一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

针对模型不确定的海洋柔性立管边界振动控制方法

2022-05-08 09:05:52 来源:中国专利 TAG:


1.本发明涉及海洋油气开采领域,具体涉及针对模型不确定的海洋柔性立管边界振动控制方法。


背景技术:

2.随着海洋油气资源勘探力度的逐步加强与钻井深度的不断加深,海洋油气开发环节中所需解决的技术难题也越来越多。对于浮式平台/船舶或半潜式平台/船舶而言,柔性立管是连接海底油井和海面平台的重要通道,也是海上石油输送的薄弱环节。由于其特殊的海洋工作环境,柔性立管的振动现象难以避免,而振动将使立管疲劳,并缩短其工作寿命、提高其生产成本并可能带来致命的安全生产风险。
3.对于海洋油气开采而言,其柔性立管系统因较大的长径比通常被简化为典型的欧拉伯努利梁模型,其动力学特性由无限维偏微分方程和有限维常微分方程共同表示。其柔性结构由无穷多个模态表示,其结构参数也可能随立管振动发生变化,因此对其控制设计具有较大难度。
4.为解决本质上是分布式参数系统的柔性立管系统的振动抑制问题,现有技术逐渐开始从对柔性立管系统主动控制的角度出发进行研究。其中边界控制方案既能避免模型截断引起的溢出效应,又具有经济和可执行性。
5.然而现有的控制算法依赖海洋柔性立管的精确数学模型,由于该系统实际存在的复杂性、非线性、时变性、不确定性等,在实际工程中难以对柔性立管系统状态分布式荷载和边界干扰进行有效建模,无法获得精确的数学模型,导致难以克服系统的各种不确定性干扰,控制精度始终较低。


技术实现要素:

6.本发明提供针对模型不确定的海洋柔性立管边界振动控制方法,以解决现有技术中的控制方法依赖海洋柔性立管的精确数学模型所导致的控制精度较低的缺陷,实现不依赖精确模型,能够很好的补偿柔性立管系统的不确定性和外部荷载的不确定性,同时还能有效地跟踪和调节振动状况、主动抑制立管振动的目的。
7.本发明通过下述技术方案实现:针对模型不确定的海洋柔性立管边界振动控制方法,包括:对柔性立管建模、得到柔性立管系统的控制方程,确定柔性立管系统的边界条件和初始条件;基于自适应模糊反演算法,建立柔性立管系统的自适应模糊反演控制律;获取柔性立管的横向振动实际偏移量;将所述实际偏移量代入所述自适应模糊反演控制律,得到实际控制输出;基于所述实际控制输出,在顶端对柔性立管进行控制。
8.针对现有技术中控制方法依赖海洋柔性立管的精确数学模型,导致控制精度较低
的问题,本发明提出一种针对模型不确定的海洋柔性立管边界振动控制方法,本方法首先建立柔性立管模型,得到整个系统的控制方程,并确定其边界条件和初始条件。然后引入自适应模糊反演算法,建立柔性立管系统的自适应模糊反演控制律。本案发明人在研究过程中发现,海洋柔性立管系统可看作是包含各种不确定性的非线性系统,因此本技术采用自适应模糊反演算法,该算法能够将反演方法与模糊控制方法相结合,可以有效解决海洋柔性立管在特殊工况下的非线性的跟踪控制难题,并且基于该算法所建立的自适应模糊反演控制律,能够估计与系统性能有关的不确定因素,以此克服或补偿系统的不确定性和各种干扰。本方法在得到自适应模糊反演控制律后,可直接获取柔性立管的横向振动实际偏移量,并将其代入,得到实际所需的控制输出、定义为实际控制输出,以该实际控制输出来对海洋钻采平台的柔性立管从顶端进行控制即可,其中柔性立管的顶端即是与钻采平台或钻采船所连接的一端,即是立管远离海底水下井口的一端,对该端部进行控制,可方便对控制器的操作安装甚至是后期维护。
9.综上,本技术基于反演方法并引入自适应模糊系统,以此来逼近对海洋柔性立管控制过程中的未知非线性项,补偿系统的不确定性和海洋环境干扰,并且本方法的自适应参数有且只有一个,减小了计算量,提高了计算速度,能有效的抑制海洋柔性立管的振动。并且,本技术不依赖海洋柔性立管系统的精确模型,具有很好的鲁棒性和自适应性,从而能很好的补偿立管系统的不确定性和外部荷载的不确定性,同时还能很好地跟踪和调节振动状况。此外,本技术采用自边界主动控制的控制方式,被控驱动装置只需在海洋柔性立管顶端实施控制作用,即可实现抑制立管振动的效果,与现有的被动控制方式相比,安装维护方便,性价比显著提高。
10.进一步的,得到所述控制方程的方法包括:基于动力学分析得到柔性立管系统的动能ek、势能e
p
、以及非保守力对海洋柔性立管所做的总虚功w0;基于哈密顿原理、通过如下公式得到柔性立管系统的控制方程:;式中,δ为变分操作符,t1、t2分别为两个端点时刻,t为时间变量。
11.本方案所提出的控制方程依据动力学分析结果得出,充分考虑了柔性立管在海洋环境中的特殊工况,具有较强的代表性。
12.进一步的,所述柔性立管系统的控制方程为:所述边界条件为:所述初始条件为:;式中:t为时间变量、x为空间变量,l为立管长度,w(x,t)为横向振动实际偏移量,f
(x,t)为作用在立管上的分布式海流载荷,d(t)为边界扰动,ms为船舶质量,ρ为单位立管质量,ei为立管弯曲刚度,t为立管张力,c为结构阻尼系数,ds为船舶阻尼系数,δ为变分运算符;u (t)为作用在立管顶端的边界控制量;为w(x,t)对t的一阶偏导,为w(x,t)对t的二阶偏导;为w(x,t)对x的二阶偏导,为w(x,t)对x的四阶偏导;为w(x,t)中x=l时对x的一阶偏导,为w(x,t)中x=l时对x的二阶偏导, 为w(x,t)中x=l时对x的三阶偏导,为w(x,t)中x=l时对t的一阶偏导,为w(x,t)中x=l时对t的二阶偏导,为w(x,t)中x=0时对x的一阶偏导,w(x,0)为w(x,t)中t=0时的值,为w(x,t) 中t=0时对t的一阶偏导。
13.进一步的,基于自适应模糊反演算法,建立柔性立管系统的自适应模糊反演控制律的方法包括:建立自适应模糊逻辑系统φ2:;式中,为模糊基向量的转置,θ2为逼近向量;确定边界控制律:式中,u(t)为作用在立管顶端的边界控制量,λ2为第一控制参数,e1为海洋柔性立管边界实际位置与边界理想位置的误差,e2为海洋柔性立管边界横向振动偏移量变化率与虚拟控制信号之间的误差,x2为海洋柔性立管边界横向振动偏移量变化率,y为海洋柔性立管边界实际位置,yd为立管理想位置,α
11
为虚拟控制信号;根据所述边界控制律,确定自适应律:式中,为自适应参数,r2为第二控制参数,k2为第三控制参数, 为模糊基向量,θ2为逼近向量。
14.本方法通过模糊系统φ2来逼近未知非线性函数,并基于确定的边界控制律得到最终所需的自适应律。
15.进一步的,所述自适应模糊逻辑系统在其模糊隶属函数的论域两端采用z形隶属函数,在论域中间区域采用三角形隶属函数。
16.本方案在设置模糊隶属函数时,需满足以下规则:

隶属函数应是对称的;

隶属函数应遵守日常的语义顺序;

论域中的每个点至少属于一个并且不能超过两个隶属函数的区域;

当两个隶属函数互相重叠时,重叠的区域中不能同时包含两个隶属函数的最大隶属度;

