一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于合成直链烷烃的催化剂及制备方法和应用

2022-05-18 11:08:41 来源:中国专利 TAG:


1.本发明属于合成直链烷烃的催化剂的技术领域,具体涉及一种生物油脂加氢催化剂制备方法及其应用。


背景技术:

2.全球能源利用量的持续增加引起全球对温室效应、碳排放等环境问题越来越重视,传统的化石资源利用技术存在诸多环境问题。可再生能源是替代化石能源的重要绿色资源,其利用技术对全球经济社会可持续发展具有重要意义。直链烷烃是一种重要的高附加值化工原料,可作为高级润滑油、绿色溶剂油、生物柴油、线性α烯烃、相变储能材料等高端能源和化学品的原料。直链烷烃的生产方法包括费托合成法、天然油脂加氢法等。通过对天然油脂高选择性催化加氢脱除油脂中的氧原子,可得到长链烃类化合物,产品附加值高、过程绿色经济。
3.天然油脂主要成分为脂肪酸甘油酯,碳链长度一般为c12-c24,其中以c16和c18为最多。天然油脂加氢脱除氧原子的产物主要为正构烷烃、异构烷烃(部分正构烷烃发生异构化反应生成)、丙烷、水、一氧化碳、二氧化碳等。加氢反应主要有加氢脱水和加氢脱羧两条途径:加氢脱水是在加氢活性位的催化作用下,将油脂的酯基加氢还原至烷烃,得到的烷烃碳链保持脂肪酸原有碳原子个数(主要为十六烷和十八烷),该反应放热量较高,在相对低温下有利于该反应路径;油脂加氢脱羧是指在脱羧活性位作用下,原有脂肪酸甘油酯上酯基的一个碳原子以co或co2的形式脱除,得到的烷烃碳链比原有脂肪酸上碳原子少一个(主要为十五烷和十七烷)。经油脂分析数据和化学组成计算,油脂双键饱和后平均分子式为c
55h106
o2,加氢脱水反应路径包括反应(1),加氢脱羧反应路径包括反应(2)和反应(3)。
4.c
55h106
o2 12h2=c
52h110
c3h8 6h2o
ꢀ△
h=-527.5kj/mol
ꢀꢀꢀ
(1)
5.c
55h106
o2 6h2=c
49h104
c3h8 3co 3h2o
ꢀ△
h=-45.4kj/mol
ꢀꢀꢀ
(2)
6.c
55h106
o2 3h2=c
49h104
c3h8 3co2ꢀ△
h=-335.7kj/mol
ꢀꢀꢀ
(3)
7.具有奇数碳链的烷烃和具有偶数碳链的烷烃在某些特定应用领域上有着不同的用途。如作为有机相变储能材料,相邻碳原子个数的奇数烷烃和偶数烷烃的相变温度、相变焓、相变次数均不同,其应用场景也不同。根据产品的市场需求和产品方案,设计催化剂并将催化剂性能与反应参数相匹配,从而调节产品奇数烷烃和偶数烷烃比例,对油脂加氢制烷烃产品路线有重要意义。
8.金属碳化物具有优异的加氢性能,在加氢领域有广泛的应用。专利cn 102604668 b使用金属碳化物将生物质油加氢脱除氧原子提高其品质,该专利对氧原子有一定的脱除效率,但没有涉及所产生物质油中烷烃的奇偶性,也没有涉及产品中直链烷烃和异构烷烃的比例。


技术实现要素:

9.针对上述问题,本发明提供了一种用于合成直链烷烃的催化剂及制备方法和应
用。
10.为了达到上述目的,本发明采用了下列技术方案:
11.一种用于合成直链烷烃的催化剂,由下述重量配比的物质组成:过渡金属碳化物:固体碱金属氧化物:助剂:载体=0.068~0.176:0.052~0.072:0.008~0.028:0.765~0.884。
12.进一步,所述过渡金属碳化物为ni、co、mo、fe碳化物的一种或几种任意比例的混合物;所述固体碱金属氧化物使用的金属为k、na、ca、mg的一种;所述助剂为ce、la中的一种;所述载体为三氧化二铝、分子筛、二氧化硅或氧化锆中的任意一种。ni3c、co2c等过渡金属碳化物具有类贵金属效应,具有优异的加氢脱水功能;k、na等碱金属的作用是形成固体碱,使催化剂具有优异的脱羧功能;ce、la的作用是形成助剂ceo2和la2o3,可以显著提高金属碳化物和固体碱的分散性,加强各活性组分的协同作用,有效提高催化剂的加氢脱水和脱羧功能。
13.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
14.步骤1,将过渡金属化合物与聚乙烯醇加入到去离子水中;然后等体积浸渍于载体上,室温下静置,并多次干燥,得到样品1;
15.步骤2,将样品1加入到硼氢化钠溶液中搅拌还原,过滤、洗涤后室温下静置,并多次干燥,得到样品2;
16.步骤3,将碱金属盐和助剂盐加入到去离子水中,然后等体积浸渍于样品2上,室温下静置,并多次干燥,得到样品3;
