一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

促进量子装置中谐振器频移的开关器件的制作方法

2022-07-27 22:51:46 来源:中国专利 TAG:

促进量子装置中谐振器频移的开关器件


背景技术:

1.本公开涉及使量子装置中的谐振器的频率移位,并且更具体地,本公开涉及使量子装置中的谐振器的频率移位的开关器件以及用于形成该开关器件的方法。


技术实现要素:

2.以下给出了概述以提供对本发明的一个或多个实施例的基本理解。本概述不旨在标识关键或重要元素,或描绘特定实施例的任何范围或权利要求的任何范围。其唯一目的是以简化形式呈现概念,作为稍后呈现的更详细描述的序言。在本文描述的一个或多个实施例中,描述了促进开关器件的装置、系统、方法、计算机实现的方法、设备和/或计算机程序产品,所述开关器件对量子装置中的谐振器的频率进行移位。
3.根据实施例,一种装置可以包括耦合到量子位的读出谐振器。所述装置还可以包括跨越所述读出谐振器形成的开关器件,所述开关器件基于所述开关器件的位置来移位所述读出谐振器的频率。
4.根据实施例,一种装置可以包括耦合到多个量子位的总线谐振器。所述装置可进一步包括跨越所述总线谐振器形成的开关器件,所述开关器件基于所述开关器件的位置而使所述总线谐振器的频率移位。
5.根据实施例,一种方法可以包括采用开关器件以基于所述开关器件的位置来移位耦合到量子位的读出谐振器的频率。开关器件跨越读出谐振器形成。
附图说明
6.图1示出了根据本文所述的一个或多个实施例的可以使用开关器件促进量子装置中的谐振器的频移的示例性非限制性系统的顶视图。
7.图2a和2b示出了根据本文所述的一个或多个实施方式的示例性非限制性量子装置的正交视图,该量子装置可以使用开关器件来促进量子装置中的谐振器的频移。
8.图3a和3b分别示出了根据本文中所描述的一个或多个实施例的包含电介质衬底的示例性非限制性装置的顶视图和横截面图,所述电介质衬底具有形成于其上的牺牲层。
9.图4a和4b分别示出了根据本文中所描述的一个或多个实施例的、在移除牺牲层的部分之后图3a和3b的示例性非限制性装置的顶视图和横截面图。
10.图5a和5b分别示出了根据本文中所描述的一个或多个实施例的、在移除电介质衬底的部分之后图4a和4b的示例性非限制性装置的顶视图和横截面图。
11.图6a和6b分别示出了根据本文所述的一个或多个实施例的图5a和5b的示例性非限制性装置在形成超导层之后的顶视图和截面图。
12.图7示出了根据本文所述的一个或多个实施例的、在去除超导层的部分和牺牲层的剩余部分之后的、图6a和6b的示例性非限制装置的示例性非限制替代实施例的顶视图。
13.图8示出了根据本文所述的一个或多个实施例的、在形成电介质层之后的图7的示例性非限制性装置的顶视图。
14.图9示出了根据本文描述的一个或多个实施例的、在形成第二牺牲层之后的图8的示例性非限制性装置的顶视图。
15.图10示出了根据本文所述的一个或多个实施例的、在沉积金属层以形成开关器件之后的图9的示例性非限制性器件的顶视图。
16.图11示出了根据本文描述的一个或多个实施例的、在移除第二牺牲层之后的图10的示例性非限制性装置的顶视图。
17.图12和13示出了根据本文所述的一个或多个实施例的示例性非限制性方法的流程图,该方法可以促进开关器件的实现,该开关器件对量子装置中的谐振器的频率进行移位。
18.图14示出了其中可促进本文所描述的一个或多个实施例的示例性、非限制性操作环境的框图。
具体实施方式
19.以下详细描述仅是说明性的,并且不旨在限制实施例和/或实施例的应用或使用。此外,并不意图受前面的背景技术或发明内容部分或具体实施方式部分中呈现的任何明示或暗示的信息的约束。
20.现在参考附图描述一个或多个实施例,其中相同的附图标记始终用于表示相同的元件。在以下描述中,出于解释的目的,阐述了许多具体细节以便提供对一个或多个实施例的更透彻理解。然而,在各种情况下,显然可在没有这些特定细节的情况下实践所述一个或多个实施例。注意,本技术的附图仅用于说明性目的,因此附图不是按比例绘制的。
21.量子计算通常是为了执行计算和信息处理功能的目的而使用量子力学现象。量子计算可以被看作与经典计算相反,经典计算通常利用晶体管对二进制值进行操作。即,虽然经典计算机可以对0或1的位值进行操作,但是量子计算机对包括0和1的叠加的量子比特(量子位)进行操作,可以纠缠多个量子位,并且使用干扰。
22.量子计算具有解决由于其计算复杂性而根本不能或出于所有实际目的而不能在经典计算机上解决的问题的潜力。然而,量子计算需要非常专业化的硬件来例如读取量子装置的一个或多个量子位和/或纠缠量子装置的量子位(例如,改变量子装置的拓扑)。
23.图1示出了根据本文所述的一个或多个实施例的可以使用开关器件促进量子装置中的谐振器的频移的示例性非限制性系统100的顶视图。系统100可以包括量子装置102。在一个实例中,量子装置102可以包括超导电路、量子电路、量子硬件、量子处理器、量子计算机、和/或另一种量子装置。
24.量子装置102可以包括读出谐振器104。读出谐振器104可以包括共面波导读出谐振器。读出谐振器104可以使用如下面参考图3a-11所述的电介质衬底106来形成。
25.量子装置102可以进一步包括开关器件108。开关器件108可以包括射频微机电系统开关。在示例中,开关器件108可以包括跨越读出谐振器104悬挂的桥结构。开关器件108可以使用金属层110如图1所示跨越读出谐振器104形成,如下面参考图3a-11所述。量子装置102可进一步包括超导层112,其可如下文参考图6a、6b和7所述形成。
26.系统100还可以包括量子位(图1中未示出)和/或耦合到读出谐振器104的微波读出线114。例如,微波读出线114可以在如图1中所示的量子装置102的输入端口处(或者在一
些实施例中,在量子装置102上的和/或沿着读出谐振器104的另一位置处)耦合(例如,电容地或电感地)到读出谐振器104。例如,微波读出线114可以在量子装置102上存在读出谐振器104的耦合电容的位置处耦合到读出谐振器104。在一些实施例中,微波读出线114可以进一步耦合到量子位读出部件(图1中未示出),例如,可以实现可以如上所述耦合到读出谐振器104的这样的量子位的读出(例如,这样的量子位的量子态的读出)的矢量网络分析器(vna)。如这里所使用的,当元件被称为“耦合”到另一元件时,它可以描述一种或多种不同类型的耦合,包括但不限于电容耦合、电感耦合、化学耦合、通信耦合、电耦合、物理耦合、操作耦合、光耦合、热耦合和/或另一类型的耦合。
27.系统100还可以包括电压源116(在图1中表示为dc),其可以经由微波读出线114耦合到量子装置102,如图1所示。电压源116可以包括直流(dc)电压源,其可以向读出谐振器104和/或开关器件108施加dc偏压(例如,dc电压)以便于断开和/或闭合开关器件108。例如,电压源116可以向读出谐振器104和/或开关器件108施加dc偏压,以便于将开关器件108朝向读出谐振器104移动(例如,拉动)。例如,电压源116可以向读出谐振器104和/或开关器件108施加dc偏压,以便于在向下方向上(例如,相对于图1所示的量子装置102的元件的向下方向)将开关器件108拉向读出谐振器104。