当两个隶属函数互相重叠时,在重叠区域中的任意元素所对应的两个隶属函数
值的和必须小于或等于1。
17.本方案在模糊隶属函数的论域两端采用z形隶属函数,中间区域采用三角形隶属函数,不仅可满足上述规则,还充分考虑了模糊化、模糊推理与解模糊过程的精确性与简便性,显著提高了运算效率。
18.进一步的,在建立所述自适应模糊反演控制律后,还通过李雅普诺夫稳定性理论,验证系统是否稳定有界:若是,进入下一步;若否,重新调整第一控制参数和/或第二控制参数和/或第三控制参数。
19.本方案提出了在柔性立管应用领域内对系统稳定进行验证的有效方法,保证了在采用自适应模糊反演算法时,整个柔性立管系统的稳定性,为后续的控制精确度提供了充分保障。
20.进一步的,验证系统是否稳定有界的方法包括:对于整个柔性立管系统,设计李雅普诺夫函数;确定李雅普诺夫函数的上下界;根据李雅普诺夫函数对时间的导数得到如下不等式:若满足该不等式,认为系统稳定有界;若不满足该不等式,认为系统不是稳定有界:式中,t为时间变量、x为空间变量,w(x,t)为立管横向振动偏移量,l为立管长度,t为立管张力,υ、υ1均为大于0的常量,ε0为有界干扰。
21.进一步的,所述柔性立管的横向振动实际偏移量通过激光位移传感器实时获取。此种获取方式在作业现场具有成本低廉、传感器数量少、工程量低、实用性高等优点。
22.进一步的,在顶端对柔性立管进行控制的方法为:根据实际控制输出,驱动位于柔性立管顶端的执行器,由所述执行器向柔性立管施加控制作用力。其中执行器的具体输出方式在此不做限定,本领域技术人员能够实现的执行机构均可适用于本方案中。
23.进一步的,作用在立管上的分布式海流载荷f(x,t)通过如下公式表达:式中,ρs为海水密度,cd为阻力系数,d为立管外径,ad为阻力的振荡部分幅值,fv为涡旋脱落频率,u(x,t)为海洋洋流速度与深度关系,θ为分布式海流的相位角。
24.本发明与现有技术相比,具有如下的优点和有益效果:1、本发明针对模型不确定的海洋柔性立管边界振动控制方法,可以有效解决海洋柔性立管在特殊工况下的非线性的跟踪控制难题,能够估计与系统性能有关的不确定因素,以此克服或补偿系统的不确定性和各种干扰;并且本方法的自适应参数少,从而减小了计算量、提高了计算速度、能快速抑制海洋柔性立管的振动。
25.2、本发明针对模型不确定的海洋柔性立管边界振动控制方法,不依赖海洋柔性立管系统的精确模型,具有很好的鲁棒性和自适应性,从而能很好的补偿立管系统的不确定性和外部荷载的不确定性,同时还能很好地跟踪和调节振动状况。
26.3、本发明针对模型不确定的海洋柔性立管边界振动控制方法,采用自边界主动控制的控制方式,被控驱动装置只需在海洋柔性立管顶端实施控制作用,即可实现抑制立管
振动的效果,与现有的被动控制方式相比,安装维护方便,性价比显著提高。
27.4、本发明针对模型不确定的海洋柔性立管边界振动控制方法,在模糊隶属函数的论域两端采用z形隶属函数,中间区域采用三角形隶属函数,不仅可满足模糊隶属函数的规则,还充分考虑了模糊化、模糊推理与解模糊过程的精确性与简便性,显著提高了运算效率。
28.5、本发明针对模型不确定的海洋柔性立管边界振动控制方法,提出了在海洋柔性立管领域内对系统稳定进行验证的有效方法,保证了在采用自适应模糊反演算法时,整个柔性立管系统的稳定性,为后续的控制精确度提供了充分保障。
附图说明
29.此处所说明的附图用来提供对本发明实施例的进一步理解,构成本技术的一部分,并不构成对本发明实施例的限定。在附图中:图1为本发明具体实施例中海洋柔性立管的示意图;图2为本发明具体实施例的流程示意图;图3为本发明具体实施例中未施加控制作用下海洋柔性立管的三维振动偏移量示意图;图4为本发明具体实施例中施加控制后海洋柔性立管的三维振动偏移量示意图;图5为本发明具体实施例中海洋柔性立管500m处振动偏移量幅值对比示意图;图6为本发明具体实施例中海洋柔性立管1000m处振动偏移量幅值对比示意图。
具体实施方式
