一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高容量陶瓷介电材料、陶瓷电容器及其制备方法与流程

2022-06-01 06:02:14 来源:中国专利 TAG:


1.本发明属于材料技术领域,尤其涉及一种高容量陶瓷介电材料、陶瓷电容器及其制备方法。


背景技术:

2.多层陶瓷电容器(mlcc)广泛用于通讯设备、汽车电子、产业机器、医疗机器等领域的通信基础设备电路中;由于终端配置功能的增多,使电池容量变大,所以对大容量电池进行稳定快速的充电,需要配置大容量、高品质的mlcc;部分电子回路通过使用大容量规格以减少mlcc的数量,因此对大容量有着较高要求;近年来随着汽车电子化、电动车的发展,车规mlcc需求大涨。车用mlcc由于没有对尺寸上午过多限制,型号范围很广,但其可靠性要求变得极为重要,对温度、环境要求严苛,对mlcc寿命及可靠性提出了更高要求。这也是各大厂商的另一重要发展方向。因此,未来mlcc的高可靠度要求也将会不断提升。
3.开发高容量的mlcc,即在一定体积内提升电容量,需要合成高四方性的钛酸钡超细粉体、减小电介质层厚度、增加mlcc内部的叠层数;电介质层更薄,其耐击穿性会发生大幅度的下降。并且膜厚均匀度难以控制,也将导致耐电压或可靠性下降的问题;为了兼顾高介电常数和高击穿强度,需要同时提升介电材料的介电常数和电阻率,需要精细控制掺杂元素的使用种类和添加量。


技术实现要素:

4.本发明的目的在于克服上述现有技术的不足之处而提供一种具有高电容率、高介电常数和高电阻率的一种高容量陶瓷介电材料、陶瓷电容器及其制备方法。
5.为实现上述目的,本发明采取的技术方案为:一种高容量陶瓷介电材料,所述高容量陶瓷介电材料包括以下组分:钛酸钡、烧结助剂、抗还原剂和稀土元素的氧化物,以所述高容量陶瓷介电材料总摩尔计,钛酸钡的摩尔百分数为91.0-95.0%;所述烧结助剂包括al2o3、sio2和mgo,所述稀土元素的氧化物包括sc2o3、eu2o3、ho2o3和tm2o3。
6.本发明提供的高容量陶瓷介电材料选择稀土元素的氧化物做掺杂剂,对钛酸钡进行改性,并添加烧结助剂和抗还原剂来细化颗粒,从而制备得到高电容、高电阻率和高介电常数的陶瓷介电材料;本发明选用sc、eu、ho和tm的氧化物形式作为主体材料钛酸钡的掺杂元素,一方面能够提供高四方性的陶瓷介电材料粉体,从而使得制备得到的产品具有高容量特性和高电阻率特性,另一方面,选用的四种稀土元素的氧化物形成作为掺杂元素能够给产品带来优异的抗老化性;同时,加入的烧结助剂al2o3、sio2和mgo能够很好的配合细化钛酸钡粉体并且能够在后续烧结的过程中以液体的形式包裹形成的晶体,避免晶体的过分长大,进而保证材料的致密性,提升产品的容量和介电常数;并且本发明选择钛酸钡作为高容量陶瓷介电材料的钡系主体原料,能够降低工艺复杂程度、节约成本。
7.作为本发明所述高容量陶瓷介电材料的优选实施方式,以高容量陶瓷介电材料的总摩尔计,al2o3占比为0.8-2.4%、sio2占比为1.0-2.6%、mgo占比为0.5-1.0%、sc2o3占比
为0.3-0.6、eu2o3占比为0.4-2.0%、ho2o3占比为0.2-0.6、tm2o3占比为0.2-0.5%。
8.当选用的烧结助剂al2o3、sio2和mgo在上述范围内时,一方面能够避免烧结助剂加量过少导致的晶体粒度过大,而导致后期制备陶瓷电容器时的晶粒过大,使得介电层厚度增加,降低电容量和电阻率,另一方面,也能避免烧结助剂加量过多导致后期制备得到的电容器的电容温度变化率特性变差。
9.稀土元素的氧化物中,ho和tm两个元素处于相邻位置,在钛酸钡的取代中机制比较相似,取代ti位后较大的离子半径能够使得钛酸钡的晶格参数增加,一方面,ho
3
的取代会导致四方形的降低和晶粒长大程度的降低,然而,ho2o3和tm2o3共掺所引起的两性取代可以弥补这个影响,并且tm
3
相对较小,因此主要占据ti位,在这种共掺杂体系中,比ho
3
离子半径更小的tm
3