28.电压源116可以向读出谐振器104和/或开关器件108施加dc偏压,以便于将开关器件108朝向读出谐振器104移动(例如,拉动)到本文定义为闭合位置的位置,在该闭合位置处,开关器件108几乎与读出谐振器104直接物理接触。如上所述的开关器件108到闭合位置的这种移动可以引起读出谐振器104上的射频(rf)短路(例如,rf短路)和/或接地(例如,接地电路),这可以使量子装置102的输入端口处的耦合电容短路。虽然开关器件108到闭合位置的这种移动可以导致读出谐振器104上的rf短路和/或接地,但是由施加dc偏压(例如,经由电压源116)而产生的dc电路仍然可以是开路的,因为在一些实施方案中(图1中未示出),量子装置102和/或读出谐振器104的一部分可以具有形成在其上的电介质层(例如,以下描述并且在图8-11中示出的电介质层802),该电介质层可以防止电流流动(例如,可以防止dc电流流动和/或dc电路的短路)。
29.通过在移动到如上所述的闭合位置时引起这种rf短路,开关器件108可以由此改变读出谐振器104的谐振条件。例如,通过在移动到如上所述的闭合位置时引起这样的rf短路,开关器件108可以由此将读出谐振器104的谐振频率从谐振波长λ/2(例如,谐振频率λ/2)移位到谐振波长λ/4(例如,谐振频率λ/4)。当开关器件108处于闭合位置时,读出谐振器104的谐振频率从λ/2到λ/4的这种偏移可以构成读出谐振器104的开关器件108从具有λ/2的谐振波长(例如,λ/2的谐振频率)的读出谐振器到具有λ/4的谐振波长(例如,λ/4的谐振频率)的读出谐振器的转换。
30.当开关器件108处于闭合位置时,读出谐振器104的谐振频率从λ/2到λ/4的这种移位可以将可以耦合到读出谐振器104的量子装置102的量子位与量子装置102外部的一个或多个部件(例如,vna)隔离。当开关器件108处于闭合位置时读出谐振器104的谐振频率从λ/2到λ/4的这种移位可以进一步将量子位与固有阻抗环境(例如,50欧姆(ohm))解耦,该量子位可以将能量松弛到其中。这种类型的损失被称为珀塞尔损失(purcell loss),例如,当开关器件108处于闭合位置时读出谐振器104的谐振频率从λ/2到λ/4的这种移位可以隔离(例如,解耦)这样的量子位与量子装置102外部的环境。应该理解,当在闭合位置时,开关器件
108可以移位读出谐振器104的频率以将量子位与这样的外部部件隔离,从而促进量子位的改进的相干性,减少量子位的失相,和/或量子装置102的降低的珀塞尔损失。例如,在开关器件108可以在接通时间和/或关断时间之间循环(例如,在未受控制的环境中大于一千亿个周期)达以微秒测量的时间量的一些实施方案中(例如,在闭合位置和/或断开位置之间循环),开关器件108可促进室温(例如,大约70华氏度(
°
f))下大约0.10分贝(db)的插入损失。
31.如上所述,开关器件108可以包括跨越(例如,部分跨越)读出谐振器104悬挂的桥结构。在一些实施例中,开关器件108的这种桥结构可以使用构成金属层110的材料来形成,其中这种材料可以具有一定的弹簧常数。当去除dc偏压时(例如,当由电压源116施加的dc电压被关断时),开关器件108的这种桥结构的弹簧常数可以使开关器件108远离读出谐振器104移动。例如,当去除dc偏压时,开关器件108的这种桥结构的弹簧常数可以将开关器件108移动(例如,拉动)远离读出谐振器104(例如,相对于图1中描绘的量子装置102的元件在向上方向上)到其在此定义为断开位置的原始位置。
32.当dc偏压被去除并且开关器件108移动到断开位置时,开关器件108可以因此将读出谐振器104的谐振频率从谐振波长λ/2(例如,谐振频率λ/2)移位到谐振波长λ/4(例如,谐振频率λ/4)。当开关器件108处于断开位置时读出谐振器104的谐振频率从λ/4到λ/2的这种移位可以构成读出谐振器104的开关器件108从具有λ/2的谐振波长(例如,λ/2的谐振频率)的读出谐振器到具有λ/4的谐振波长(例如,λ/4的谐振频率)的读出谐振器的转换。当开关器件108处于断开位置时读出谐振器104的谐振频率从λ/4到λ/2的这种移位可以将上述量子位耦合到量子装置102外部的一个或多个部件(例如,vna)。当开关器件108移动到断开位置以将读出谐振器104的频率从λ/4移动到λ/2并使上述量子位能够耦合到外部部件、例如vna上时,开关器件108可以由此使信号(例如rf信号、微波信号、光信号等)通过这样的外部部件传输到量子位。因此,当开关器件108处于断开位置时,它可以使用这样的外部部件(例如,vna)来进行量子位的读出(例如,量子位的量子态的被动读取)。
33.基于以上描述开关器件108如何能够在移动到闭合位置时将读出谐振器104的频率(例如,谐振频率)从λ/2移位到λ/4以及在移动到断开位置时从λ/4移位到λ/2的示例,应当理解,开关器件108能够基于开关器件108的位置来移位读出谐振器104的频率。
34.图2a和2b显示了根据在此描述的一个或多个实施方案的示例性非限制性量子装置200的正交视图,该量子装置可以使用开关器件来促进量子装置中的谐振器的频移。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
35.量子装置200可以包括量子装置,该量子装置包括但不限于超导电路、量子电路、量子硬件、量子处理器、量子计算机和/或另一量子装置。量子装置200可以包括总线谐振器202。总线谐振器202可以使用如下参考图3a-11所述的电介质基底106形成。
36.量子装置200还可以包括开关器件204。开关器件204可以包括射频微机电系统开关。在一个示例中,开关器件204可以包括跨越总线谐振器202形成的悬臂结构。开关器件204可以使用金属层110跨越总线谐振器202形成,如图2a和2b所示,如下面参考图3a-11所述。在一些实施例中,例如如图2a和2b所示,开关器件204可以在总线谐振器202的中点处(例如,在沿着总线谐振器202的中间位置处)跨越总线谐振器202形成。量子装置200还可以包括超导层112,其可以如下面参考图6a、6b和7所述形成。
37.虽然在图2a或2b中没有示出,但是量子装置200还可以包括至少两个量子位,它们可以被耦合到总线谐振器202。例如,量子装置200可以包括如图2a和2b中所示的量子位1和量子位2,它们可以被耦合到总线谐振器202。
38.虽然在图2a或2b中未示出,但是量子装置200可以被耦合到电压源,例如,电压源116。电压源116可以包括直流(dc)电压源,其可以向总线谐振器202和/或开关器件204施加dc偏压(例如,dc电压),以便于断开开关器件204(例如,如图2a所示)和/或闭合开关器件204(例如,如图2b所示)。例如,电压源116可以向总线谐振器202和/或开关器件204施加dc偏压,以便于将开关器件204朝向总线谐振器202移动(例如,拉动)。例如,电压源116可以向总线谐振器202和/或开关器件204施加一dc偏压,以便促进在向下的方向上(例如,相对于图2a和2b中所描绘的量子装置200的元件的向下的方向)将开关器件204拉向总线谐振器202。
39.电压源116可以向总线谐振器202和/或开关器件204施加dc偏压,以便于将开关器件204朝向总线谐振器202移动(例如,拉动)到在此定义为闭合位置(在图2b中表示为接合的开关)的位置,在该位置处,开关器件204几乎与总线谐振器202直接物理接触。如上所述的开关器件204到闭合位置的这种移动可以在总线谐振器202上引起射频(rf)短路(例如,rf短路)和/或接地(例如,接地电路),这可以使量子位1与量子位2之间的耦连短路(例如,可以使量子位1与量子位2解耦)。虽然开关器件204到闭合位置的这种移动可以导致总线谐振器202上的rf短路和/或接地,但是由(例如,经由电压源116)施加dc偏压产生的dc电路仍然可以是开路的,因为在一些实施方案中(图2a或2b中未示出),量子装置200和/或总线谐振器202的一部分可以具有形成在其上的电介质层(例如,下面描述并且在图8-11中示出的电介质层802),该电介质层可以防止电流流动(例如,可以防止dc电流流动和/或dc电路的短路)。