30.为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。在本技术的描述中,需要理解的是,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“高”、“低”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术保护范围的限制。
31.实施例1:针对模型不确定的海洋柔性立管边界振动控制方法,如图2所示,包括如下步骤:对柔性立管建模、得到柔性立管系统的控制方程,确定柔性立管系统的边界条件和初始条件;基于自适应模糊反演算法,建立柔性立管系统的自适应模糊反演控制律;再通过李雅普诺夫稳定性理论,验证系统是否稳定有界:若是,进入下一步;若否,重新调整第一控制参数和/或第二控制参数和/或第三控制参数。
32.获取柔性立管的横向振动实际偏移量;将所述实际偏移量代入所述自适应模糊反演控制律,得到实际控制输出;基于所述实际控制输出,在顶端对柔性立管进行控制。
33.实施例2:
本实施例中海洋柔性立管系统模型的示意图如图1所示,图1中虚线箭头表示分布式海流,坐标系原点位于立管底部,控制器位于立管顶端(边界)做控制输入,以产生横向力来抑制立管振动,且控制方向向右。其中:立管长度为l,立管横向振动偏移量为w(x,t),作用在立管上的分布式海流载荷为f(x,t),边界扰动为d(t),空间变量为x;时间变量为t,在本实施例中表示操作间隔时间段。
34.本实施例的控制过程如下:一、建模,对柔性立管系统模型进行动力学分析:将图1所示柔性立管系统的动能ek表达为:式中,ms为船舶质量,ρ为单位立管质量,为w(x,t)中x=l时对t的一阶偏导,为w(x,t)对t的一阶偏导。
35.将图1所示柔性立管系统的势能e
p
表达为:式中,ei为立管弯曲刚度,t为立管张力,为w(x,t)对x的二阶偏导,w’(x,t)为w(x,t)对x的一阶偏导。
36.再将系统所受总虚功w0表达为:式中,c为结构阻尼系数,ds为船舶阻尼系数,δ为变分运算符,w(l,t) 为w(x,t)中x=l时的值,为w(x,t)对t的一阶偏导,为w(x,t)中x=l时对t的一阶偏导,u(t)为作用在立管顶端的边界控制。
37.基于哈密顿原理,得到系统控制方程:通过得到系统边界条件为:通过得到系统初始条件为:。
38.式中,为w(x,t)对t的一阶偏导,为w(x,t)对t的二阶偏导;为w(x,t)对x的二阶偏导,为w(x,t)对x的四阶偏导;为w(x,t)中x=l时对x的一阶偏导,为w(x,t)中x=l时对x的二阶偏导,
为w(x,t)中x=l时对x的三阶偏导,为w(x,t)中x=l时对t的一阶偏导,为w(x,t)中x=l时对t的二阶偏导,为w(x,t)中x=0时对x的一阶偏导,w(x,0)为w(x,t)中t=0时的值,为w(x,t) 中t=0时对t的一阶偏导。
39.本实施例还对其给出证明假设条件进行了验证,验证结果表明f(x,t)和d(t)的能量是有限的,因此是有界的,假设合理,验证了本实施例所建立的控制方程的准确性。
40.二、设计海洋柔性立管系统的自适应模糊反演控制律:使立管稳定在原位置的小邻域内,设计边界控制律为:式中,u(t)为作用在立管顶端的边界控制量,λ2为第一控制参数,e1为海洋柔性立管边界实际位置与边界理想位置的误差,e2为海洋柔性立管边界横向振动偏移量变化率与虚拟控制信号之间的误差,x2为海洋柔性立管边界横向振动偏移量变化率,y为海洋柔性立管边界实际位置,yd为立管理想位置,α
11
为虚拟控制信号;其中φ2为用于逼近未知非线性函数的自适应模糊系统,表达为:式中,为模糊基向量的转置,θ2为逼近向量;然后设计自适应律:引入模糊系统来逼近非线性函数,采用单值模糊器、乘积推理机和重心平均反模糊器,确定模糊规则,则能够得到模糊系统的输出;在逼近过程中,考虑最优逼近向量,对于给定的任意小的常量ε>0,通过计算可求得本实施例所需的自适应律为:式中,为自适应参数,r2为第二控制参数,k2为第三控制参数, 为模糊基向量,θ2为逼近向量。
