一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于除醛、抗菌的纳米级Cu2O-MnO2双金属氧化物的制备方法

2022-06-02 13:13:53 来源:中国专利 TAG:

一种基于除醛、抗菌的纳米级cu2o-mno2双金属氧化物的制备方法
技术领域
1.本发明属于复合材料技术领域,具体涉及一种基于除醛、抗菌的纳米级cu2o-mno2双金属氧化物的制备方法。


背景技术:

2.随着科学技术的发展与社会的进步,人们对室内环境的空气质量问题给予了更多的关注与重视。室内空气环境受限于装修技术与整体空间的密闭性,造成各类气态污染物的释放与微生物的增生,由此带来了一系列的家居舒适度与健康问题。据调查表明,室内空气污染源一般可分为二类:化学污染、生物污染。其中化学污染主要是由室内挥发性有机物的释放造成的,挥发性有机物主要为房屋建材、家具、涂料等装饰材料所释放的醛类、苯类、氨类等,其中甲醛(hcho)具有强烈的刺激性,长期处于低浓度hcho环境中容易引起慢性呼吸道疾病,诱发各类癌症,并且对人体的中枢神经产生极大的危害。生物污染主要是由室内细菌、病毒所引起的污染。在适宜的温湿度条件下,室内微生物数量会呈指数及增生。并且由于其个体小、分布广泛、繁殖迅速、变异能力强等特点,室内微生物是引起各类传染病传播的直接途径。
3.目前,室内hcho的控制策略主要包括通风换气和物理吸附等,其中通风换气对通风时间和风速有要求,而且该过程只是对hcho进行稀释作用。物理吸附具有成本低、短时间除醛效率高等优点,但是存在易脱附形成二次污染、吸附容量有限等缺点。相较于上述hcho控制策略,催化氧化法作为一种末端控制技术可以让hcho与空气中的o2发生氧化还原反应生成游离态的co2和h2o,具有降解效率高、成本低、无有毒副产物等优势,催化氧化法又分过渡金属催化氧化和光催化氧化这几类,其中二氧化锰(mno2)材料作为最具潜力的过渡族金属氧化物之一,其丰富的价态(mn
2
、mn
3
、mn
4
)、形貌结构简易可调(纳米线、棒、花)、低催化反应能垒可以对室内空气环境中的hcho污染起到遏制和分解的作用。此外,单一成分的氧化亚铜(cu2o)自身并没有降解hcho的能力,但它作为一种p型半导体光催化材料,其禁带宽度为2.17ev,在可见光的激发下可以促使空气中的h2o和o2解离为具有极强氧化还原性的羟基自由基(
·
oh)超氧阴离子(
·o2-),能与催化剂表面上的hcho分子生成对环境无害的co2和h2o。并且随着细菌病毒的传播,流感病毒肆虐全球,cu2o也可作为一种抗菌剂应用于杀菌抗病毒领域,可以通过与细菌接触释放铜离子,与dna、rna、酶蛋白等阴离子生物分子相互作用抑制细菌活性,也可有效的灭活sars-cov-2病毒
1.。然而,由于目前室内空气污染物成分复杂,单纯的依靠一种空气净化材料对室内污染物进行处理,净化效率是难以让人满意的,因此以多种材料进行复合不同净化技术进行联合的复合净化材料有着优异的发展前景,其中构筑mno2为基底复合新型光催化剂cu2o的双金属氧化物室内空气净化材料,实现室内除醛、抗菌双功效净化作用有着广阔的应用前景。当前,tik ouiram等
2.使用单步回流法合成得到了cu2o-mno2粉末,其制备的双金属氧化物存在比表面积低、易团聚、晶粒尺寸大、原子利用率低等问题,而在hcho催化氧化过程中需要催化剂具有大的比表面积吸附空气中
的hcho,而cu2o作为第二相若团聚其上会进一步阻碍活性位点降低催化效率;此外,在抗菌过程中也需要抗菌剂具有高分散度、小晶粒尺寸,这样cu2o暴露的比表面积越大,与细菌接触后越容易释放cu