40.通过在移动到如上所述的闭合位置时引起这种rf短路,开关器件204可以由此改变总线谐振器202的谐振条件。例如,通过在移动到如上所述的闭合位置时引起这种rf短路,开关器件204可由此将总线谐振器202的谐振频率从谐振波长λ/2(例如,谐振频率λ/2)移动到谐振波长λ/4(例如,谐振频率λ/4)。在一些实施例中,例如,如图2a和2b所示,其中开关器件204可形成在沿总线谐振器202的中点,当开关器件204处于闭合位置时总线谐振器202的谐振频率从λ/2到λ/4的这种移位可构成总线谐振器202的开关器件204从具有谐振波长λ/2(例如,谐振频率λ/2)的单个总线谐振器到各自具有谐振波长λ/4(例如,谐振频率λ/4)的两个总线谐振器的转换。
41.当开关器件204处于闭合位置时总线谐振器202的谐振频率从λ/2到λ/4的这种移位可以将量子装置200的可以耦合到总线谐振器202的第一量子位与量子装置200的也可以耦合到总线谐振器202的一个或多个第二量子位隔离。例如,当开关器件204处于闭合位置时总线谐振器202的谐振频率从λ/2到λ/4的这种移位可以隔离(例如,去耦)图2a和2b中所示的量子位1和量子位2。应当理解,当处于闭合位置时,开关器件204可以使总线谐振器202的频率移位,以便将这样的第一量子位(例如,量子位1)与量子装置200的一个或多个第二量子位(例如,量子位2)隔离,并且由此促进:第一和/或第二量子位的改进的相干性和/或减少的去定相;和/或量子装置200的降低的珀塞尔损失。例如,在开关器件204可以在接通时间和/或断开时间之间循环(例如,在未受控环境中大于一千亿个循环)以微秒测量的时
间量的一些实施例中(例如,在闭合位置和/或断开位置之间循环),开关器件204可以促进在室温下(例如,大约70华氏度(
°
f))大约0.10分贝(db)的插入损失。
42.如上所述,开关器件204可以包括跨总线谐振器202形成的悬臂结构。在一些实施例中,开关器件204的这种悬臂结构可以使用构成金属层110的材料来形成,其中这种材料可以具有一定的弹簧常数。当dc偏压被去除时(例如,当由电压源116施加的dc电压被关断时),开关器件204的这种悬臂结构的弹簧常数可以使开关器件204远离总线谐振器202移动(例如,如图2a所示)。例如,当去除dc偏压时,开关器件204的这种悬臂结构的弹簧常数可以将开关器件204移动(例如,拉动)远离总线谐振器202(例如,相对于图2a和2b中描绘的量子装置200的元件在向上方向上)到在此定义为断开位置的其原始位置(在图2a中表示为断开开关)。
43.当dc偏压被去除并且开关器件204移动到断开位置(在图2a中表示为断开开关)时,开关器件204可以因此将总线谐振器202的谐振频率从谐振波长λ/4(例如,谐振频率λ/4)移动到谐振波长λ/2(例如,谐振频率λ/2)。当开关器件204处于断开位置时总线谐振器202的谐振频率从λ/4到λ/2的这种移位可以构成总线谐振器202的开关器件204从具有谐振波长λ/4(例如,谐振频率λ/4)的总线谐振器到具有谐振波长λ/2(例如,谐振频率λ/2)的总线谐振器的转换。当开关器件204处于断开位置时总线谐振器202的谐振频率从λ/4到λ/2的这种移位可以耦合量子装置200的两个或更多个量子位,从而使得能够在这样的量子位之间进行通信(例如,经由光学信号、rf信号、微波信号等)和/或进行这样的量子位的纠缠。相反,如上所述,当开关器件204处于闭合位置时,它可以使量子装置200的这两个或更多个量子位解耦,由此使这种量子位能够彼此隔离和/或中断这种量子位之间的通信(例如,中断这些量子位之间的信号的传输和/或接收,例如,光信号、rf信号、微波信号等)。因此,应当认识到,开关器件204可以被移动(例如,经由dc偏压)到断开位置或闭合位置以改变量子装置200的拓扑(例如,量子位的耦合配置)。
44.基于以上描述开关器件204如何能够在移动到闭合位置时将总线谐振器202的频率(例如,谐振频率)从λ/2移位到λ/4以及在移动到断开位置时从λ/4移位到λ/2的示例,应当理解,开关器件204能够基于开关器件204的位置来移位总线谐振器202的频率。
45.图3a-11示出了示例性的、非限制性的多步骤制造序列,其可以被实施以制造本文所描述的和/或附图中所示出的主题公开的一个或多个实施例。例如,可以实施图3a-11中所示的非限制性多步骤制造序列来制造量子装置,该量子装置包括对量子装置中的谐振器的谐振频率进行移位的开关器件。例如,根据在此描述的一个或多个实施方案,可以实施图3a-11中显示的非限制性多步骤制造序列来制造图11中显示的量子装置1100a和/或量子装置1100b,其中此类装置可以分别包括量子装置102和/或量子装置200的示例性的、非限制性的替代实施方案。
46.如下面参考图3a-11所描述的,在此描述的和/或在这些图中显示的主题公开的不同实施方案的制造(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以包括多步骤的序列,例如,光刻和/或化学处理步骤,这些步骤协助逐步创建半导体器件(例如,集成电路)中的基于电子的系统、器件、部件、和/或电路。例如,在此描述的和/或在这些图中显示的主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以通过采用以下技术来制造,这些技术包括但不限于:光刻、微
光刻、纳米光刻、纳米压印光刻、光掩蔽技术、图案化技术、光刻胶技术(例如,正型光刻胶、负型光刻胶、混合色调光刻胶等)、蚀刻技术(例如,反应离子蚀刻(rie)、干蚀刻、湿蚀刻、离子束蚀刻、等离子体蚀刻、激光烧蚀等)、蒸发技术、溅射技术、等离子体灰化技术、热处理(例如,快速热退火、炉退火、热氧化等)、化学气相沉积(cvd)、原子层沉积(ald)、物理气相沉积(pvd)、分子束外延(mbe)、电化学沉积(ecd)、化学机械平坦化(cmp)、背研磨技术和/或用于制造集成电路的另一技术。
47.如下面参考图3a-11所描述的,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以使用不同的材料来制造。例如,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以使用一种或多种不同材料类别的材料来制造,这些材料类别包括但不限于:导电材料、半导体材料、超导材料、电介质材料、聚合物材料、有机材料、无机材料、非导电材料和/或可与上述用于制造集成电路的一种或多种技术一起使用的另一种材料。
48.应当理解,当元件作为层(也称为膜)、区域和/或衬底被称为在另一元件“上”或“上方”时,其可以直接在另一元件上或者也可以存在中间元件。相反,当元件被称为“直接在另一元件上”或“直接在另一元件上方”时,不存在中间元件。还将理解,当元件被称为在另一元件“下方”或“之下”时,它可以直接在另一元件下方或之下,或者可以存在中间元件。相反,当元件被称为“直接在另一元件下方”或“直接在另一元件之下”时,不存在中间元件。还将理解,当元件被称为“耦合”到另一元件时,它可以描述一个或多个不同类型的耦合,包括但不限于化学耦合、通信耦合、电耦合、物理耦合、操作耦合、光学耦合、热耦合和/或另一类型的耦合。
49.图3a和3b分别说明根据本文中所描述的一个或多个实施例的包含电介质衬底的示例性、非限制性装置300的顶视图和横截面图,所述电介质衬底具有形成于其上的牺牲层。图3b示出了沿着由线302限定的平面观察的装置300的横截面侧视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