离子可以补偿钙钛矿结构中ho取代引起的不稳定温度稳定性;即ho和tm两种不同的稀土元素掺杂,其得到的四方性较大且稳定性较高,从而能够实现高电容;另一方面,ho在取代ba时,能够还原ti离子并形成传导电子,从而保持电中性,并且其能溶解在ba和ti位的两个位点,因此,能够控制四方性的增长幅度,tm在掺杂时还能进一步形成“芯-壳”结构,上述两者都能够进一步稳定被掺杂后形成的四方性的稳定性;
10.稀土元素的氧化物中,eu和sc的加入能够起到抗老化作用,原本是施主的eu
3
离子可部分转化为亚稳态的eu
2
受体离子,那么缺陷从电子型ti空位变为非电子型ti空位,自由电子的减少,降低了损耗,提升了绝缘电阻,并且减少ti离子还原造成的氧空位,提高器件的抗老化性能;另一方面,一定摩尔百分数的eu的还能够配合烧结助剂,提升产品的致密度,防止晶粒的过度生长;不过若eu的加入量过多,则会在烧结的过程中形成第二相,反而降低致密度;一定摩尔百分数的sc除了能够和eu配合提升产品的抗老化作用外,还能够配合mgo提升烧结过程中的传质效果,帮助致密化,降低产品的介电损耗,提高产品在常温下的绝缘电阻。
11.因此,本发明添加的烧结助剂、稀土元素的氧化物之间是协同作用的,并且经研究发现,当各组分的添加量在上述范围内时,制备得到的高容量介电材料应用于陶瓷电容器的制备时,得到的陶瓷电容器具有高容量、高介电常数、高电阻率且具有优异的抗老化特性。
12.作为本发明所述高容量陶瓷介电材料的优选实施方式,所述抗还原剂包括v2o5或mn2o5,以所述高容量陶瓷介电材料总摩尔计,抗还原剂占比为0.5-1%。
13.作为本发明所述高容量陶瓷介电材料的优选实施方式,所述抗还原剂包括v2o5。
14.加入的v2o5中的v元素能够取代钛酸钡中的ti位,从而抑制氧空位的产生,提高剩余极化强度,也能降低介质损耗。
15.作为本发明所述高容量陶瓷介电材料的优选实施方式,所述钛酸钡的粒径为150-180nm。
16.当优选的钛酸钡的粒径在上述范围内时,能够保证后续制备得到陶瓷晶粒在150-200nm之间,从而能够使得产品容易堆叠较多的层数,进而进一步增加产品的电容,实现高电容的特性。
17.作为本发明所述高容量陶瓷介电材料的优选实施方式,所述陶瓷介电材料包括以下摩尔质量百分数的组分:钛酸钡92.0-95.0%、al2o30.8-1.4%、sio21.0-1.6%、mgo 0.5-0.8%、v2o50.8-1.0%、sc2o30.3-0.6%、eu2o31.0-1.6%、ho2o30.2-0.6%、tm2o30.2-0.5%。
18.当本发明添加的元素的含量在上述范围内时,利用其制备得到的陶瓷电容器的电容在39.2μf以上、介电常数在4000以上、电阻率为2.9
×
10
12-3.2
×
10
12
ω
·
cm、介电损耗在0.071以下。
19.作为本发明所述高容量陶瓷介电材料的优选实施方式,所述陶瓷介电材料包括以下摩尔质量百分数的组分:钛酸钡94.0%、al2o31.0%、sio21.0%、mgo0.5%、v2o51.0%、sc2o30.5%、eu2o31.2%、ho2o30.4%、tm2o30.4%。
20.当本发明添加的元素的含量在上述范围内时,利用其制备得到的陶瓷电容器的总和效果最优。
21.另外,本发明还提供了一种高容量陶瓷介电材料的制备方法,包括以下步骤:将钛酸钡和各组分混合湿磨、干燥,得高容量陶瓷介电材料。
22.作为本发明所述制备方法的优选实施方式,所述湿磨以氧化锆球作为球磨介质,湿磨的时间为18-22h。
23.作为本发明所述制备方法的优选实施方式,所述湿磨加入的溶剂为有机溶剂或水。
24.另外,本发明还提供了一种陶瓷电容器,所述陶瓷电容器由高容量陶瓷介电材料烧结而成。
25.根据本发明所述陶瓷电容器的优选实施方式,所述陶瓷电容器为多介电层结构,所述介电层的数目为500-700,介电层的厚度为0.8-1.2μm。
26.根据本发明所述陶瓷电容器的优选实施方式,所述陶瓷电容器在25℃时的电阻率为2.9
×
10
12-3.2
×
10
12
ω
·
cm、电容为39-43μf、介电常数为4000-4700;击穿场强为80-85v/μm。