杀灭细菌。所以,如何制备大面积mno2负载型催化剂并促使cu2o第二相以纳米尺度均匀分散其上实现一种室内除醛、抗菌双功效作用的双金属氧化物是目前所面临的主要问题。
4.[1]saeed behzadinasab,myra d.williams,mohsen hosseini,et al.transparent and sprayable surface coatings that kill drug-resistant bacteria within minutes and inactivate sars-cov-2 virus[j].acs applied materials&interfaces,2021,13(46):54706-54714.
[0005]
[2]tik ouiram,chochanon moonla,anchana preechaworapun,et al.enzyme-free cu2o@mno2/gce for hydrogen peroxide sensing[j].electroanalysis,2019,31(7):1356-1362.


技术实现要素:

[0006]
目前cu2o-mno2复合材料的制备过程中,cu2o无法做到~10nm尺度的生长并保持分散均匀。本发明通过聚乙二醇 电化学沉积原位生长,创新性的构筑出cu2o-mno
2-cc双金属氧化物复合材料,其中cu2o晶粒尺寸~10nm并且均匀分布。本发明所制备的复合材料可以实现除醛、抗菌双功效作用,可以广泛应用于空气净化器、空调等设备上,原材料简单易得、价格低廉适应于大规模生产。本发明所制备的复合材料也可进一步扩展于其他污染物气体的去除领域(如一氧化碳、甲苯、臭氧)。
[0007]
本发明提供了一种基于除醛、抗菌纳米级cu2o-mno2双金属氧化物的制备方法,该方法可以有效解决cu2o纳米级均匀分散的问题,并且实现了室内除醛、抗菌双功效作用,为后续复合净化材料的制备及协同应用提供了一种新的思路。
[0008]
为了解决上述问题,本发明的一种基于除醛、抗菌的cu2o-mno2双金属氧化物的制备方法,包括以下步骤:
[0009]
步骤1,先对导电碳布做亲水性预处理;
[0010]
步骤2,将mno2负载于导电碳纤维表面;
[0011]
步骤3,引入聚乙二醇表面活性剂分散cu2o于mno2表面。
[0012]
步骤1:优选的,先对导电碳布做亲水性预处理,具体为:将导电碳纤维编制的碳布(ccs)(裁剪为10
×
10cm2(约1.8g)),利用无水乙醇和去离子水依次冲洗并置于真空干燥箱60℃烘干干燥,完全干燥后,将碳布(ccs)置于h2so4与hno3混合溶液中,优选10mol/l的h2so4与8mol/l的hno3体积比为4:1,在60℃下水浴处理30min,然后用去离子水洗涤直至ph值为7,随后置于真空干燥箱80℃烘干3h即可完成ccs的亲水性处理。亲水处理对ccs形貌无明显的影响,但可增强ccs与水系电解液的充分接触,有利于调控负载物在ccs基底上的均匀生长。
[0013]
步骤2:优选的,先将mno2负载于导电碳纤维表面,具体为:利用电化学沉积电场增强mno
4-与碳纤维发生氧化还原原位生长mno2形成mno
2-ccs复合材料;通常,将配置kmno4水溶液作为电解液优选电解液中kmno4浓度0.03-0.08m,然后将亲水性预处理过的ccs固定于聚四氟乙烯框架内。以ccs作为阳极,pt片作为阴极,随后将电极浸泡于kmno4电解液中,采
用外加直流电源形成电场促进mno4-加速迁移至阳极表面与ccs发生氧化还原反应原位生长mno2;设置沉积电压为5v-12v,如5v、8v、10v、12v,沉积时间为60min,控制水浴温度80℃。沉积结束后将ccs取出用去离子水充分洗涤放置于真空干燥箱内设置110℃退火12h即可得到mno
2-ccs复合材料。所发生的氧化还原反应可以概括如下:
[0014]
3c 4mno
4- 4h


