一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于从流体中提取氧的设备及其制造方法与流程

2022-07-02 05:40:56 来源:中国专利 TAG:

用于从流体中提取氧的设备及其制造方法
1.本技术是申请日为2017年02月23日、申请号为201780024462.9、名称为“从空气中提取氧的系统和方法”的发明专利申请的分案申请。
2.相关申请
3.本技术在此要求于2016年2月24日提交的、题为“从空气中提取氧的系统和方法”的美国临时专利申请62/299,286的权益和优先权,该临时专利申请的全部内容通过引用并入本文。
技术领域
4.本公开内容的各方面涉及氧的提取、更具体地涉及从空气中提取氧。


背景技术:

5.纯氧在许多方面是有用的。受益于纯氧的使用的领域包括例如医疗领域、运动和休闲领域以及工业领域。然而,纯氧不易作为直接来源使用,而是相反必须从包括氧气的其他来源中提取。存在从此类其他来源获取或提取纯氧的各种方法。提取氧通常较为昂贵,并且可能需要复杂的装备,这限制了各种产业和领域中的氧的供应。
6.在非低温提取方法中,可以使用诸如吸附、化学处理、聚合物膜片和离子转运膜片之类的工艺。在吸附方法中,使用由特殊化合物构成的材料,其具有用于吸附诸如氧气之类的某些气体的独特能力,从而将该气体从其他气体的混合物中去除。吸附方法不会引起材料的化学变化,因此允许实现可逆过程。然而,使用该过程来完全去除特定气体难以很确定地实现。因为该过程是可逆的,所以在目标气体开始从吸附材料中流出的情况下实现了平衡状态。
7.通过利用某些化学方法,可以与气体发生反应并且直接去除某些化学物质。该方法可以非常有效地实现100%的纯度,因为如果有足够的反应物和充足的反应区域,化学反应将持续发生。因此,可以完全去除气体。然而,化学分离方法实施起来可能相当复杂,目前不存在有意义的市场份额。此外,基于化学方法创建连续的系统较为困难。
8.通过经可渗透膜片过滤空气使得膜片对氧气的渗透性比对另一气体(诸如氮气)的渗透性更高,氧气的浓度可以通过捕集或过滤其他更大的气体而增加。然而,该技术通常并未得到高纯度的目标气体,因为、作为分离器、过滤器将允许比目标气体更易渗透的气体不受阻碍地通过。因此,所得到的气体包括比过滤器可以去除的气体更易渗透的所有气体的混合物。
9.离子转运膜片方法使热液态气体(其将使氧电离)通过特殊(陶瓷)膜片,所述膜片允许氧离子通过并且重新结合以产生纯氧。然而,虽然该过程可以得到纯氧,但是它使用高能量成本来加热以及再压缩重新结合的氧。
10.在一种低温提取方法中,通过利用压力和离心机,可以从空气中分离出氧而不必液化。然而,该过程存在能量成本高和设备复杂的问题。
11.另一种低温提取方法利用了下述事实:在一定压力下,每种气体均具有各自不同
的沸腾温度。通过逐渐降低液态空气容器的出口上压力(即,释放压力),每种气体都将根据其沸腾温度依次离开罐。该方法在将所有类型的气体都互相分离时是有效的,但是存在下述问题,即在许多阶段都有能量损失、以及该工艺不能以连续的机制完成,从而需要对用于压缩和分离的单独的管线进行分段。
12.因此,利用克服了上述缺点的从空气中提取纯氧的系统将是有利的。


技术实现要素:

13.在一个示例中,用于从液体中提取氧的系统包括分离器,该分离器构造成允许液体从中通过并且产生液体混合物,该液体混合物包括被去除了至少一部分氧的液体。分离器包括包围管的内部部分的壁,该壁具有形成于其中的至少一个孔隙。分离器还包括与上述至少一个孔隙相邻地定位的至少一个磁体,该至少一个磁体具有北极端和南极端,该北极端和南极端在它们之间形成磁场梯度,并且该磁场梯度延伸到管的内部部分。该系统还包括储存罐,该储存罐流体地联接到上述至少一个孔隙,并且构造成储存经由分离器从液体中去除的上述至少一部分氧。
14.在另一示例中,从液态空气中提取氧的方法包括从液态空气中提取氧以产生液体混合物,该液体混合物包括通过使上述液态空气通过分离器而产生的被提取了至少一部分氧的液态空气。分离器包括包围管的内部部分的壁,该壁具有形成于其中的至少一个孔隙。分离器还包括与上述至少一个孔隙相邻地定位的磁体组件,磁体组件具有北极和南极,在北极与南极之间形成有磁场梯度,其中该磁场梯度延伸到管的内部部分中。该方法进一步包括将所提取的氧储存在流体地联接到上述至少一个孔隙的储罐中。
15.在附图和以下描述中阐述了本公开内容的一个或多个示例的细节。根据说明书、附图以及权利要求书,本公开内容的其他特征、目的和优点将显而易见。
附图说明
16.参照以下附图可以更好地理解本公开内容的许多方面。虽然结合这些附图描述了若干实施方案,但是本公开内容不限于本文公开的实施方案。相反,其旨在覆盖所有的替代方案、改型和等同方案。
17.图1图示了根据一个实施方式的氧提取系统。
18.图2图示了具有额外的膨胀阶段的氧提取系统。
19.图3图示了图1和图2中示出的分离器的一部分。
20.图4以横截面视图图示了所示分离器管的实施方式。
21.图5以等距视图图示了所示分离器管的实施方式。
22.图6图示了根据一实施方式的图3的分离器的一部分的等距视图。
23.图7示出了根据另一实施方式的提取管。
具体实施方式
24.以下描述和相关附图教导了本发明的最佳模式。出于教导发明原理的目的,可以简化或省略最佳模式的一些常规方面。以下权利要求书指定了本发明的范围。注意的是,最佳模式的某些方面可能不落入权利要求书所指定的本发明的范围。因此,本领域技术人员
将理解落入本发明范围内的最佳模式的变型。本领域技术人员将理解的是,下文描述的特征可以以各种方式组合,以形成本发明的多种变型。因此,本发明不限于下文描述的具体示例,而是仅由权利要求及其等同技术方案限定。
25.图1图示了根据一个实施方式的氧提取系统100。系统100将气态的大气空气吸入空气入口102并且在除湿器104中将空气中的湿气去除。从输入空气中去除湿气使得将水蒸汽从空气中去除,水蒸汽可能容易冻结并且阻碍过程或降低其效率。在除湿器104中将空气中的水分去除之后,系统100在压缩机106中将空气压缩。马达108构造成使压缩机106运行以将气态的空气压缩成液态。
26.在被压缩成液体之后,液态空气通过分离器110,该分离器110被设计成从液态空气的其他液态气体中提取氧。如下所述,分离器110以磁性的方式起作用,以从通过异形管的液态空气中吸出液态氧。在该实施方式中,所提取的液态氧储存在流体地联接到分离器110的氧储存罐112中,以将氧以其液态形式储存。从流经分离器110的液态空气中提取至少一部分氧的工艺产生了从其中去除了至少一部分氧的液态空气的液体混合物。该液体混合物从分离器110流到膨胀器114,该膨胀器114构造成使液态气体膨胀成气态以便经排气道116喷回到环境中。空气入口102和排气道116优选地彼此远离地定位,以避免不含氧的排出空气被吸回到氧提取系统100中。
27.如所图示,在经由压缩机106的压缩阶段和经由分离器110的分离阶段所产生的热量在膨胀阶段被提供给膨胀器114。反过来,在膨胀阶段所产生的机械能被供回到压缩阶段。以此方式,压缩阶段与膨胀阶段之间的共享的热量和能量减少了需要进入系统100的外功量并且减少了压缩进气所需的外部冷却量。提供马达108来增加用以持续地维持过程的机械能,从而克服不同阶段之间的热量和机械能传输中的任何能量损失。如果需要,可以设想的是,可以结合有冷却子系统,以抵消由系统100产生的热量。
28.在分离阶段中经由分离器110从液态空气中分离氧可能无法从液态空气中完全去除全部的氧。相反,由分离器110产生的、作为其输出的液体混合物可能仅被去除了一部分氧。因此,可以设想的是,系统100可以包括反馈系统118,该反馈系统118联接到分离器110,以使气体的液体混合物返回并再次或多次通过分离器110,以从液态空气中进一步提取剩余的氧。由分离器110产生的液体混合物的随后的每次通过均旨在从中去除更多的氧,从而提高系统100除氧的效率。
29.图2图示了具有附加的膨胀阶段的氧提取系统200。与系统100相似的系统部件在上文已经进行了描述。在示出的实施方式中,包括有流体地联接到分离器110的另一膨胀器202,并且膨胀器202联接到分离器110的氧输出部,以利用使液态氧膨胀回其气态来从压缩过程中回收更多的压缩能量并提取额外的热量。氧储存罐112流体地联接到膨胀器202以将氧以其气态形式储存。在膨胀器202中,经由压缩阶段和膨胀阶段所产生的能量的捕获被杠杆化地加以利用。膨胀器114、202二者都将机械能传输回到压缩机106并且从其接收热量。
30.在通常的空气浓度下,发现有以下气体和百分比:氮气(78.09%)、氧气(20.95%)、氩气(0.93%)、二氧化碳(0.03%)和水蒸汽(不定)。氧气的磁特性是顺磁性的,而氮气、氩气、二氧化碳和水蒸汽的磁特性是逆磁性的。因此,氧分子被有效地吸引到磁场,而这些其他气体的分子受到磁场有效地排斥。在本文的实施方式中,从液态空气中提取液态氧通过利用氧的顺磁特性来完成。