27.另外,本发明还提供了一种所述陶瓷电容器的制备方法,包括以下步骤:将陶瓷介电材料制成浆料后流延成1.0-1.5μm的膜片,接着经电极印刷、叠层、压制、切割形成生坯;然后将生坯在还原气氛中于1220-1280℃下烧结2-4h,随后退火处理,最后降至室温完成烧结,得瓷体;接着在瓷体两端烧结形成铜电极,并依次镀上镍层和锡层,得陶瓷电容器。
28.作为本发明所述制备方法的优选实施方式,所述还原气氛包括以下体积百分数的组分:1%h2和99%n2。
29.作为本发明所述制备方法的优选实施方式,所述退火处理的温度为950-1100℃。
30.当制备的过程中的烧结温度在上述范围内时,能够很好控制晶粒的粒度和产品的致密度,若烧结温度过低,不利于烧结助剂的熔融从而无法形成液相结构,若烧结的温度过高,则会使得晶粒的粒度过分增大,不利于得到性质优异的产品。
31.与现有技术相比,本发明的有益效果为:
32.第一:本发明提供的高容量陶瓷介电材料以钛酸钡为主体材料,以sc、eu、ho和tm的氧化物形式进行掺杂,并且添加al2o3、sio2和mgo作为烧结助剂,制备得到的陶瓷介电材料具有高电容、高介电常数、高电阻率,且具有优异的抗老化特性;
33.第二:本发明提供的陶瓷介电材料的粒径为150-180nm,以其为原料制备陶瓷电容器时能够保证制备得到的陶瓷电容器的晶粒小,从而能够进行多层堆叠,进一步增加产品的电容;
34.第三:本发明提供的高容量陶瓷介电材料以及陶瓷电容器的制备方法简单、操作
简便,也不含有毒有害物质,制备得到的陶瓷电容器致密度高、晶粒小、缺陷少,适合实际生产应用。
附图说明
35.图1为本发明实施例1的mlcc试样的扫描电子显微镜图;
36.图2为本发明实施例1的mlcc试样的晶粒尺寸分布图;
37.图3为本发明实施例1的mlcc试样的电容与温度的关系图;
38.图4为本发明对比例1的mlcc试样的晶粒尺寸分布图;
39.图5为本发明对比例2的mlcc试样的扫描电子显微镜图;
40.图6为本发明对比例2的mlcc试样的透射电子显微镜图;
41.图7为本发明对比例2的mlcc试样的晶粒尺寸分布图;
42.图8为本发明实施例1和市售产品的mlcc试样的击穿强度威布尔分布图;
43.图9为本发明实施例1和市售产品的mlcc试样的加速老化图。
具体实施方式
44.为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
45.实施例1
46.本实施例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio394%、al2o31.0%、sio21.0%、mgo 0.5%、v2o51.0%、sc2o30.5%、eu2o31.2%、ho2o30.4%、tm2o30.4%;batio3的粒径为150nm;
47.具体制备方法如下:
48.(1)陶瓷介电材料的制备:按照上述摩尔百分数称取各组分混合,以氧化锆球为球磨介质,置于球磨机中,湿法球磨20h,球磨结束后干燥,得陶瓷介电材料;
49.(2)生坯的制备:将步骤(1)的陶瓷介电材料制成浆料,流延成1-1.5μm的膜片,再经过电极印刷、叠层、压制、切割形成生坯;其中,电极印刷时采用镍浆作为内电极,叠层时的叠层数为500-700层;
50.(3)瓷体的制备:将步骤(2)的生坯在还原气氛(1%h2 99%n2)中于1280℃条件下,烧结2h,随后降至1000℃进行退火处理,再降至25℃完成烧结,形成瓷体;
51.(4)陶瓷电容器的制备:在步骤(3)的瓷体两端通过沾铜的方式沾上铜浆,在950℃再烧结形成与瓷体牢固结合的铜电极,再在铜电极的表面依次电镀上镍层、锡层,制得陶瓷电容器。
52.实施例2
53.本实施例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio392%、al2o31.4%、sio21.5%、mgo 0.8%、v2o51.0%、sc2o30.6%、eu2o31.6%、ho2o30.6%、tm2o30.5%;batio3的粒径为150nm;制备方法和实施例1一样。