4mno2 co2 2h2o
[0015]
步骤3:优选的,引入聚乙二醇表面活性剂分散cu2o于mno2表面,具体为:将五水硫酸铜(cuso4·
5h2o)和聚乙二醇6000置于去离子水中并保持磁力搅拌,待药品完全溶解后将乳酸(c3h6o3)逐滴加入,然后密封超声;超声后向上述溶液中滴加naoh溶液,形成可溶于水的乳酸铜络合物(cu(ii)[c3h6o3]),随后,在ph计的监测下调节电解液ph为12.5,然后密封超声,完成cu(ii)[c3h6o3]电解液的配制;最后将所得mno
2-ccs复合材料固定于聚四氟乙烯框架内,以pt作为阳极,mno
2-ccs复合材料作为阴极,将电极浸泡于cu(ii)[c3h6o3]电解液中,采用恒流稳压直流电源作为输入电源,调节输出电流为5ma-20ma,如5ma、10ma、15ma、20ma,沉积时间为30min,控制水浴温度为60℃,沉积结束后将样品取出用去离子水充分洗涤并置于60℃真空干燥箱烘干即可得到cu2o粒径为10nm的cu2o-mno
2-cc复合材料。
[0016]
上述优选每9.9872g五水硫酸铜(cuso4·
5h2o)对应10g聚乙二醇6000、400ml去离子水、乳酸(c3h6o3)26.3ml。
[0017]
所发生的氧化还原反应可以概括如下:
[0018]
cu
2
c3h6o3→
cu(ii)[c3h6o3]
[0019]
cu(ii)[c3h6o3] e-→
cu(i)[c3h6o3] [c3h5o3]-[0020]
2cu(i)[c3h6o3] 2oh-→
cu2o h2o 2[c3h5o3]-。
[0021]
本发明优点:
[0022]
1.通过聚乙二醇 电化学沉积原位生长,创新性的构筑出cu2o-mno
2-cs双金属氧化物复合材料,其中cu2o晶粒尺寸~10nm并且均匀分布。
[0023]
2.所制备的cu2o-mno
2-ccs复合材料可以在室温条件下在60min内将7ppm的甲醛催化降解为0.589ppm,实现91.5%的hcho去除效率。
[0024]
3.创新的将p型半导体材料cu2o负载于mno2之上引入到hcho的催化氧化过程之中,通过在催化剂表面形成两类活性位点,实现o2向活性氧(o*、
·
oh)的高效转化提升hcho催化效率及寿命。
[0025]
4.创新的将cu2o-mno2复合材料应用于抗菌领域,对大肠杆菌和金黄色葡萄球菌均有一定的抑制作用。
附图说明
[0026]
图1为本发明所制备的mno
2-cc和cu2o-mno
2-cc原位生长示意图
[0027]
图2为本发明所制备的mno
2-cc sem图
[0028]
图3为本发明所制备的cu2o-mno
2-cc sem图
[0029]
图4为本发明所制备的cu2o-mno
2-cc tem图
[0030]
图5为本发明所制备的cu2o-mno
2-cc复合材料对低浓度甲醛去除效率图
[0031]
图6为本发明所制备的cu2o-mno
2-cc复合材料协同除醛吸附过程示意图
[0032]
图7为本发明所制备的cu2o-mno
2-cc复合材料协同除醛反应过程示意图
[0033]
图8为本发明所制备的cu2o-mno
2-cc复合材料协同除醛脱附过程示意图
[0034]
图9为本发明所制备的cu2o-mno
2-cc复合材料对革兰氏菌抗菌效果图。
具体实施方式
[0035]
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
[0036]
实施例1
[0037]
步骤1:先对导电碳布做亲水性预处理,具体为:将利用导电碳纤维编制的碳布(ccs)裁剪为10
×
10cm2(约1.8g),利用无水乙醇和去离子水依次冲洗并置于真空干燥箱60℃烘干干燥,完全干燥后,将碳布(cc)置于h2so4与hno3体积比为4:1混合溶液中,在60℃下水浴处理30min,然后用去离子水洗涤直至ph值为7,随后置于真空干燥箱80℃烘干3h即可完成cc的亲水性处理。亲水处理对cc形貌无明显的影响,但可增强cc与水系电解液的充分接触,有利于调控负载物在cc基底上的均匀生长。
[0038]
步骤2:先将mno2负载于导电碳纤维表面,具体为:利用电化学沉积电场增强mno
4-与c纤维发生氧化还原原位生长mno2形成mno
2-cc复合材料。通常,将4.3458g kmno4置于烧杯内溶于550ml去离子水中并磁力搅拌20min,得到0.05m kmno4电解液,然后将亲水性预处理过的cc固定于聚四氟乙烯框架内。以cc作为阳极,pt片作为阴极。随后将电极浸泡于kmno4电解液中,采用外加直流电源(35v,3a)形成电场促进mno4-加速迁移至阳极表面与cc发生氧化还原反应原位生长mno2。设置沉积电压为12v,沉积时间为60min,控制水浴温度80℃。沉积结束后将cc取出用去离子水充分洗涤放置于真空干燥箱内设置110℃退火12h即可得到mno
2-cc复合材料。所发生的氧化还原反应可以概括如下:
[0039]
3c 4mno
4- 4h