50.装置300可以包括电介质衬底106。电介质衬底106可以包括衬底层。电介质衬底106可以包括具有半导体性质的任何材料,包括但不限于硅(si)、蓝宝石(例如,氧化铝(al2o3))、硅锗(sige)、硅锗碳(sigec)、碳化硅(sic)、锗(ge)合金、iii/v族化合物半导体、ii/vi族化合物半导体和/或另一种材料。在一些实施例中,电介质衬底106可以包括分层半导体,包括但不限于硅/硅锗(si/sige)、硅/碳化硅(si/sic)、绝缘体上硅(soi)、绝缘体上硅锗(sgoi)和/或另一分层半导体。电介质衬底106可包括范围为从约50微米(μm)至约1000μm的厚度(例如,高度)。
51.装置300还可以包括形成在电介质衬底106上的牺牲层304。牺牲层304可以包括牺牲氧化物层。牺牲层304可以使用一个或多个沉积工艺形成在电介质衬底106上,所述沉积工艺包括但不限于pvd、cvd、ald、pecvd、旋涂、溅射和/或其它沉积工艺。牺牲层304可包括范围为从约50纳米(nm)到约500nm的厚度(例如,高度)。
52.图4a和4b分别示出了根据本文中所描述的一个或多个实施例的、在移除牺牲层的部分之后的图3a和3b的示例性非限制性装置300的顶视图和横截面图。图4b示出了沿着由线402限定的平面观察的装置400的横截面侧视图。为了简洁起见,省略了对在此描述的其
他实施例中采用的类似元件和/或过程的重复描述。
53.装置400可以包括装置300的、在执行光刻工艺和/或蚀刻工艺以去除牺牲层304的部分之后的示例性非限制性替代实施例。例如,装置400可以包括在执行以下操作之后的装置300的示例性非限制性替代实施例:用于在装置300上限定量子位袋(qubit pocket)和/或一个或多个谐振器的光刻工艺(例如,包括以上限定的一种或多种光刻、图案化和/或光致抗蚀剂技术的光刻图案化工艺);和/或蚀刻工艺,以去除牺牲层304的部分,从而形成图4a和4b所示的装置400。
54.图5a和5b分别示出了根据本文中所描述的一个或多个实施例的、在移除电介质衬底的部分之后的图4a和4b的示例性非限制性装置400的顶视图和横截面图。图5b示出了沿着由线502限定的平面观察的装置500的横截面侧视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
55.装置500可以包括在执行蚀刻工艺以去除电介质衬底106的部分从而导致如图5a和5b所示的脊504的形成之后的装置400的示例性、非限制性的替代实施例。例如,装置500可以包括装置400的、在对装置400执行各向异性蚀刻工艺或各向同性蚀刻工艺以去除部分电介质衬底106从而导致形成如图5a和5b所示的脊504之后的示例性的、非限制性的替代实施例。
56.图6a和6b分别示出了根据本文所述的一个或多个实施例的、在形成超导层之后的图5a和5b的示例性非限制装置500的顶视图和截面图。图6b示出了沿着由线602限定的平面观察的装置600的横截面侧视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
57.装置600可以包括装置500的、在如图6a和6b所示在电介质衬底106、牺牲层304的剩余部分和/或脊504上形成超导层112之后的示例性的、非限制性的替代实施例。超导层112可以包括超导金属。例如,超导层112可以包括铌(nb)和/或另一种超导金属。可以使用一个或多个沉积工艺在电介质衬底106、牺牲层304的剩余部分和/或脊504上形成超导层112,所述沉积工艺包括但不限于pvd、cvd、ald、pecvd、旋涂、溅射和/或其它沉积工艺。超导层112可以包括范围为从约20nm至约500nm的厚度(例如,高度)。
58.在一些实施例中,基于如上所述和如图6a和6b所示的超导层112在电介质衬底106、牺牲层304的剩余部分和/或脊504上的形成,可以从装置600去除超导层112的部分和/或牺牲层304的所有剩余部分,以暴露每个脊504的表面(例如,顶表面)。例如,基于如上所述和图6a和6b所示的超导层112的形成,可以从装置600去除部分超导层112和/或牺牲层304的所有剩余部分,下至图6b所示的线604,以暴露每个脊504的表面(例如,顶表面)。可以使用化学机械抛光(cmp)工艺和/或氧化物去除工艺从装置600去除超导层112的这些部分和/或牺牲层304的所有剩余部分,直到图6b中所示的线604。
59.可以执行如上所述的这种超导层112的部分和/或牺牲层304的所有剩余部分的去除,以定义量子装置的主要量子位电路。例如,可以执行如上所述的这种超导层112的部分和/或牺牲层304的所有剩余部分的去除,以限定下面描述并在图11中示出的量子装置102和/或量子装置1100a的读出谐振器104。在另一个示例中,可以执行如上所述的这种超导层112的部分和/或牺牲层304的所有剩余部分的去除,以限定下面描述并在图11中示出的量子装置200和/或量子装置1100b的总线谐振器202。
60.图7示出了根据本文所述的一个或多个实施例的、在去除超导层的部分和牺牲层的剩余部分之后的图6a和6b的示例性非限制装置600的示例性非限制替代实施例的顶视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
61.图7中所示的装置700a可以包括在去除超导层112的部分和/或牺牲层304的所有剩余部分以限定如上所述的读出谐振器104之后的装置600的示例性非限制性替代实施例。图7中还示出的装置700b可包括装置600的示例性非限制性替代实施例,和/或在去除超导层112的部分和/或牺牲层304的所有剩余部分以限定如上所述的总线谐振器202之后的示例性非限制性替代实施例。
62.在一些实施方案中,如下面参考图8至图11所描述的,装置700a可以被开发成图11中所显示的量子装置1100a,其中量子装置1100a可以包括量子装置102的示例性的、非限制性的替代实施方案。在一些实施方案中,如下面参考图8-11所描述的,装置700b可以被开发成同样在图11中显示的量子装置1100b,其中量子装置1100b可以包括量子装置200的示例性的、非限制性的替代实施方案。
63.图8示出了根据本文所述的一个或多个实施例的在形成电介质层之后的图7的示例性非限制性装置700a、700b的顶视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
64.图8中描绘的装置800a可以包括在形成如图8中所示的电介质层802之后的装置700a的示例性非限制性替代实施例。同样在图8中描绘的装置800b可以包括在形成如图8中所示的电介质层802之后的装置700b的示例性非限制性替代实施例。
65.电介质层802可包括电介质材料,其包括(但不限于)氮化硅(sin)、金刚石和/或另一电介质材料。电介质层802可以如图8所示使用以下步骤形成:a)一个或多个上面定义的沉积工艺(例如,pvd、cvd、ald、pecvd、旋涂、溅射等),以将电介质层802沉积到装置700a和/或装置700b上;b)光刻工艺(例如,包括以上限定的一个或多个光刻、图案化和/或光致抗蚀剂技术的光刻图案化工艺),用于限定电介质层802的形状;和/或c)蚀刻工艺,以去除电介质层802的不需要的部分,以形成图8中所示的装置800a和/或装置800b。
66.图9示出了根据本文描述的一个或多个实施例的在形成第二牺牲层之后图8的示例性非限制性装置800a、800b的顶视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