17.步骤4,将样品3在h2气氛下升温还原,然后在h2气氛下降至室温后,用o2/n2钝化,即得金属碳化物催化剂。
18.进一步,所述步骤1中过渡金属化合物为硝酸镍、硝酸钴、钼酸铵或硝酸铁中的一种或几种以任意比例的混合物;所述步骤1中过渡金属化合物与聚乙烯醇的质量比为2.58~13.16:1.76~6.90;所述过渡金属化合物与聚乙烯醇的水溶液浓度为15.6wt%~50.3wt%。以上过渡金属化合物具有良好的溶解性,可为形成金属碳化物提供优良的前躯体。过渡金属碳化物与聚乙烯醇的配比才能有效形成高活性金属碳化物,偏离此比例的碳化物会造成加氢脱水性能不足,或发生过度加氢生成气相烃类。以上过渡金属化合物与聚乙烯醇的水溶液浓度可使金属化合物高度分散于载体表面,低于此浓度反应形成的碳化物有效组分不足,而高于此浓度则碳化物的分散性降低。
19.进一步,所述步骤1中载体为三氧化二铝、分子筛、二氧化硅或氧化锆中的任意一种。
20.进一步,所述步骤2中硼氢化钠溶液浓度为0.2~0.4mol/l;所述硼氢化钠的用量为过渡金属化合物的3.7%~15.9%;所述步骤2中搅拌还原的还原时间为30~60min。硼氢化钠低温还原可有效将过渡金属化合物进行预还原,硼氢化钠用量太低或搅拌时间太短,则达不到预还原效果,硼氢化钠用量太高或搅拌时间太长,则引起活性组分聚集。
21.进一步,所述步骤3中碱金属盐为硝酸钾、硝酸钠、硝酸钙、硝酸镁中的一种;所述步骤3中碱金属盐的用量为过渡金属化合物的0.31~1.44倍;所述步骤3中助剂盐为硝酸铈或硝酸镧的一种;所述助剂盐的用量为过渡金属化合物的4.9%~14.4%;所述碱金属盐和助剂盐的浓度为11.3wt%~25.3wt%。以上碱金属盐、助剂盐与过渡金属化合物之间的比
例才能有效协同过渡金属碳化物、固体碱、助剂之间各自的功能,发挥催化剂的综合性能。碱金属盐用量太低则碱性位不足,催化剂不能达到有效脱羧反应活性,碱金属盐用量太高则占用加氢活性位,降低催化剂综合性能。助剂用量需在上述合适范围之内,用量太低则不能有效提高金属碳化物和碱金属的分散性;用量太高则碱金属发生团聚,起不到协同作用。
22.进一步,所述步骤4中在h2气氛下升温还原的具体操作为:以0.5~2℃/min的速率升温至330~380℃,还原时间为4~6h;h2空速为3000~6000h-1
;所述步骤4中用o2/n2钝化具体操作为:用o2含量为0.5~2%的o2/n2钝化3~5h。以上还原条件是将金属碳化物前躯体有效还原为金属碳化物的最佳条件。超出以上还原条件会造成还原不足引起催化剂性能不足或过度碳化引起催化剂表面积碳。以上钝化条件是将金属碳化物有效钝化的最佳条件,超出以上条件会造成催化剂钝化不足,接触空气后发生快速氧化发生燃烧以及造成催化剂钝化过度活性下降。
23.进一步,所述步骤1、步骤2和步骤3中室温下静置,并多次干燥的具体操作条件为在室温下放置2~5h,然后在30~60℃下干燥2~5h,最后在100~120℃下干燥6~12h。以上条件是催化剂干燥的最佳条件,超出此范围会造成干燥过程中活性组分分布不均匀,以及催化剂开裂,影响后续制备条件效果直至影响催化剂性能。
24.一种用于合成直链烷烃的催化剂的应用,应用于固定床管式反应器内在氢气空速1500~4000h-1
、压力1.0~5.0mpa下,以0.5~2℃/min的速率升温至反应温度250~350℃,以天然油脂液体空速0.5~3h-1
的进料反应;所述天然油脂包括棕榈油、蓖麻油、椰子油、棉籽油、芥子油、菜籽油、大豆油、花生油、向日葵油或餐余油中的任意一种。固定床反应器采用该反应条件可有效发挥催化剂性能,将催化剂的加氢性能和异构化性能合理匹配,达到最佳效果。
25.与现有技术相比本发明具有以下优点:
26.通常金属碳化物具有优异的加氢性能,可用于加氢脱水制烷烃的反应。本发明通过引入固体碱,使催化剂同时具有加氢脱水性能和脱羧性能,并在不同反应温度下分别实现其特定功能。本发明的催化剂制备方法采用先液相低温预还原、后气相中温碳化的方法将ni、mo、co、fe的金属化合物活化为金属碳化物,将碱金属盐以固体碱氧化物、助剂盐以助剂氧化物ceo2或la2o3的形式固载于催化剂上。本发明催化剂中金属碳化物、固体碱wo3以及助剂ceo2三者的协同作用使得催化剂具有在低温下的加氢脱水功能生成十六烷和十八烷和高温下的加氢脱羧功能,主要生成十五烷和十七烷。用此方法合成的直链烷烃正构烷烃比例高,可作为多种高附加值精细化学品的原料。
具体实施方式
27.实施例1
