且经过磁性保持的靶细胞的缓冲液可以在缓冲液和弯月面经过靶细胞时执行弯月面擦除,如左下画面所示。以这种方式,夹带的旁细胞被非常有效地迫使回到悬液中。在多个擦除循环后,可以添加所需量的缓冲液,并且反转方位,使磁性阵列55位于底部(右下画面),并且可以悬浮和回收细胞,如最后一个画面所示。
69.以下示例说明了上述公开内容的效用,并描述了一种创新,其中可用于制备无肿瘤细胞的t细胞或其亚群:
70.示例i.利用重力驱动的磁场梯度和处理腔室的接合/脱离,对cd3 细胞进行阴性选择。
71.冷冻单采产物在室温(rt)下解冻、离心并将颗粒悬浮在含有10%胎牛血清的rpmi培养基中。将悬浮细胞离心并在相同的缓冲液中再悬浮两次,最后在细胞分离缓冲液中进行第四次离心,使细胞计数达到1
×
108细胞/ml。将18ml悬液泵入大约3
×
6.75”的处理腔室/袋16中,该处理腔室/袋在相对的端部具有入口端口17和出口端口18,见图2。将袋(处理腔室)在框架23中定位在壁23’与磁性阵列55之间,如图3a所示,并在图10的左上画面中示出。柔性可充气处理腔室16的深度设定为8mm,且在将细胞混合物泵入底部端口之前,用0.5psi的压缩过滤空气对袋进行加压。顶部端口18安装到类似加压的压舱气囊25,并且还具有设定在0.5psi的安全阀。因此,当细胞混合物进入袋时,空气从系统中排出。接下来,将18ml的小鼠单克隆专有混合物(全部为igg1类并指向除cd3 细胞之外的所有细胞)泵入处理腔室中,并如图10的第二画面所示摇动,以混合试剂。使用两次摇动循环(每次5次振荡),随后静态孵育14分钟,此时将36ml的20ug/ml的大鼠抗小鼠iggl铁磁流体泵入处理腔室中,并如上摇动处理腔室。孵育10分钟后,将18ml的分离缓冲液添加至处理腔室,使得处理腔室容纳90ml的悬液。如上所述,摇动处理腔室以混合内容物,并将系统旋转180
°
以使磁性阵列55与腔室复合体62接合(图10右上画面),从而对处理腔室中的磁性标记细胞施加强大的向上拉力,使其到达处理腔室的顶面。
72.15分钟后,收集非磁性组分(阴性选择的细胞-组分i)并通过流式细胞仪进行分析。接下来,在磁性阵列55仍位于腔室复合体62的顶部并与其接合的情况下,用80ml的细胞缓冲液填充处理腔室,并将系统旋转180
°
,这使磁性阵列55与处理腔室/袋16脱离,并且系统摇动,使得缓冲液和大气泡经过细胞,导致所收集的非靶细胞移动进入悬液(图10右下画面)。这需要3次摇动循环,每次循环有5次振荡。再次旋转系统,使得磁体阵列55位于顶部并与处理腔室16接合,允许进行第二次分离,然后回收非磁性细胞(组分ii)。下表给出了这些阴性组分的分析。通过流动分析,原始产物为60.13%的cd3 。
73.组分通过流动分析的纯度%产量%组合产量组分i98.5352 组分ii97.601365%
74.值得注意的是,在该过程中,单采产物与mah的混合物一起孵育,孵育后未结合的抗体无需在添加普通的捕获铁磁流体(大鼠抗小鼠iggl ff)之前去除。这是一个非常显著的优点,可能是该尺寸范围的纳米颗粒所独有的,因为通常在引入普通捕获材料之前去除未结合的mah。这种能力很可能是由于这些ff的高结合能力以及它们的大小。我们已经发现,与微米大小的颗粒相比,当添加一些凝集素时,用于磁性细胞分离的这些胶体纳米颗粒的范围(135-150nm)凝集非常缓慢。
75.示例ii.从含有循环肿瘤细胞[ctc]的单采产物中对cd3 细胞进行阴性选择。
[0076]
目前,car t细胞疗法在b细胞癌的治疗中最为成功。显然,来自此类患者的单采产物很可能含有癌性b细胞。然而,在用于cd3 细胞的阴性选择中,这种肿瘤细胞将与正常b细胞一起被去除,正常b细胞将在适当的混合物中被特异性mah靶向。目前,在使用car t技术治疗实体瘤方面正在做出巨大的努力。在为这些患者制备用于制造car t细胞的cd3 制剂时,确保没有肿瘤细胞留下污染阴性组分非常重要。因为实体瘤起源于上皮,并且在循环肿瘤细胞[ctc]的分离和鉴定方面具有丰富经验,terstappen等人的美国专利us 7,332,288 b2和6,645,731b2,我们推测向孵育mah混合物中添加抗上皮抗体可能是有利的。对于本示例,将抗上皮mah(克隆vu1d9)添加到孵育混合物中。
[0077]