67.图9中描绘的装置900a可包括在如图9中示出的第二牺牲层902的形成之后的装置800a的示例性非限制性替代实施例。同样在图9中描绘的装置900b可包括在如图9中示出的第二牺牲层902的形成之后的装置800b的示例性非限制性替代实施例。
68.第二牺牲层902可包括钛(ti)和/或另一材料。第二牺牲层902可以如图9所示使用以下步骤形成:a)上文限定的一个或多个沉积工艺(例如,pvd、cvd、ald、pecvd、旋涂、溅射等),以将第二牺牲层902沉积到装置800a和/或装置800b上;b)光刻工艺(例如,包括上文所限定的一种或多种光刻、图案化和/或光致抗蚀剂技术的光刻图案化工艺),用于限定第二牺牲层902的形状;和/或c)蚀刻工艺,以去除第二牺牲层902的不需要的部分,以形成图9中所示的装置900a和/或装置900b。
69.图10示出了根据本文所述的一个或多个实施例的在沉积金属层以形成开关器件
之后的图9的示例性非限制性装置900a、900b的顶视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
70.图10中描绘的装置1000a可以包括在沉积金属层110以形成如图10中所示的开关器件108之后的装置900a的示例性非限制性替代实施例。同样在图10中描绘的装置1000b可以包括在沉积金属层110以形成如图10中所示的开关器件204之后的装置900b的示例性非限制性替代实施例。
71.金属层110可以包括铝(al)和/或另一材料。金属层110可以如图10所示使用以下步骤形成:a)一个或多个上面限定的沉积工艺(例如,pvd、cvd、ald、pecvd、旋涂、溅射等),以将金属层110沉积到装置900a和/或装置900b上;b)光刻工艺(例如,包括以上限定的一种或多种光刻、图案化和/或光致抗蚀剂技术的光刻图案化工艺),用于限定金属层110的形状(例如,限定开关器件108和/或开关器件204的形状);和/或c)蚀刻工艺,以去除金属层110的不需要的部分,以形成图10中所示的装置1000a的开关器件108和/或装置1000b的开关器件204。
72.图11示出了根据本文所述的一个或多个实施例的在去除第二牺牲层之后的图10的示例性非限制性装置1000a、1000b的顶视图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
73.图11中描绘的量子装置1100a可以包括在如图11中所示去除第二牺牲层902之后的装置1000a的示例性、非限制性的替代实施例。同样在图11中描绘的量子装置1100b可以包括在如图11所示的去除第二牺牲层902之后的装置1000b的示例性非限制性的替代实施例。通过使用与用于形成装置1000a和/或装置1000b的一个或多个元件(例如,电介质衬底106、金属层110、超导层112等)的材料相兼容的蚀刻物质进行蚀刻处理,可以从装置1000a和/或装置1000b去除第二牺牲层902。例如,通过使用过氧化物、氟化氢(hf)蒸汽和/或其它蚀刻物质执行蚀刻工艺,可以从装置1000a和/或装置1000b去除第二牺牲层902。
74.如上所述,量子装置1100a可以包括量子装置102的示例性的、非限制性的替代实施方案,其中量子装置1100a可以包括开关器件108,该开关器件可以如上文参照图1所述(例如,通过使用电压源116施加dc偏压)移位读出谐振器104的谐振频率。另外地或替代地,如上所述,量子装置1100b可以包括量子装置200的示例性的、非限制性的替代实施方案,其中量子装置1100b可以包括开关器件204,该开关器件可以如上文参照图2所述(例如,通过使用电压源116施加dc偏压)移位总线谐振器202的谐振频率。
75.在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以与不同的技术相关联。例如,量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b可以与半导体和/或超导体装置技术、半导体和/或超导体装置制造技术、量子计算装置技术、量子计算装置制造技术、射频微机电系统开关技术、射频微机电系统开关制造技术、和/或其他技术相关联。
76.在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以对以上列出的不同技术提供技术改进。例如,如在此所描述的,当量子装置102和/或量子装置1100a的开关器件108处于闭合位置时,它可以将读出谐振器104的频率从λ/2移位到λ/4以便将量子位与量子装置102外部的一个或多个部件隔离,并且由此促进量子位的改进的相干性、量子位的减少的去定相、
和/或量子装置102和/或量子装置1100a的减少的珀塞尔损失。在另一个实例中,如在此描述的,当量子装置200和/或量子装置1100b的开关器件204处于闭合位置中时,它可以将总线谐振器202的频率从λ/2移位到λ/4以便将第一量子位与一个或多个第二量子位隔离并且由此促进:第一和/或第二量子位的改进的相干性和/或减少的去定相;和/或量子装置200和/或量子装置1100b的降低的珀塞尔损失。
77.在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b)可以对与这样一个(或多个)装置相关联的处理单元提供技术改进。例如,通过使用如上所述的开关器件108和/或开关器件204来改进量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b的一个或多个量子位的相干性和/或减少其去定相,这种装置可以因此促进包括这种装置中的一个或多个的量子计算装置(例如,量子处理器)的改进的处理效率、性能、和/或准确度。包括量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b的量子计算装置(例如,量子处理器)的这种改进的处理效率、性能、和/或准确度可以进一步促进快速和/或可能的通用量子计算。
78.在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)的实际应用是它们可以独立地和/或在量子计算装置(例如,量子计算机)中实施以改变这种装置的拓扑(例如,量子位的耦合配置)。这种实际应用可以改进在这种装置上执行的一个或多个编译作业(例如,量子计算作业)的输出(例如,计算和/或处理结果)。
79.应当理解,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子这种102、量子装置200、量子装置1100a、量子装置1100b等)提供了一种由相对新的量子计算技术驱动的新方法。例如,量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b提供了一种新的方法来改进一个或多个量子位的相干性和/或减少其去定相和/或减少这种装置的珀塞尔损失。
80.在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以被耦合到硬件和/或软件上以解决在本质上是高度技术性的、不是抽象的并且不能作为一组意识活动由人类来执行的问题。例如,量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b可以在量子计算装置中实现,该量子计算装置可以处理信息和/或执行不是抽象的并且不能作为一组意识活动由人类来执行的计算。