41.需要说明的是,本实施例中第一控制参数λ2、第二控制参数r2、第三控制参数k2均为大于0的常数。
42.三、系统稳定性验证:对于整个系统,首先设计出李雅普诺夫(lyapunov)函数,然后确定李雅普诺夫函数的上下界;再根据李雅普诺夫函数对时间的导数,得到如下不等式:该不等式表明本实施例中柔性立管横向振动的范围始终不会超过右侧的值,因此在满足该不等式的条件下,可认为系统稳定且有界。
43.当系统不满足如上不等式时,认为系统不稳定,此时需要根据实际情况重新调整第一控制参数和/或第二控制参数和/或第三控制参数,直至系统满足稳定有界为止。具体
调整方法可采用:首先调整第一控制参数λ2,重新验证系统稳定性,若系统无法满足稳定有界,调整第二控制参数r2并再次验证系统稳定性,若系统依然无法满足稳定有界,再调整第三控制参数k2。按此调整顺序能够快速高效的得到稳定有界的海洋柔性立管系统,显著降低运算量。
44.四、获取海洋柔性立管系统的实际振动偏移量:在t时刻利用激光位移传感器测量信号w(l,t),再通过有限差分法得到。
45.五、将得到的w(l,t)、代入自适应模糊反演控制律,得到实际控制输出,根据该实际控制输出,驱动执行器向海洋柔性立管施加控制作用力。
46.其中执行器位于柔性立管顶端。
47.实施例3:在实施例2的基础上,本实施例针对模型不确定的海洋柔性立管边界振动控制方法进行实验验证:系统参数选择:λ2=7.37
×
108,r2=1,k2=1,初始值θ2(0)为0。模糊隶属函数μ
fij
(xi)在论域两端采用z形隶属函数,中间区域采用三角形隶属函数。二维模糊控制器两输入量各设置为7个语言值等级,因此可得49条控制规则。柔性立管系统其余主要参数如表1所示:表1 柔性立管系统其余主要参数 作用在立管上的分布式海流载荷f(x,t)通过如下公式表达:
式中,ρs为海水密度,cd为阻力系数,d为立管外径,fv为涡旋脱落频率,u(x,t)为海洋洋流速度与深度关系,θ为分布式海流的相位角;ad为阻力的振荡部分幅值、其值取f(x,t)中第一项的20%;其中:涡旋脱落频率,s
t
为斯特劳哈尔数;海洋洋流速度与深度关系,u(t)为洋面海流速度,x为深度;洋面海流速度:; i=1,2,3,4;wi=(w1, w2, w3, w4)=(0.867,1.827,2.946,4.282)。为内流平均流速,u’=0.2 为内流速度波动振幅。
48.边界扰动d(t)为:图3所示为在本实例的系统基础上,未施加控制时海洋柔性立管三维振动偏移量示意图;图4所示为采用本技术控制方法施加控制时,海洋柔性立管振动三维图。
49.图5所示为在有控制作用下、无控制作用下海洋柔性立管在500m深度处的振动偏移量幅值对比。
50.图6所示为在有控制作用下、无控制作用下海洋柔性立管在1000m深度(边界)处的振动偏移量幅值对比。
51.需要说明的是,附图3-6中:标记w(x,t)/m的坐标轴即为本技术中的横向振动实际偏移值w(x,t),单位为米;标记x/m的坐标轴即为本技术中的空间变量x,单位为米;标记time/s的坐标轴即为本技术中的时间变量t,单位为秒。
52.对比图3-6可知,本发明所提出的控制方法,能明显抑制模型不确定情况下海洋柔性立管的振动。与现有控制算法相比,本发明提出的边界主动控制算法结构简单,只有一个自适应参数,计算量小,显著提高了控制速度。
53.以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
54.需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体,意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在本文中使用的术语“连接”在不进行特别说明的情况下,可以是直接相连,也可以是经由其他部件间接相连。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献