一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种CO2稳定的双相混合导体透氧膜及其制备方法与应用

2022-06-01 04:31:47 来源:中国专利 TAG:

一种co2稳定的双相混合导体透氧膜及其制备方法与应用
技术领域
1.本发明属于混合导体膜材料技术领域,具体涉及一种co2稳定的双相混合导体透氧膜及其制备方法与应用。


背景技术:

2.混合导体透氧膜是一种既有氧离子导电性又有电子导电性的材料,在无外加电场的条件下,它也能同时传导氧离子和电子。理论上,混合导体透氧膜对氧气的分离选择性能达到100%,并且是一种经济且操作简便的方法。与目前的深冷分离技术相比,基于混合导体透氧膜的氧气分离过程能降低约60%的能耗并且节约35%左右的生产成本,除了用于氧气分离之外,混合导体透氧膜还能通过与反应耦合构建膜反应器,用于甲烷氧化偶联制乙烯以及水裂解制氢等反应,其在固体氧化物燃料电池方面也有着广泛的应用前景。
3.透氧膜材料主要有三种类型:钙钛矿型氧化物、k2nif4型氧化物和萤石型氧化物。钙钛矿型氧化物是一种透氧量相对较高的材料,但其大多含有碱土金属元素,在co2气氛中易生成碳酸盐,导致其结构不稳定,因此限制了其工业化应用。k2nif4型氧化物的结构不对称,存在各向异性限制了其氧离子的迁移,导致其透氧量不高,但其结构相对稳定,受到了人们的广泛关注。萤石型氧化物是一种氧离子电导率较高的材料,但其电子电导率不高,通常需要电场驱动力的作用或构建双相膜材料来提升材料的透氧性能。(zhu x,yang w:chapter 12-critical factors affecting oxygen permeation through dual-phase membranes,oyama s t,stagg-williams s m,editor,membrane science and technology:elsevier,2011:275-293.)
4.据美国能源部的数据显示,在未来的一二十年里,碳氢化合物对于世界能源供应的占比仍将大于60%,而碳氢化合物的燃烧产物是co2。la2cuo4是一种不含碱土金属元素的铜基材料,在co2气氛中具有较好的相结构稳定性,将其构筑催化膜反应器有一定的应用潜力,但单相的la2cuo4透氧量不高,其应用受到了限制。


技术实现要素:

5.为了解决现有技术的缺点与不足之处,本发明通过在la2cuo4中引入氧离子导电相构建双相混合导体透氧膜来提升其透氧性能,以满足实际应用的需要。本发明的目的是提供一种在co2气氛中稳定的双相混合导体透氧膜及其制备方法与应用。
6.本发明的目的通过以下技术方案来实现。
7.一种co2稳定的双相混合导体透氧膜,其化学通式为:x ce
0.9
la
0.1o2-δ-y la2cuo
4 δ
,其中δ代表氧原子得失的数目,为非化学计量,0≤δ≤1,0《x《1,0《y《1,x y=1。
8.以上所述的一种co2稳定的双相混合导体透氧膜材料,其制备方法为溶胶-凝胶一锅法,具体包括以下步骤:
9.(1)按照化学计量比依次称取x ce
0.9
la
0.1o2-δ-y la2cuo
4 δ
中金属对应的硝酸盐分别用去离子水溶解在烧杯中,然后将其混合得到金属盐混合溶液;
10.(2)选用乙二胺四乙酸和无水柠檬酸作为络合剂,并将乙二胺四乙酸、无水柠檬酸加入到步骤(1)所得的金属盐混合溶液中,与之进行络合配位;
11.(3)将步骤(2)所得的溶液混合后置于磁力搅拌器不断搅拌,并加入碱性非金属化合物调节ph值为7~9;
12.(4)调节步骤(3)所得的混合溶液的温度到一定范围,使在搅拌的过程中水逐渐蒸发,形成凝胶;
13.(5)将步骤(4)所得的凝胶转移至蒸发皿中,置于电炉上以一定的温度焙烧,形成前驱体粉体;
14.(6)在步骤(5)所得的前驱体粉体冷却后,将其转移至刚玉坩埚中,随后置于高温马弗炉中以一定的温度焙烧,形成成相粉体;
15.(7)将步骤(6)所得的成相粉体进行研磨,研磨后称取一定量的粉体置于不锈钢模具中,施加一定的压力进行预压成型,随后再将其置于微型等静压机内以一定的压力保压一段时间,得到膜片生胚;
16.(8)将步骤(7)所得的膜片生胚转移到刚玉板上,随后置于高温马弗炉中以一定的温度烧结致密,打磨清洗后即可得到所述的双相混合导体透氧膜材料。
17.优选的,步骤(2)所述金属盐混合溶液中的金属离子总量、乙二胺四乙酸、无水柠檬酸三者的摩尔比为金属离子总量:乙二胺四乙酸:无水柠檬酸=1:(1~1.5):(1~2.5)
18.进一步优选的,步骤(2)所述金属盐混合溶液中的金属离子总量、乙二胺四乙酸、无水柠檬酸三者的摩尔比为金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5
19.优选的,步骤(3)所述碱性非金属化合物为氨水。
20.优选的,步骤(4)所述温度为60~95℃。
21.优选的,步骤(4)所述搅拌的时间为2~10h。
22.优选的,步骤(5)所述焙烧的温度为200~450℃。
23.优选的,步骤(5)所述焙烧的时间为1~3h。
24.优选的,步骤(6)所述焙烧的温度为800℃,升温速率和降温速率为2℃/min。
25.优选的,步骤(6)所述焙烧的时间为8~10h。
26.优选的,步骤(7)所述一定量的粉体的质量为0.5~1.5g。
27.优选的,步骤(7)所述预压成型的压力为1~3mpa,预压成型的时间为0~1min。
28.优选的,步骤(7)所述保压的压力为6~10mpa,保压时间为5~15min。
29.优选的,步骤(8)所述烧结的温度为1030℃,升温速率和降温速率为2℃/min。
30.优选的,步骤(8)所述烧结的时间为8~10h。
31.进一步地,步骤(8)中,将烧结致密后的膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
32.以上所述的一种co2稳定的双相混合导体透氧膜可用于氧气的分离提纯和分离-反应耦合构建膜反应器,用于甲烷氧化偶联制乙烯以及水裂解制氢等反应。
33.与现有技术相比,本发明具有如下优点和有益效果:
34.(1)本发明成功地将一种氧离子导体与k2nif4型透氧膜材料结合制备了双相混合
导体透氧膜,两相未发现有相反应,并且两相分布均匀,致密性较好。
35.(2)本发明制备的双相混合导体透氧膜不含碱土金属元素,所以其在co2气氛下也具有较好的稳定性。
36.(3)通过引入高氧离子导电性的萤石型氧化物作为氧离子传导相,构建两相从而提升材料的透氧性能。本发明制备的双相膜透氧量可达到0.25ml
·
min-1
·
cm-2
,是单相膜la2cuo4的2.49倍。
37.(4)本发明采用溶胶-凝胶一锅法制备双相混合导体透氧膜。该方法制备流程简单,且制备时间短,满足工业化生产需要。
附图说明
38.图1为实施例1~3制得的双相混合导体透氧膜60%ce
0.9
la
0.1o2-δ-40%la2cuo
4 δ
、50%ce
0.9
la
0.1o2-δ-50%la2cuo
4 δ
、40%ce
0.9
la
0.1o2-δ-60%la2cuo
4 δ
粉末的x射线衍射谱图;
39.图2为实施例1制得的双相混合导体透氧膜60%ce
0.9
la
0.1o2-δ-40%la2cuo
4 δ
粉末在co2气氛中的原位x射线衍射谱图;
40.图3为实施例1~3制得的双相混合导体透氧膜60%ce
0.9
la
0.1o2-δ-40%la2cuo
4 δ
、50%ce
0.9
la
0.1o2-δ-50%la2cuo
4 δ
、40%ce
0.9
la
0.1o2-δ-60%la2cuo
4 δ
的扫描电子显微镜图;
41.图4为实施例1~3制得的双相混合导体透氧膜60%ce
0.9
la
0.1o2-δ-40%la2cuo
4 δ
、50%ce
0.9
la
0.1o2-δ-50%la2cuo
4 δ
、40%ce
0.9
la
0.1o2-δ-60%la2cuo
4 δ
的透氧温度曲线图。
具体实施方式
42.下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
43.实施例1
44.一种co2稳定的双相混合导体透氧膜60%ce
0.9
la
0.1o2-δ-40%la2cuo
4 δ
(记为60clo-40lco)的制备方法,具体包括以下步骤:
45.(1)称取26.0672gla(no3)3·
6h2o、16.4135gce(no3)3·
6h2o和6.7648g cu(no3)2·
3h2o,分别溶于装有200ml去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000ml大烧杯中,混合均匀得到金属盐混合溶液。
46.(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取36.8222g乙二胺四乙酸和36.3107g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且ph值约等于8,随后将其置于95℃水浴锅中恒温加热,同时搅拌约2h,水蒸发后形成凝胶。
47.(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在200℃预烧约3h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
48.(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧8h,得到成相粉体。对该粉体研磨后进行x射线衍射分析,结果如图1所示,将得到的x射线衍射谱图与标准pdf卡片进行对比,确保得到的是纯相的双相膜粉体。此外,对其进行co2气氛的原位x射线衍射表征,结果如图2所示,其温度变化过程为从30℃升温至900℃,然后从900℃降温至30℃,谱图结果峰形基本保持不变,表明其在co2气氛中相结构是稳定的。