4mno2 co2 2h2o
[0040]
步骤3:引入聚乙二醇表面活性剂分散cu2o于mno2表面,具体为:将9.9872g五水硫酸铜(cuso4·
5h2o)和10g聚乙二醇6000置于烧杯内溶于400ml去离子水中并保持磁力搅拌,待药品完全溶解后使用移液枪汲取乳酸(c3h6o3)溶液26.3ml逐滴加入,此时电解液颜色为天蓝色,利用保鲜膜将烧杯封口后放置于超声清洗机内超声20min。然后将24g氢氧化钠(naoh)置于另一烧杯内溶于150ml去离子水中并保持磁力搅拌,待naoh溶液冷却至室温后,使用胶头滴管汲取naoh溶液逐滴加入上述cuso4·
5h2o电解液中,形成可溶于水的乳酸铜络合物(cu(ii)[c3h6o3]),此过程中溶液颜色由天蓝色逐渐变为深蓝色。随后,在ph计的监测下调节电解液ph为12.5,再次利用保鲜膜将烧杯封口后置于超声清洗机内超声40min,完成cu(ii)[c3h6o3]电解液的配制。最后将上述制样完成的mno
2-cc固定于聚四氟乙烯框架内,以pt作为阳极,mno
2-cc作为阴极,将电极浸泡于电解液中,采用恒流稳压直流电源作为输入电源,调节输出电流为15ma,沉积时间为30min,控制水浴温度为60℃,沉积结束后将样品取出用去离子水充分洗涤并置于60℃真空干燥箱烘干即可得到cu2o粒径为10nm的cu2o-mno
2-cc复合材料。所发生的氧化还原反应可以概括如下:
[0041]
cu
2
c3h6o3→
cu(ii)[c3h6o3]
[0042]
cu(ii)[c3h6o3] e-→
cu(i)[c3h6o3] [c3h5o3]-[0043]
2cu(i)[c3h6o3] 2oh-→
cu2o h2o 2[c3h5o3]-[0044]
图1为本发明所制备的mno
2-cc和cu2o-mno
2-cc原位生长示意图
[0045]
图2为本发明所制备的mno
2-cc sem图
[0046]
图3为本发明所制备的cu2o-mno
2-cc sem图
[0047]
图4为本发明所制备的cu2o-mno
2-cc tem图。
[0048]
1.cu2o-mno
2-cc复合材料催化氧化甲醛性能测试
[0049]
使用hcho密闭测试舱对上述方法所制备的cu2o-mno
2-cc复合材料进行hcho催化降解实验。具体为:在温度为25℃,相对湿度为50%的48l密闭玻璃测试舱中评估样品的催化活性,将装有1g cu2o-mno
2-cc催化剂(4个约400cm2)的样品盒放在密闭的玻璃室中,然后将7μl hcho(浓度为38%)溶液注入密闭测试舱内,在玻璃舱外打开氙灯模拟太阳光辐照照射样品,测量其在光态下对hcho的测试效率。相应的利用遮光布将密闭测试舱覆盖,测量样品置于暗态下的hcho去除效率。在打开循环系统45分钟后,hcho的浓度稳定在~7ppm,随后打开催化剂样品盒,使催化剂完全暴露于甲hcho气氛中,使用hcho测试仪实时检测hcho浓度。同样的,采用上述测试方法将1g mno