81.应当理解,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以利用不能在人的头脑中复制或由人执行的电气部件、机械部件、以及电路的不同组合。例如,制造包括一个或多个开关器件(例如,开关器件108、开关器件204)的量子装置(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)是一种大于人类思维能力的操作,其中该一个或多个开关器件可以使这种量子装置的一个或多个谐振器的谐振频率移位。例如,由利用这种(一个或多个)开关器件的这种量子装置在某一时间段内处理的数据量、处理这种数据的速度和/或处理的数据类型可以大于、快于和/或不同于人类头脑在相同时间段内处理的数据量、速度和/或数据类型。
82.根据若干实施方案,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)还可以是完全可操作的以便执行一个或多个其他功能(例如,完全通电、完全执行等),同时还执行以上提及的操作。还应当理解,这种同时多操作执行超出了人类思维能力。还应当认识到,在此描述的和/或在这些图中显示的本主题公开的不同实施方案(例如,量子装置102、量子装置200、量子装置1100a、量子装置1100b等)可以包括不可能由一个实体(例如,人类用户)手动获得的信息。例如,包括在量子装置102、量子装置200、量子装置1100a、和/或量子装置1100b中的信息的类型、数量、和/或种类可以比由人类用户手动获得的信息更复杂。
83.图12显示了根据本文描述的一个或多个实施方案的、可以促进在量子装置中实现使谐振器的频率移位的开关器件的示例性非限制性方法1200的流程图。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
84.方法1200可由计算系统(例如,图14中所示并在以下描述的操作环境1400)和/或计算装置(例如,图14中所示并在以下描述的计算机1412)来实现。在非限制性示例实施例中,这样的计算系统(例如,操作环境1400)和/或这样的计算装置(例如,计算机1412)可以包括一个或多个处理器和可以在其上存储可执行指令的一个或多个存储器装置,当由一个或多个处理器执行时,可执行指令可以促进本文描述的操作的执行,包括图12中所示的方法1200的非限制性操作。作为非限制性示例,一个或多个处理器可以通过引导和/或控制可操作以执行半导体和/或超导装置的制造的一个或多个系统和/或设备,来促进执行本文描述的操作,例如方法1200。作为另一非限制性示例,一个或多个处理器可以通过引导和/或控制可操作用于提供如上所述的dc偏压的一个或多个系统和/或设备(例如,电压源116)来促进执行本文描述的操作,例如方法1200。
85.在1202处,方法1200可以包括(例如,经由计算机1412)形成跨越耦合到量子位(例如,量子装置102的量子位)的读出谐振器(例如,读出谐振器104)的开关器件(例如,开关器件108)。
86.在1204处,方法1200可以包括(例如,通过使用电压源116和/或计算机1412施加dc偏压)采用开关器件以基于开关器件的位置(例如,闭合位置和/或断开位置)来移位读出谐振器的频率(例如,如上参考图1所述,将读出谐振器104的谐振频率从λ/2移位到λ/4,反之亦然)。
87.图13示出了根据本文描述的一个或多个实施例的、可以促进开关器件的实现的示例性非限制性方法1300的流程图,该开关器件对量子装置中的谐振器的频率进行移位。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
88.方法1300可由计算系统(例如,图14中所示并在以下描述的操作环境1400)和/或计算装置(例如,图14中所示并在以下描述的计算机1412)来实现。在非限制性示例实施例中,这样的计算系统(例如,操作环境1400)和/或这样的计算装置(例如,计算机1412)可以包括一个或多个处理器和可以在其上存储可执行指令的一个或多个存储器装置,当由一个或多个处理器执行时,可执行指令可以促进本文描述的操作的执行,包括图13中所示的方法1300的非限制性操作。作为非限制性示例,一个或多个处理器可以通过引导和/或控制可操作以执行半导体和/或超导装置的制造的一个或多个系统和/或设备,来促进本文描述的操作的执行,例如方法1300。作为另一个非限制性示例,一个或多个处理器可以通过引导
和/或控制可操作以提供如上所述的dc偏压的一个或多个系统和/或设备(例如,电压源116)来促进执行本文描述的操作,例如方法1300。
89.在1302处,方法1300可以包括(例如,通过使用计算机1412和/或电压源116施加dc偏压)采用开关器件(例如,开关器件108)以基于开关器件的位置(例如,断开、闭合等)来使耦合到量子位(例如,量子装置102的量子位)的读出谐振器的频率移位(例如,如上参考图1所述使读出谐振器104的谐振频率从λ/2移位到λ/4并且反之亦然),其中开关器件跨越读出谐振器形成(例如,经由计算机1412)。
90.在1304处,方法1300可以包括(例如,通过使用计算机1412和/或电压源116施加dc偏压)采用第二开关器件(例如,开关器件204)以基于第二开关器件的位置(例如,断开、闭合等)来使耦合到多个量子位(例如,以上参考图2a和2b描述的量子位1和量子位2)的总线谐振器的频率移位(例如,如以上参考图2描述的将总线谐振器202的谐振频率从λ/2移位到λ/4,反之亦然),其中第二开关器件跨越总线谐振器形成。
91.为了解释的简单起见,本文描述的方法(例如,计算机实现的方法)被描绘和描述为一系列动作。可以理解和明白,本发明不受所示动作和/或动作次序的限制,例如,动作可以按各种次序和/或并发地发生,并且可以与本文未呈现和描述的其它动作一起发生。此外,根据所公开的主题,并非所有示出的动作都是实现本文所描述的方法(例如,计算机实现的方法)所必需的。此外,本领域技术人员将理解和明白,这样的方法可以经由状态图或事件而被替换地表示为一系列相互关联的状态。另外,还应当理解,下文中以及本说明书通篇公开的方法(例如,计算机实现的方法)能够被存储在制品上,以便于将这些方法(例如,计算机实现的方法)传输和转移到计算机。如本文所使用的术语制品旨在涵盖可从任何计算机可读设备或存储介质访问的计算机程序。
92.为了提供所公开的主题的各个方面的上下文,图14以及以下讨论旨在提供对其中可实现所公开的主题的各个方面的合适环境的一般描述。图14示出了其中可促进此处所描述的一个或多个实施例的示例性、非限制性操作环境的框图。例如,操作环境1400可以用于实现图12的示例性非限制性方法1200和/或图13的示例性非限制性方法1300,这可以促进本文描述的主题公开的一个或多个实施例的实现。为了简洁起见,省略了对在此描述的其他实施例中采用的类似元件和/或过程的重复描述。
93.参考图14,用于实现本公开的各方面的合适的操作环境1400还可包括计算机1412。计算机1412还可包括处理单元1414、系统存储器1416和系统总线1418。系统总线1418将包括但不限于系统存储器1416的系统部件耦合到处理单元1414。处理单元1414可以是各种可用处理器中的任一种。双微处理器和其它多处理器体系结构也可用作处理单元1414。系统总线1418可以是若干种总线结构中的任一种,包括存储器总线或存储器控制器、外围总线或外部总线、和/或使用各种可用总线体系结构的局部总线,这些总线体系结构包括但不限于工业标准体系结构(isa)、微通道体系结构(msa)、扩展isa(eisa)、智能驱动电子设备(ide)、vesa局部总线(vlb)、外围部件互连(pci)、卡总线、通用串行总线(usb)、高级图形端口(agp)、火线(ieee1394)、和小型计算机系统接口(scsi)。