49.(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加1mpa的压力保压1min进行初步预压成型,随后转移至微型等静压机中施加6mpa的压力并保压15min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧8h,得到致密的膜片。利用hitachi su8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(a)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
50.(6)将膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
51.(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150ml/min的空气,吹扫侧通入30ml/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890a气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于la2cuo
4 δ
(lco)单相膜,本实施例制备的双相膜透氧量最高可提升2.49倍。
52.实施例2
53.一种co2稳定的双相混合导体透氧膜50%ce
0.9
la
0.1o2-δ-50%la2cuo
4 δ
(记为50clo-50lco)的制备方法,具体包括以下步骤:
54.(1)称取22.7330gla(no3)3·
6h2o、9.7700gce(no3)3·
6h2o和6.0400g cu(no3)2·
3h2o,分别溶于装有200ml去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000ml大烧杯中,混合均匀得到金属盐混合溶液。
55.(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取29.2240g乙二胺四乙酸和28.8180g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且ph值约等于8,随后将其置于60℃水浴锅中恒温加热,同时搅拌约10h,水蒸发后形成凝胶。
56.(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在450℃预烧约1h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
57.(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧10h,得到成相粉体。对该粉体研磨后进行x射线衍射分析,结果如图1所示,将得到的x射线衍射谱图与标准pdf卡片进行对比,确保得到的是纯相的双相膜粉体。
58.(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加3mpa的压力保压0min进行初步预压成型,随后转移至微型等静压机中施加10mpa的压力并保压5min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧10h,得到致密的膜片。利用hitachi su8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(b)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
59.(6)将膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后
用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
60.(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150ml/min的空气,吹扫侧通入30ml/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890a气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于la2cuo
4 δ
(lco)单相膜,本实施例制备的双相膜透氧量最高可提升1.38倍。
61.实施例3
62.一种co2稳定的双相混合导体透氧膜40%ce
0.9
la
0.1o2-δ-60%la2cuo
4 δ
(记为40clo-60lco)的制备方法,具体包括以下步骤:
63.(1)称取26.8466gla(no3)3·
6h2o、7.8160gce(no3)3·
6h2o和7.2480g cu(no3)2·
3h2o,分别溶于装有200ml去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000ml大烧杯中,混合均匀得到金属盐混合溶液。
64.(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取32.1464g乙二胺四乙酸和31.6998g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且ph值约等于8,随后将其置于80℃水浴锅中恒温加热,同时搅拌约5h,水蒸发后形成凝胶。
65.(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在300℃预烧约2h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
66.(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧10h,得到成相粉体。对该粉体研磨后进行x射线衍射分析,结果如图1所示,将得到的x射线衍射谱图与标准pdf卡片进行对比,确保得到的是纯相的双相膜粉体。
67.(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加3mpa的压力保压0min进行初步预压成型,随后转移至微型等静压机中施加7mpa的压力并保压10min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧10h,得到致密的膜片。利用hitachi su8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(c)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
68.(6)将膜片先后用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
69.(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150ml/min的空气,吹扫侧通入30ml/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890a气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于la2cuo
4 δ
(lco)单相膜,本实施例制备的双相膜透氧量最高可提升2.11倍。
70.双相混合导体透氧膜在分离-反应耦合构建膜反应器中的应用:在制备得到的双
相膜的供水侧表面涂覆pt/sdc等水裂解催化剂,在双相膜的另一侧涂覆催化ch4等还原性气体氧化的sr2fe
1.5
mo
0.5
等催化剂。反应主要有三个过程:供水侧膜表面的水裂解反应,氧在膜体相的扩散过程,以及膜的另一侧还原性气体被氧化的过程。传统的水裂解反应在1600℃时产生的氢气浓度仅有0.1%,而通过混合导体膜反应器耦合水裂解反应,可以打破热力学平衡的限制,在1600℃有望将水分解产生的氢气浓度提升至11%及以上。
71.上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献