31.通过向液态氧施加磁场梯度,氧与其他逆磁气体分离。根据磁场的强度梯度,氧以或大或小的速度分离。磁场梯度越大,分离氧的效率越高。优选地,磁场梯度远大于1特斯拉/米。现在,1特斯拉(it)的永磁体普遍可得,例如使用可以达到1.4t的最大磁场的可用的钕磁体来获得。然而,仅仅将it的磁体放置在液态空气旁不会自行产生较大梯度。为了实现较大梯度的磁梯度,使用磁体的特殊布置。
32.通过使用或形成c形磁体或通过将磁体的北极放置成非常靠近其自身的南极或另一磁体的南极并确保磁体梢端足够小以迫使磁场挤压,可以在非常小的空间内获得较大的磁场。该磁场梯度可以用在上述氧提取系统100、200中。
33.图3图示了系统100、200的分离器110的一部分。已经经由压缩机106液化的空气被提供给并被馈送穿过定位在四个磁体端302-308之间的x形管300的内部。在一个实施方式中,磁体端302、304是单个c形磁体310的相应的北端和南端(如所示的),而磁体端306、308是不同的单个c形磁体312的相应的北端和南端。如所示地,磁体端302、304分别与管300的相邻的壁314、316相邻地定位,并且磁体端302、304分别与管300的相邻的壁318、320相邻地定位。可替代地,磁体端302-308可以是各自独立的磁体(例如图6中的磁体600、602),其中它们的北极和南极如本文所描述地恰当地定位。
34.图4以横截面视图图示了所示的分离器管300的实施方式。如该实施方式中所示出并且如上文所描述的,管300呈“x”形。该x形由每个壁314-320的一部分形成,每个壁314-320均具有相应的一对凹部400、402和相应的一对凸部404、406。x形的臂部由一个壁(例如壁318)的相应的一对的凹部402和凸部406与相邻的壁(例如壁316)的相应的一对的凹部400和凸部404一起形成。
35.再次参照图3,图示了当将磁体端302-308彼此相邻地放置时产生的磁通线322。磁体定位在x形管300的空隙内,使得磁场在x的臂部的边界部(即,与相邻的凸部404、406的顶点邻近)处最强。通过推动液态空气穿过x形管300的内部324,氧将自然地被吸引到远离管300的中央的最高磁场处,而非氧气体则不会被吸引到边界部。相反,非氧气体因末端处的较高氧气浓度而将会在某种程度上被推开。因为x形管300的中央具有最低的磁场梯度,所以有助于将逆磁气体保持在管300的中央。分离氧所需的优选的磁场梯度为10特斯拉/米,该磁场梯度可以利用所示的1t的磁体在短程距离上实现。x形是可以形成此10t/m的梯度的许多变型之一。所提出的相反极朝向彼此的四个磁体可以扩展到2n个磁极,并且x形将由具有在磁体之间延伸的2n个臂部的管代替。还可以将磁体布置成使得所有的磁体的相同极对中,并且对于偶数或奇数的磁体都可以使用该布置,而不是在2n个磁体中使磁极均衡。然而,使所有磁体对中将产生使磁体彼此推离的恒定的力,从而增加了保持磁体的固定装置的应变。使用相反极集中化的c形磁体降低了复杂性。
36.图5以等距视图图示了所示的分离器110的管300的实施方式。随着氧浓度沿x形管300的流动路径上升,x形管300的壁502中的孔隙或侧部排放端口500将纯氧从管中提取到单独的通道中。端口500可以连接到提取管(图6中示出),以便于氧的提取。所提取的氧可以以液体形式使用并且储存在如图1所示的氧储存罐112中,或者可以膨胀成气体并且储存在如图2所示的氧储存罐112中,如上所述,这允许系统回收包含在液态氧中的压缩能量。
37.图6图示了根据一实施方式的图3的分离器110的一部分的等距视图。如所示地,磁体600-608沿管300的长度设置。磁体600-608对应于磁体310的位置。图中为了简化,未示出
将与磁体600-608配对并且对应于磁体312的位置的附加磁体。然而,要理解的是,这样的磁体将存在于实体系统中。管300的介于磁体600-608之间的侧部排放端口400允许提取氧。流体地联接到侧部排放端口400的多个提取管610允许将所提取的氧、在系统100的情况下、提供给氧储存罐112、或者、在系统200的情况下、提供给膨胀器202。
38.在另一实施方式中,图7示出了另一种形状的提取管700,该提取管700构造成与从通过其的液态空气中去除氧的过程相适。如所示地,管700的第一端702是如上所述的x形。沿管700的长度朝向第二端704,形状从x形转变成圆形。在一个实施方式中,第二端704的横截面面积小于第一端702的横截面面积。例如,第二端704的横截面面积可以是第一端702的横截面面积的0.8倍,以将液态空气沿管700行进时一定体积的氧从液态空气中被去除考虑在内。另外,由于从液态空气中去除氧的需求随着氧沿管行进被去除而减少,因此沿管700的侧部排放端口706可以渐小。
39.所包括的描述和附图描绘了教导本领域技术人员如何制作和使用最佳模式的具体实施方案。出于教导发明原理的目的,已经简化或省略了一些常规方面。本领域技术人员将理解落入本发明范围内的这些实施方案的变型。本领域技术人员还将理解的是,上述特征可以以各种方式组合,以形成多个实施方案。因此,本发明不限于上述具体实施方案,而是仅由权利要求及其等同技术方案限定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献