为了评估我们的系统清除ctc以及去除非cd3 细胞的能力,对于cd3 细胞的阴性选择,将结肠癌细胞系(colo 205)掺入如上制备的单采产物中。这些细胞用celltracker
tm
红色cmtpx染料(thermo-fisher)进行荧光染色。基于转移性癌症患者通常可能具有至少200ctc/ml血液的这一事实,在原始产物中每3
×
106个总核细胞中掺入200个colo 205细胞。在为去除除cd3阴性细胞之外的所有细胞而优化的mah专有mah混合物中,以0.5ug/ml的混合物/细胞孵育悬液添加iggl类的抗上皮细胞mah(克隆vu1d9)。如上所述进行分离。上清液中cd3 细胞的结果(产量/纯度)与上述数据几乎一致。
[0078]
为了测试在阴性选择过程中去除上皮细胞的有效性,在阴性选择中回收的cd3 细胞中,以3
×
106个细胞/ml对重复的5ml等分试样进行ctc检测测试。应当注意,如果未去除colo 205细胞,则最多检测到10,000个细胞[(200/3
×
106)
×
(3
×
107)
×
5=10,000个肿瘤细胞]。然而,实际上,预期只有50-60%。向重复的5ml样品中添加8μg/ml的铁磁流体,该铁磁流体已与vu1d9抗-epcam和生物素bsa偶联,混合并孵育20分钟,然后添加0.8μg/ml的链霉亲和素,混合并孵育5分钟。(最后一步的目的是链霉亲和素使未结合的ff与已与colo205细胞结合的ff结合,从而增加其磁性负载并显著增强其磁性分离的能力。)在四极磁性分离器中分离后,丢弃上清液,从磁性装置中取出分离管,并用2.0ml缓冲液仔细冲洗这些管的壁,以便将任何收集的细胞从管侧上移到2ml体积中进行后续分离。在保留磁性收集细胞的同时,重复这种减少体积的过程,直到样本体积为200μl。然后将该样本涂覆在涂有聚赖氨酸的载玻片上,并通过荧光显微镜对细胞计数。在对照掺入实验中,能够捕获55%的掺入细胞。对于阴性cd3 细胞实验,未检测到荧光细胞。鉴于上述用于ctc检测的方案仅可以检测5个细胞/ml的样本,向我们的mah混合物中添加抗-epcam单克隆抗体显然是从这些制剂中去除此类细胞的有效手段。这种应用可能非常重要,因为在制造car t细胞时,起始细胞被扩增,并且扩增ctc的潜力很可能存在。
[0079]
上述公开内容说明了如何使用重力和压缩弹簧力来简化需要许多步骤的过程的自动化。细胞收集腔室16与平面磁性阵列55的匹配可以通过各种机械/电子元件来实现,这需要大量的技术工作和相当复杂的制造。本文公开的概念消除了这种需要。这些示例不仅示出了这种装置概念的实用性,还证明了它们在制备car t细胞的初始材料中的应用以及需要高纯度的其他细胞应用。
[0080]
除了使用本发明的装置进行免疫磁性细胞分离之外,此类装置用于间歇地对分离/处理腔室的内容物施加磁场梯度的能力对于细胞治疗构建体的制造中的另一重要需求可能是有利的。例如,在共同未决申请wo 2018/022694a1中,已证明用多价普通捕获剂(比
如链霉亲和素铁磁流体纳米颗粒)磁性标记的阳性选择t细胞(liberti等人的us 5,698,271,us 6,120,856)随后可以通过简单添加生物素化抗cd28抗体来激活和扩增。在阳性选择cd4 细胞的情况下,这种纳米颗粒经由特异性抗体连结到cd4表位,激活/扩增需要添加两种抗体,即生物素化抗cd3和生物素化抗cd28。在将后一种抗体添加到普通的捕获分离细胞的步骤中,已证明间歇磁场梯度的应用导致显著更大的扩增。因此,本发明的装置对于该应用是理想的。在没有磁场梯度的情况下,将纯化的阳性隔离细胞悬浮在收集腔室中,仅通过经由致动器耦合收集腔室和磁性阵列,或者通过利用重力导致耦合或解耦的定向,通过对内容物施加摇动和间歇磁场梯度,添加并混合活化剂。
[0081]
结论:上述具体描述旨在举例说明和示出本发明,而不应被视为限制本发明的范围,本发明的范围将由所附权利要求的文字和等同范围来限定。
[0082]
在上述说明书中引用了许多专利和非专利公布和专利申请,这些公布/申请中的每一个的全部公开内容通过引用结合于此。
[0083]
尽管上文已描述和/或举例说明了本发明的某些实施例,但根据上述说明书,各种其他实施例对于本领域技术人员来说是显然的。因此,本发明不限于所描述和/或举例说明的特定实施例,而是能够进行相当大的变更和修改,而不脱离所附权利要求的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献