2-cc催化剂设置为对照组进行测试。测试效果如图5所示,所制得的样品暗态条件下在60min内使hcho浓度从7ppm降低为1.322ppm,达到了81.1%的hcho去除效率;光照条件下可以进一步促使hcho浓度降低为0.589ppm,实现91.5%的hcho去除效率,而单一成分的mno
2-cc复合材料只能达到83.2%的hcho去除效率,很明显,cu2o的引入可以促使mno
2-cc催化剂在光照条件下对hcho的催化效率进一步提高。
[0050]
图5为本发明所制备的cu2o-mno
2-cc复合材料对低浓度甲醛去除效率图。
[0051]
2.cu2o-mno
2-cc复合材料协同除醛机理
[0052]
对于本发明所制备的cu2o-mno
2-cc复合催化剂,对于hcho的催化氧化反应主要分为3个阶段:吸附过程(如图6所示)、反应过程(如图7所示)、脱附过程(如图8所示)。由于所制备的cu2o~10nm粒径不会完全覆盖mno2表面,hcho气体分子除了会吸附于cu2o晶粒表面上,还会吸附于cu2o和mno2之间的空隙之中。随后,空气中的o2会得到不同价态锰相互转化产生的转移电荷进而激发为活性氧(o
*
),并且铜-锰之间的氧化还原反应可以进一步加快氧化物间的价态转变促使电荷转移进而提升o
*
的激发,hcho在o
*
的协助下转化为甲酸盐(hcooh)中间产物,最后形成游离态的二氧化碳和水。除此之外,cu2o作为一种p型半导体其带隙位于可见光吸收范围内,空气中的h2o与cu2o产生的光生空穴会生成
·
oh,hcho与
·
oh也会进一步转化为游离态的h2o和co2。
[0053]
图6为本发明所制备的cu2o-mno
2-cc复合材料协同除醛吸附过程示意图;
[0054]
图7为本发明所制备的cu2o-mno
2-cc复合材料协同除醛反应过程示意图;
[0055]
图8为本发明所制备的cu2o-mno
2-cc复合材料协同除醛脱附过程示意图。
[0056]
3.cu2o-mno
2-cc复合材料抑菌性能测试
[0057]
使用大肠杆菌和金黄色葡萄球菌作为革兰氏阴性、阳性受试菌种进行平板抑菌圈实验,具体为:在超净工作台上,将多个lb固体培养基分别涂布100μl菌液浓度为109cfu/μl的大肠杆菌菌种和金黄色葡萄球菌菌种。然后,在涂布过菌种的lb培养基上放置已灭菌过的裁剪为1.5
×
1.5cm2尺寸的cu2o-mno
2-cc样品,随后将固体培养基置于微生物培养箱内37℃培养24h后观察抑菌圈的大小。测试效果如图9所示,所制备的cu2o-mno
2-cc复合材料置于大肠杆菌和金黄色葡萄球菌菌种间会因抑制细菌的生长而产生明显的抑菌圈,通过测量两种菌种的抑菌圈宽度,分别为3.6mm和4.2mm。很明显,cu2o-mno
2-cc复合材料可对革兰氏菌起到一定的抑制作用。
[0058]
图9为本发明所制备的cu2o-mno
2-cc复合材料对革兰氏菌抗菌效果图。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献