94.系统存储器1416还可以包括易失性存储器1420和非易失性存储器1422。基本输入/输出系统(bios)包含诸如在启动时在计算机1412内的元件之间传输信息的基本例程,被存储在非易失性存储器1422中。计算机1412还可包括可移动/不可移动、易失性/非易失
性计算机存储介质。例如,图14示出了磁盘存储器1424。磁盘存储器1424还可以包括但不限于,诸如磁盘驱动器、软盘驱动器、磁带驱动器、jaz驱动器、zip驱动器、ls-100驱动器、闪存卡或记忆棒之类的装置。磁盘存储器1424还可包括单独的或与其它存储介质组合的存储介质。为了便于磁盘存储器1424连接到系统总线1418,通常使用可移动或不可移动接口,诸如接口1426。图14还描绘了充当用户和在合适的操作环境1400中描述的基本计算机资源之间的中介的软件。这样的软件还可以包括例如操作系统1428。操作系统1428可储存在磁盘存储器1424中,用于控制和分配计算机1412的资源。
95.系统应用1430利用操作系统1428通过例如存储在系统存储器1416或磁盘存储器1424中的程序模块1432和程序数据1434对资源的管理。应当理解,本公开可以用各种操作系统或操作系统的组合来实现。用户通过输入装置1436向计算机1412输入命令或信息。输入装置1436包括但不限于定点设备,诸如鼠标、跟踪球、指示笔、触摸垫、键盘、话筒、操纵杆、游戏垫、卫星天线、扫描仪、tv调谐卡、数码相机、数码摄像机、web相机等等。这些和其它输入装置通过系统总线1418经由接口端口1438连接到处理单元1414。接口端口1438包括,例如,串行端口、并行端口、游戏端口和通用串行总线(usb)。输出装置1440使用与输入装置1436相同类型的端口中的一些。因此,例如,usb端口可用于向计算机1412提供输入,并从计算机1412向输出装置1440输出信息。提供输出适配器1442是为了说明在其它输出装置1440中存在一些输出装置1440,如监视器、扬声器和打印机,它们需要特殊的适配器。作为说明而非限制,输出适配器1442包括提供输出装置1440和系统总线1418之间的连接手段的显卡和声卡。应当注意,其它装置和/或装置的系统提供输入和输出能力,诸如远程计算机1444。
96.计算机1412可以使用到一个或多个远程计算机,如远程计算机1444的逻辑连接在网络化环境中操作。远程计算机1444可以是计算机、服务器、路由器、网络pc、工作站、基于微处理器的电器、对等设备或其它常见的网络节点等,且通常还可包括相对于计算机1412所描述的许多或所有元件。为了简洁起见,仅存储器存储装置1446与远程计算机1444一起示出。远程计算机1444通过网络接口1448逻辑上连接到计算机1412,然后通过通信连接1450物理上连接。网络接口1448包括有线和/或无线通信网络,诸如局域网(lan)、广域网(wan)、蜂窝网络等。lan技术包括光纤分布式数据接口(fddi)、铜线分布式数据接口(cddi)、以太网、令牌环等。wan技术包括但不限于,点对点链路、像综合业务数字网(isdn)及其变体那样的电路交换网络、分组交换网络、以及数字用户线(dsl)。通信连接1450指的是用于将网络接口1448连接到系统总线1418的硬件/软件。虽然为了清楚地说明,通信连接1450被示为在计算机1412内部,但是它也可以在计算机1412外部。仅为示例性目的,用于连接到网络接口1448的硬件/软件还可包括内部和外部技术,诸如包括常规电话级调制解调器、电缆调制解调器和dsl调制解调器的调制解调器、isdn适配器和以太网卡。
97.本发明可以是任何可能的技术细节集成水平的系统、方法、设备和/或计算机程序产品。计算机程序产品可以包括其上具有计算机可读程序指令的计算机可读存储介质(或多个介质),所述计算机可读程序指令用于使处理器执行本发明的各方面。计算机可读存储介质可以是能够保留和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质可以是例如但不限于电子存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或前述的任何合适的组合。计算机可读存储介质的更具体示例的非穷举列表还可以包括以下:便携式计算机软盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦除可编程
只读存储器(eprom或闪存)、静态随机存取存储器(sram)、便携式光盘只读存储器(cd-rom)、数字多功能盘(dvd)、记忆棒、软盘、诸如上面记录有指令的打孔卡或凹槽中的凸起结构的机械编码装置,以及上述的任何适当组合。如本文所使用的计算机可读存储介质不应被解释为暂时性信号本身,诸如无线电波或其他自由传播的电磁波、通过波导或其他传输介质传播的电磁波(例如,通过光纤线缆的光脉冲)、或通过导线传输的电信号。
98.本文描述的计算机可读程序指令可以从计算机可读存储介质下载到相应的计算/处理设备,或者经由网络,例如因特网、局域网、广域网和/或无线网络,下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光传输光纤、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或网络接口从网络接收计算机可读程序指令,并转发计算机可读程序指令以存储在相应计算/处理设备内的计算机可读存储介质中。用于执行本发明的操作的计算机可读程序指令可以是汇编指令、指令集架构(isa)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、集成电路的配置数据,或者以一种或多种编程语言(包括面向对象的编程语言,例如smalltalk、c 等)和程序性编程语言(例如“c”编程语言或类似的编程语言)的任何组合编写的源代码或目标代码。计算机可读程序指令可以完全在用户的计算机上执行,部分在用户的计算机上执行,作为独立的软件包执行,部分在用户的计算机上并且部分在远程计算机上执行,或者完全在远程计算机或服务器上执行。在后一种情况下,远程计算机可以通过任何类型的网络连接到用户的计算机,包括局域网(lan)或广域网(wan),或者可以连接到外部计算机(例如,使用因特网服务提供商通过因特网)。在一些实施例中,为了执行本发明的各方面,包括例如可编程逻辑电路、现场可编程门阵列(fpga)或可编程逻辑阵列(pla)的电子电路可以通过利用计算机可读程序指令的状态信息来执行计算机可读程序指令以使电子电路个性化。
99.在此参考根据本发明实施例的方法、设备(系统)和计算机程序产品的流程图和/或框图描述本发明的各方面。将理解,流程图和/或框图的每个框以及流程图和/或框图中的框的组合可以由计算机可读程序指令来实现。这些计算机可读程序指令可以被提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器以产生机器,使得经由计算机或其他可编程数据处理设备的处理器执行的指令创建用于实现流程图和/或框图的一个或多个框中指定的功能/动作的装置。这些计算机可读程序指令还可以存储在计算机可读存储介质中,其可以引导计算机、可编程数据处理设备和/或其他装置以特定方式工作,使得其中存储有指令的计算机可读存储介质包括制品,该制品包括实现流程图和/或框图的一个或多个框中指定的功能/动作的各方面的指令。计算机可读程序指令还可以被加载到计算机、其他可编程数据处理设备或其他装置上,以使得在计算机、其他可编程设备或其他装置上执行一系列操作动作,以产生计算机实现的过程,使得在计算机、其他可编程设备或其他装置上执行的指令实现流程图和/或框图的一个或多个框中指定的功能/动作。