28.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
29.步骤1,将5.44g硝酸镍与3.70g聚乙烯醇加入到15ml去离子水中;然后等体积浸渍于12g三氧化二铝上,在室温下放置3h,30℃下干燥2h,120℃下干燥8h,得到样品1;
30.步骤2,将样品1加入到40ml 0.4mol/l硼氢化钠溶液中搅拌还原60min,过滤、洗涤后在室温下放置4h,40℃下干燥4h,再在100℃下干燥6h,得到样品2;
31.步骤3,将2.33g硝酸钾和0.75g硝酸铈加入到15ml去离子水中,然后等体积浸渍于
样品2上,在室温下放置3h,40℃下干燥4h,110℃下干燥8h,得到样品3;
32.步骤4,将样品3在h2气氛下以1.0℃/min的速率升温至380℃,还原4h,h2空速为5000h-1
,然后在h2气氛下降至室温后,用o2含量为0.5%的o2/n2钝化3h,得到催化剂。
33.所得催化剂碳化镍百分含量6.8wt%、氧化钾百分含量5.2wt%、氧化铈百分含量1.4wt%、载体三氧化二铝百分含量86.6wt%。
34.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速2000h-1
、压力5.0mpa,以2.0℃/min升高到250℃,以棕榈油空速1.0h-1
进行加氢反应。反应结果列于表1中。
35.实施例2
36.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
37.步骤1,将10.27g硝酸钴与6.90g聚乙烯醇加入到26ml去离子水中;然后等体积浸渍于10g分子筛上,在室温下放置5h,40℃下干燥3h,110℃下干燥7h,得到样品1;
38.步骤2,将样品1加入到30ml 0.3mol/l的硼氢化钠溶液中搅拌还原50min,过滤、洗涤后在室温下放置5h,30℃下干燥5h,再在110℃下干燥12h,得到样品2;
39.步骤3,将4.52g硝酸钠和1.48g硝酸铈加入到26ml去离子水中,然后等体积浸渍于样品2上,在室温下放置2h,30℃下干燥5h,100℃下干燥9h,得到样品3;
40.步骤4,将样品3在h2气氛下以0.5℃/min的速率升温至360℃,还原6h,h2空速为4000h-1
,然后在h2气氛下降至室温后,用o2含量为0.5%的o2/n2钝化5h,得到催化剂。
41.所得催化剂碳化钴百分含量13.5wt%、氧化钠百分含量7.2wt%、氧化铈百分含量2.8wt%、载体分子筛百分含量76.5wt%。
42.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速3500h-1
、压力3.0mpa,以1.0℃/min升高到270℃,以花生油空速2.0h-1
进行加氢反应。
43.实施例3
44.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
45.步骤1,将2.58g钼酸铵与1.76g聚乙烯醇加入到14ml去离子水中;然后等体积浸渍于14g二氧化硅上,在室温下放置4h,50℃下干燥4h,100℃下干燥6h,得到样品1;
46.步骤2,将样品1加入到20ml 0.2mol/l硼氢化钠溶液中搅拌还原40min,过滤、洗涤后在室温下放置3h,50℃下干燥3h,再在120℃下干燥8h,得到样品2;
47.步骤3,将3.74g硝酸钙和0.29g硝酸镧加入到14ml去离子水中,然后等体积浸渍于样品2上,在室温下放置5h,30℃下干燥2h,120℃下干燥6h,得到样品3;
48.步骤4,将样品3在h2气氛下以2.0℃/min的速率升温至350℃,还原5h,h2空速为3000h-1
,然后在h2气氛下降至室温后,用o2含量为2%的o2/n2钝化4h,得到催化剂。
49.所得催化剂碳化钼百分含量11.6wt%、氧化钙百分含量6.7wt%、氧化镧百分含量0.8wt%、载体二氧化硅百分含量80.9wt%。
50.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速1500h-1
、压力2.0mpa,以1.5℃/min升高到290℃,以菜籽油空速0.5h-1
进行加氢反应。
51.实施例4
52.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
53.步骤1,将5.38g硝酸镍和7.77g硝酸钴与3.66g聚乙烯醇加入到13ml去离子水中;