54.实施例3
55.本实施例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio393%、al2o32.0%、sio22.4%、mgo 0.5%、v2o50.8%、sc2o30.3%、eu2o30.4%、
ho2o30.3%、tm2o30.3%;batio3的粒径为150nm;制备方法和实施例1一样。
56.对比例1
57.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio394%、al2o31.0%、sio21.0%、mgo 0.5%、v2o51.0%、sc2o30.5%、eu2o31.2%、ho2o30.4%、tm2o30.4%;batio3的粒径为200nm;制备方法和实施例1一样。
58.对比例2
59.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio395%、sio21.0%、mgo 0.5%、v2o51.0%、sc2o30.5%、eu2o31.2%、ho2o30.4%、tm2o30.4%;batio3的粒径为150nm;制备方法和实施例1一样。
60.对比例3
61.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio395%、al2o31.0%、sio21.0%、mgo 0.5%、sc2o30.5%、eu2o31.2%、ho2o30.4%、tm2o30.4%;batio3的粒径为150nm;制备方法和实施例1一样。
62.对比例4
63.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio395%、al2o31.0%、sio21.0%、mgo 0.5%、v2o51.0%、sc2o30.7%、ho2o30.4%、tm2o30.4%;batio3的粒径为150nm;制备方法和实施例1一样。
64.对比例5
65.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio394%、al2o31.0%、sio21.0%、mgo 0.5%、v2o51.0%、sc2o30.5%、eu2o31.2%、ho2o30.8%;batio3的粒径为150nm;制备方法和实施例1一样。
66.对比例6
67.本对比例的一种陶瓷电容器,其中,陶瓷介电材料的原料按摩尔百分数包括以下组分:batio393.4%、al2o32.0%、sio22.0%、mgo 0.5%、v2o51.0%、sc2o30.1%、eu2o30.2%、ho2o30.4%、tm2o30.4%;batio3的粒径为150nm;制备方法和实施例1一样。
68.对比例7
69.本对比例的一种陶瓷电容器跟实施例1的唯一不同在于步骤(3)中烧结的温度为1350℃。
70.对比例8
71.本对比例的一种陶瓷电容器跟实施例1的唯一不同在于步骤(3)中烧结的时间为1h。
72.效果例
73.将本发明实施例1-3和对比例1-8制备得到的陶瓷电容器进行性能测试,测试得到的数据如表1所示,其中,市售样品的型号为grt21bc80e476me13l,生产商为日本村田制作所;同时,将实施例1制备得到的陶瓷电容器与对比例制备得到的产品进行击穿强度威布尔测试、电阻率损失率测试,其中,击穿强度威布尔测试的条件是升压速率为1v/s,上限电流为5ma;抗老化测试的条件是测试的温度为200℃,电压为5v,直到样品电阻率发生骤降或者器件击穿;
74.表1:实施例1-3和对比例1-8制备得到的陶瓷电容器的性能测试数据表
[0075][0076]
从表1中可以看出,当采用本发明的技术方案时,制备得到的陶瓷电容器在25℃时的介电常数为4000-4700、电阻率为2.9
×
10
12-3.2
×
10
12
ω
·
m、电容为39.2-42.7μf;
[0077]