100.附图中的流程图和框图示出了根据本发明的各种实施例的系统、方法和计算机程序产品的可能实施方式的架构、功能和操作。在这点上,流程图或框图中的每个框可以表示指令的模块、段或部分,其包括用于实现指定的逻辑功能的一个或多个可执行指令。在一些替代实施方案中,框中所注明的功能可不按图中所注明的次序发生。例如,连续示出的两个框实际上可以基本上同时执行,或者这些框有时可以以相反的顺序执行,这取决于所涉及
的功能。还将注意,框图和/或流程图图示的每个框以及框图和/或流程图图示中的框的组合可以由执行指定功能或动作或执行专用硬件和计算机指令的组合的专用的基于硬件的系统来实现。
101.尽管以上在运行在一个和/或多个计算机上的计算机程序产品的计算机可执行指令的一般上下文中描述了本主题,但是本领域的技术人员将认识到,本公开也可以结合其它程序模块来实现或可以结合其它程序模块来实现。通常,程序模块包括执行特定任务和/或实现特定抽象数据类型的例程、程序、部件、数据结构等。此外,本领域的技术人员可以理解,本发明的计算机实现的方法可以用其它计算机系统配置来实施,包括单处理器或多处理器计算机系统、小型计算设备、大型计算机、以及计算机、手持式计算设备(例如,pda、电话)、基于微处理器的或可编程的消费或工业电子产品等。所示的各方面也可以在其中任务由通过通信网络链接的远程处理设备执行的分布式计算环境中实践。然而,本公开的一些方面(如果不是所有方面),可以在独立计算机上实践。在分布式计算环境中,程序模块可以位于本地和远程存储器存储装置中。例如,在一个或多个实施例中,计算机可执行部件可以从存储器执行,该存储器可以包括一个或多个分布式存储器单元或由一个或多个分布式存储器单元组成。如本文所用,术语“存储器”和“存储器单元”可互换。此外,本文描述的一个或多个实施例可以以分布式方式执行计算机可执行部件的代码,例如,多个处理器组合或协同工作以执行来自一个或多个分布式存储器单元的代码。如本文所使用的,术语“存储器”可以包含在一个位置处的单个存储器或存储器单元或者在一个或多个位置处的多个存储器或存储器单元。
102.如本技术中所使用的,术语“部件”、“系统”、“平台”、“接口”等可以指代和/或可以包括计算机相关的实体或与具有一个或多个特定功能的操作机器相关的实体。这里公开的实体可以是硬件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是,但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。作为说明,在服务器上运行的应用程序和服务器都可以是部件。一个或多个部件可以驻留在进程和/或执行的线程内,并且部件可以位于一个计算机上和/或分布在两个或更多计算机之间。在另一示例中,相应部件可从其上存储有各种数据结构的各种计算机可读介质执行。这些部件可以经由本地和/或远程进程进行通信,例如根据具有一个或多个数据分组的信号(例如,来自一个部件的数据,该部件经由该信号与本地系统、分布式系统中的另一个部件进行交互和/或通过诸如因特网之类的网络与其它系统进行交互)。作为另一个示例,部件可以是具有由电气或电子电路操作的机械部件提供的特定功能的设备,该电气或电子电路由处理器执行的软件或固件应用程序操作。在这种情况下,处理器可以在设备的内部或外部,并且可以执行软件或固件应用的至少一部分。作为又一示例,部件可以是通过电子部件而不是机械部件来提供特定功能的设备,其中电子部件可以包括处理器或其他装置以执行至少部分地赋予电子部件的功能的软件或固件。在一方面,部件可经由虚拟机来仿真电子部件,例如在云计算系统内。
103.此外,术语“或”旨在表示包含性的“或”而不是排他性的“或”。也就是说,除非另外指定,或者从上下文中清楚,否则“x采用a或b”旨在表示任何自然的包含性排列。也就是说,如果x使用a;x采用b;或者x采用a和b两者,则在任何前述实例下都满足“x采用a或b”。此外,除非另外指定或从上下文中清楚是指单数形式,否则如在本说明书和附图中使用的冠词“一”和“一个”一般应被解释为表示“一个或多个”。如本文所使用的,术语“示例”和/或“示例性的”用于表示用作示例、实例或说明。为了避免疑惑,本文公开的主题不受这些示例限制。此外,本文中描述为“示例”和/或“示例性”的任何方面或设计不一定被解释为比其它方面或设计优选或有利,也不意味着排除本领域普通技术人员已知的等同示例性结构和技术。
104.如在本说明书中所采用的,术语“处理器”可以指基本上任何计算处理单元或装置,包括但不限于单核处理器;具有软件多线程执行能力的单处理器;多核处理器;具有软件多线程执行能力的多核处理器;具有硬件多线程技术的多核处理器;并行平台;以及具有分布式共享存储器的并行平台。另外,处理器可以指被设计为执行本文描述的功能的集成电路、专用集成电路(asic)、数字信号处理器(dsp)、现场可编程门阵列(fpga)、可编程逻辑控制器(plc)、复杂可编程逻辑器件(cpld)、分立门或晶体管逻辑(discrete gate or transistor logic)、分立硬件部件或其任意组合。此外,处理器可以采用纳米级架构,例如但不限于基于分子和量子点的晶体管、开关和门,以便优化空间使用或增强用户设备的性能。处理器也可以实现为计算处理单元的组合。在本公开中,诸如“存储”、“存储器”、“数据存储”、“数据存储器”、“数据库”以及与部件的操作和功能相关的基本上任何其他信息存储部件之类的术语被用来指代“存储器部件”、在“存储器”中体现的实体、或包括存储器的部件。应了解,本文所描述的存储器和/或存储器部件可为易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。作为说明而非限制,非易失性存储器可包括只读存储器(rom)、可编程rom(prom)、电可编程rom(eprom)、电可擦除rom(eeprom)、闪存或非易失性随机存取存储器(ram)(例如,铁电ram(feram)。易失性存储器可包括ram,ram可用作外部高速缓存存储器。例如作为说明而非限制,ram可以许多形式获得,诸如同步ram(sram)、动态ram(dram)、同步dram(sdram)、双倍数据率(ddr sdram)、增强型sdram(esdram)、同步链路dram(sldram)、直接rambus ram(drram)、直接rambus动态ram(drdram)和rambus动态ram(rdram)。此外,本文的系统或计算机实现的方法的公开的存储器部件旨在包括但不限于包括这些和存储器的任何其他适合的类型。
105.以上描述的内容仅包括系统和计算机实现的方法的示例。当然,不可能为了描述本公开而描述部件或计算机实现的方法的每个可想到的组合,但是本领域的普通技术人员可以认识到,本公开的许多进一步的组合和置换是可能的。此外,就在详细描述、权利要求书、附录和附图中使用术语“包括”、“具有”、“拥有”等来说,这些术语旨在以与术语“包含”在权利要求书中用作过渡词时所解释的类似的方式为包含性的。
106.已经出于说明的目的呈现了对各种实施例的描述,但是不旨在是穷举的或限于所公开的实施例。在不背离所描述的实施例的范围和精神的情况下,许多修改和变化对于本领域的普通技术人员将是显而易见的。选择本文所使用的术语以最好地解释实施例的原理、实际应用或对市场上存在的技术的技术改进,或使本领域的其他普通技术人员能够理解本文所公开的实施例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献