然后等体积浸渍于15g分子筛上,在室温下放置5h,30℃下干燥4h,100℃下干燥9h,得到样品1;
54.步骤2,将样品1加入到30ml 0.3mol/l硼氢化钠溶液中搅拌还原30min,过滤、洗涤后在室温下放置3h,60℃下干燥2h,再在100℃下干燥10h,得到样品2;
55.步骤3,将3.89g硝酸镁和1.20g硝酸铈加入到13ml去离子水中,然后等体积浸渍于样品2上,在室温下放置4h,60℃下干燥3h,110℃下干燥11h,得到样品3;
56.步骤4,将样品3在h2气氛下以1.5℃/min的速率升温至370℃,还原6h,h2空速为6000h-1
,然后在h2气氛下降至室温后,用o2含量为1.5%的o2/n2钝化3.0h,得到催化剂。
57.所得催化剂碳化镍百分含量7.2wt%、碳化钴百分含量10.4wt%、氧化镁百分含量3.9wt%、氧化铈百分含量2.4wt%、载体分子筛百分含量86.5wt%。
58.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速6000h-1
、压力1.0mpa,以3.0℃/min升高到310℃,以棉籽油空速3.0h-1
进行加氢反应。
59.实施例5
60.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
61.步骤1,将6.05g硝酸镍和1.45g钼酸铵与4.12g聚乙烯醇加入到22ml去离子水中;然后等体积浸渍于12g三氧化二铝上,在室温下放置2h,50℃下干燥5h,100℃下干燥10h,得到样品1;
62.步骤2,将样品1加入到30ml 0.2mol/l硼氢化钠溶液中搅拌还原60min,过滤、洗涤后在室温下放置4h,50℃下干燥5h,再在110℃下干燥9h,得到样品2;
63.步骤3,将2.05g硝酸钾和0.36g硝酸镧加入到22ml去离子水中,然后等体积浸渍于样品2上,在室温下放置4h,40℃下干燥2h,110℃下干燥12h,得到样品3;
64.步骤4,将样品3在h2气氛下以2.0℃/min的速率升温至330℃,还原4h,h2空速为5000h-1
,然后在h2气氛下降至室温后,用o2含量为1.0%的o2/n2钝化5.0h,得到催化剂。
65.所得催化剂碳化镍百分含量8.6wt%、碳化钼百分含量5.8wt%、氧化钾百分含量5.2wt%、氧化镧百分含量0.9wt%、载体三氧化二铝百分含量85.3wt%。
66.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速4000h-1
、压力4.0mpa,以0.5℃/min升高到330℃,以蓖麻油空速0.5h-1
进行加氢反应。
67.实施例6
68.一种用于合成直链烷烃的催化剂的制备方法,包括以下步骤:
69.步骤1,将4.39g硝酸铁和2.14g钼酸铵与2.99g聚乙烯醇加入到23ml去离子水中;然后等体积浸渍于16g氧化锆上,在室温下放置3h,60℃下干燥3h,110℃下干燥11h,得到样品1;
70.步骤2,将样品1加入到40ml 0.4mol/l硼氢化钠溶液中搅拌还原40min,过滤、洗涤后在室温下放置5h,30℃下干燥3h,再在120℃下干燥10h,得到样品2;
71.步骤3,将4.28g硝酸钠和0.77g硝酸镧加入到23ml去离子水中,然后等体积浸渍于样品2上,在室温下放置3h,50℃下干燥4h,120℃下干燥10h,得到样品3;
72.步骤4,将样品3在h2气氛下以1.0℃/min的速率升温至380℃,还原5h,h2空速为4000h-1
,然后在h2气氛下降至室温后,用o2含量为0.5%的o2/n2钝化5h,得到催化剂。
73.所得催化剂碳化铁百分含量3.6wt%、碳化钼百分含量7.2wt%、氧化钠百分含量
6.4wt%、氧化镧百分含量1.6wt%、载体氧化锆百分含量88.4wt%。
74.将上述催化剂2ml装填于固定床管式反应器内。将催化剂在氢气空速3000h-1
、压力2.0mpa,以2.5℃/min升高到350℃,以芥子油空速1.5h-1
进行加氢反应。
75.根据实施例1~6的反应结果见表1。由表1可见,催化剂脱氧率为99.3~99.7%,烃类收率为80.9~85.2%。低温下反应产物以偶数碳链烃为主,随着反应温度的提高,奇数碳链烃所占比例逐渐提高,也就是说,可以通过改变反应温度调节产品中奇数碳链和偶数碳链的比例。
76.表1 催化剂性能测试结果表
[0077][0078]
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献