对实施例1制备得到的陶瓷电容器进行扫描电子显微镜表征,从表征结果图1中可以看出,本发明实施例1制备得到的样品致密度良好,没有明显孔洞;接着根据图1统计陶瓷晶粒的尺寸分布如图2,从图2中可以看出,本发明实施例1制备得到的产品尺寸分布规律,平均晶粒尺寸为167nm;接着测试实施例1制备得到的陶瓷电容器的电容与温度的关系,从图3中可以看出,本发明实施例1制备得到的陶瓷电容器具有很高的电容,并且在常温段内能够很好的稳定温度所造成的电容值剧烈变化的影响。
[0078]
实施例2的性能与实施例1没有明显差别,性能仍十分优异。
[0079]
实施例3的部分添加剂含量不在优选范围内,虽然性能较好,但与实施例1相比仍有明显差距。
[0080]
从实施例1和对比例1的数据中可以看出,当采用batio3的粒径不在150-180nm内而为200nm时,将对比例1制备得到的产品进行尺寸分布作图,从图4中可以看到,陶瓷晶粒的粒度为220nm,即粒度偏大,并且对比例1的产品的电容、介电常数也明显下降,同时,较大的晶粒尺寸也减少了晶界密度,使得电阻率降低,对击穿强度和抗老化时间造成了一些轻微影响;
[0081]
将对比例2制备得到的陶瓷电容器进行尺寸分析,分析如图7所示,对比例2制备得到的尺寸相较于实施例1大,为203nm,接着将对比例2制备得到的陶瓷电容器进行扫描电子显微镜和透射电子显微镜观察,从图5和图6中发现,由于没有添加al2o3,使得制备得到的陶瓷电容器的介质层十分不致密,有大量明显的介质孔洞,并且,从表1中可以看出,对比例2制备得到的介电常数、电容远远小于实施例1制备得到的产品的介电常数和电容,同时较大的晶粒尺寸也减少了晶界密度,使得电阻率也呈下降趋势;
[0082]
将实施例1和对比例3制备得到的产品的数据进行比较,发现没有添加v2o5时,制备得到的产品的介电损耗明显增加且电阻率减少,其中,介电损耗相较于实施例1增加的幅度为33.8%,这也对击穿强度和抗老化时间造成了影响;
[0083]
从实施例1和对比例4中可以看出,当陶瓷介电材料中不添加eu2o3时,电阻率发生明显下降,并且过多的氧空位残留也导致了其抗老化性能大大降低,相较于实施例1的抗老化时间降低了70%;
[0084]
从实施例1和对比例5中可以看出,当陶瓷介电材料中将ho2o3和tm2o3分别为0.4%改为只添加ho2o
3 0.8%时,ho元素造成钛酸钡的四方性减弱,样品的介电常数降低,并且晶粒尺寸的轻微增大也造成了击穿强度和抗老化性能的略微降低;
[0085]
从实施例1和对比例6中可以看出,当陶瓷介电材料中sc2o3和eu2o3的添加量明显过少时,烧结致密度降低,晶粒尺寸增大,氧空位的残留使得击穿强度和抗老化性能降低,但与未添加eu2o3的对比例4相比,性能稍有提升;
[0086]
从实施例1和对比例7中可以看出,当增加烧结的温度时,样品过烧开裂导致样品十分容易短路,选取未短路样品进行测试,可以发现过烧导致晶粒异常长大,并且样品具有极低的电容、介电常数、电阻率以及较高的介电损耗,其耐击穿特性和抗老化特性也很差;
[0087]
从实施例1和对比例8中可以看出,当减少烧结的时间时,样品介电层未完全成瓷,烧结不致密导致的孔洞大大增加了介电损耗,其介电常数、电阻率也很低,耐击穿特性和抗老化特性也很差;
[0088]
同时,将本发明实施例1的陶瓷电容器和市售产品进行击穿强度威布尔分布测试,测试结果如图8所示,从图8中可以看出,市售产品的平均击穿强度为50.44v/μm,并且拟合直线斜率较小为5.36,本发明实施例1的产品的平均击穿强度为84.11v/μm,拟合直线斜率为29.16,说明市售产品的稳定性和一致性远远不如采用本发明的技术方案制备得到的陶瓷电容器;接着将本发明实施例1的陶瓷电容器和市售产品进行抗老化特性研究,结果如图9所示,从图9中可以看出,实施例1的陶瓷电容器的绝缘电阻较大,并且老化速率慢于市售产品,说明本发明实施例制备得到的产品的抗老化性能比常规市售产品的抗老化性能更优。
[0089]
最后应当说明的是,以上实施例以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献