一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种具有阻扩散作用的NiAlRu合金及其制备方法

2022-05-06 07:07:12 来源:中国专利 TAG:

一种具有阻扩散作用的nialru合金及其制备方法
技术领域
1.本发明涉及高温防护涂层,具体涉及一种具有阻扩散作用的nialru合金及其制备方法。


背景技术:

2.随着航空工业的发展,对飞机发动机叶片的使用材料要求越来越高,其关键热端部件一般用镍基高温合金作为高温结构材料使用。但单纯的使用镍基高温合金已经不能适应愈发严苛的工作需求,在高温合金表面添加高温防护涂层是解决这一难题的有效途径。经过众多科研工作者的不断努力,高温防护涂层从简单铝化物β-nial涂层发展到热障涂层(tbcs)。
3.高温防护涂层的使用使高温合金的服役效果大大提升。但是涂层与基体合金之间的互扩散导致涂层过早的失效已然是不容忽视的问题。涂层中抗氧化性元素一方面向外扩散形成氧化膜而不断消耗,另一方面向基体内扩散使涂层中的贫铝区增大,而使氧化物不能继续生长,使涂层失去保护作用。与此同时,al的内扩散与ni的外扩散使基体中发生γ向γ

相转变,破坏了γ/γ

组织结构,使难熔元素从基体合金中析出,在互扩散区产生有害tcp相和srz,降低涂层与基体的力学性能。
4.铂族元素改性的铝化物涂层因能促进al的“上坡扩散”,延缓涂层与基体元素互扩散一直是研究热点。其中ru相比于pt与pd,其在改性铝化物涂层的应用上表现出更大的经济优势而备受瞩目。
5.本发明制备的nialru合金具有单一的体心立方结构,与镍基高温合金制作成固固扩散偶时表现出优异的阻扩散作用,有效抑制了互扩散区有害的tcp相和srz,在高温领域中具有相当大的研究价值和发展潜力。


技术实现要素:

6.本发明的目的在于提供一种具有阻扩散作用的nialru合金及其制备方法,所述nialru合金具有阻扩散作用,能够抑制互扩散区拓扑密堆相(tcp)与二次反应区(srz)产生,减缓涂层与基体之间元素的互扩散,改善涂层与基体合金之间互扩散严重而导致互扩散区产生大量tcp相和srz的问题。
7.本技术采用的技术方案为:
8.一种具有阻扩散作用的nialru合金,所述nialru合金由(ni,ru)al相组成,其按原子百分比计的原子组成为:ni 25%-50%,ru 0%-20%,余量为al;优选ni 30%-45%,ru10%-20%,余量为al;更优选,ni 33%-37%,ru 14%-16%,余量为al。
9.上述具有阻扩散作用的nialru合金的制备方法,按上述原子百分比称取nialru合金所需的原材料,然后通过非自耗真空电弧熔炼炉熔炼得到nialru铸态合金,接着对nialru铸态合金进行均匀化退火,最后与镍基高温合金组成固固扩散偶,观察界面反应情况;具体包括以下步骤:
10.(1)按上述原子百分比称取nialru合金所需的原材料al、ni和ru;
11.(2)通过非自耗真空电弧熔炼炉熔炼步骤(1)称量好的原材料,得到nialru铸态合金;
12.(3)对步骤(2)所得nialru铸态合金进行均匀化热处理;
13.(4)将步骤(3)均匀化处理的nialru合金与镍基高温合金组成固固扩散偶;
14.(5)对步骤(4)中的固固扩散偶,进行真空扩散热处理后冰淬。
15.进一步地,al、ni和ru的纯度为99.99wt.%以上,更优选al的原子百分比为50at.%,ni与ru的原子百分比之和为50at.%。
16.进一步地,所述熔炼,具体包括以下步骤:
17.(a)打开炉门用酒精擦拭炉膛壁、铜坩埚盘、密封垫圈后吹干;
18.(b)在铜坩埚盘中央放置钛粒,在周围样品槽按照熔点由低到高的顺序放置样品;
19.(c)关闭炉门并锁紧,开启机械泵将低真空抽至(4-5)
×
10-1
pa后关闭机械泵,打开分子泵将高真空抽至(4-5)
×
10-3
pa后关闭分子泵,打开氩气阀门向炉膛中充入氩气洗气,压力表显示为0pa后重复上述过程3次以上;
20.(d)打开循环水开关,向炉内充入氩气至内外压平衡,开始引弧熔炼:首先燃烧钛粒1分钟以上吸收氧气,然后按照顺序将样品依次熔炼后逐一翻样,再次燃烧钛粒1分钟以上后熔样,此过程重复8-10次,确保成分均匀。
21.进一步地,所述的均匀化热处理,采用的设备为箱式高温加热炉,温度为1200-1400℃,时间为8-12h。
22.进一步地,将均匀化处理的nialru合金与镍基高温合金组成固固扩散偶,具体包括以下步骤:
23.(a)将均匀化后的nialru合金与镍基高温合金切割成5mm
×
5mm
×
3mm尺寸的块体;
24.(b)使用超声波用丙酮和酒精清洗掉步骤(a)处理过后块体合金表面油污;
25.(c)使用标准金相技术,对步骤(b)处理后块体样品依次用400#、600#、800#、1000#、1200#的砂纸打磨,之后采用粒度为w=2.5的水溶性抛光膏抛光;
26.(d)使用超声波清洗去掉步骤(c)处理后块体合金表面残留的小颗粒;
27.(e)将步骤(d)处理过的块体合金用钼夹具组装成固固扩散偶,并拧紧固定;
28.进一步地,步骤(5)具体为:将固固扩散偶真空封装在石英管中,真空热处理选择的设备为管式高温加热炉,温度为900℃~1150℃,时间为3~16天,热处理结束后采用冰淬保留高温时产生的相。
29.本发明的有益效果在于:
30.本技术通过设置nialru合金中各组分的原子百分比:25%-50%ni、0%-20%ru,余量包括al。上述相对较高的ru可以使(ni,ru)al中rual相的占比较高,al在nial中为间隙扩散与空位扩散复合机制,al在rual相为空位扩散机制,空位扩散较间隙扩散则需要更多的能量,则较多的rual相会减缓al的扩散速率。按照上述比例配置的nialru合金的组分,可以有效减缓涂层与基体之间元素的互扩散,改善涂层与基体合金之间互扩散严重而导致互扩散区产生大量tcp相和srz的问题,更好地为高温合金防护涂层的成分设计提供依据。
附图说明
31.图1是本技术铸态nialru合金的显微组织图。
32.图2是本技术铸态nialru合金的xrd谱图。
33.图3是本技术nialru/k438于900℃等温扩散16天界面反应显微组织图。
34.图4是本技术nialru/k438于1150℃等温扩散3天界面反应显微组织图。
具体实施方式
35.下面将结合附图和具体实施例对本发明做进一步详细说明,但本发明并不限于此。
36.本技术中nialru合金的成分及制备包括以下步骤:
37.(1)nialru合金的成分设计
38.固定al含量为50at.%,通过调整ni与ru的含量,使ni与ru的原子百分比和为50at.%,具体设计出ni
50
al
50
ru0、ni
45
al
50
ru5、ni
40
al
50
ru
10
、ni
35
al
50
ru
15
四种合金。
39.固定nialru合金的总质量,且选用纯度为99.99wt.%以上ni、al、ru原材料根据四种合金的原子比计算并称量出四种合金所需的各个材料的量。
40.(2)通过非自耗真空电弧熔炼炉熔炼所述步骤(1)称量好的原材料,得到nialru铸态合金,具体包括以下步骤:
41.(a)打开了炉门用酒精擦拭炉膛壁、铜坩埚盘、密封垫圈后吹干;
42.(b)在铜坩埚盘中央放置钛粒,在周围样品槽按照熔点由低到高的顺序放置样品;
43.(c)关闭炉门并锁紧,开启机械泵将低真空抽至5
×
10-1
pa后关闭机械泵,打开分子泵将高真空抽至5
×
10-3
pa后关闭分子泵,打开氩气阀门向炉膛中充入氩气洗气,压力表显示为0pa后重复上述过程3次以上。
44.(d)打开循环水开关,向炉内充入氩气至内外压平衡,开始引弧熔炼。首先燃烧钛粒1分钟以上吸收氧气,然后按顺序将样品依次熔炼后逐一翻样,再次燃烧钛粒1分钟以上后熔样,此过程重复8-10次,确保成分均匀。将熔炼出的nialru合金进行sem测试与xrd测试,得到铸态nialru合金显微组织以及xrd谱图分别如图1,2所示。
45.(3)对所述步骤(2)中的nialru铸态合金进行均匀化热处理,使用的设备为箱式高温加热炉,温度为1200-1400℃,时间为8-12h。
46.(4)对所述步骤(3)中的均匀化处理的nialru合金与镍基高温合金组成固固扩散偶:
47.(a)将均匀化后的nialru合金与镍基高温合金切割成5mm
×
5mm
×
3mm尺寸的块体。
48.(b)使用超声波用丙酮和酒精清洗掉步骤(a)处理过后块体合金表面油污。
49.(c)使用标准金相技术,对步骤(b)处理后块体样品依次用400#、600#、800#、1000#、1200#砂纸打磨,之后采用粒度为w=2.5的水溶性抛光膏抛光。
50.(d)使用超声波清洗去掉步骤(c)处理后块体合金表面残留的小颗粒。
51.(e)将步骤(d)处理过的块体合金用钼夹具组装成固固扩散偶,并拧紧固定。
52.(5)对所述步骤(4)中的固固扩散偶真空封装在石英管中,真空热处理选择的设备为管式高温加热炉,温度为900℃~1150℃,时间为3天~16天,热处理结束后采用冰淬以保留高温时产生的相。
53.实施例1
54.本实施例中基体合金采用k438镍基高温合金,其名义成分如表1所示。
55.表1 k438高温合金的主要化学成分(wt.%)
[0056][0057]
将设计好的4种nialru合金即ni
50
al
50
ru0、ni
45
al
50
ru5、ni
40
al
50
ru
10
、ni
35
al
50
ru
15
,采用非自耗真空电弧熔炼炉熔炼后进行1200℃、8h的均匀化退火。
[0058]
将均匀退火后的nialru合金以及k438基体合金切割成规格为5mm
×
5mm
×
3mm的块体,然后采用标准金相技术将块体样品依次用用400#、600#、800#、1000#、1200#砂纸打磨,之后采用粒度为w=2.5的水溶性抛光膏抛光。
[0059]
再用钼夹具将nialru合金及k438基体合金组装成固固扩散偶,并拧紧固定。将扩散偶真空封装在石英管中,在900℃下真空扩散16天,热处理结束后采用冰淬以保留高温时产生的相。
[0060]
nialru/k438于900℃等温扩散16天界面反应显微组织如图3所示。
[0061]
从图3可以看出,在ni
50
al
50
ru0/k438与ni
45
al
50
ru5/k438界面处均产生了tcp相与srz,但ni
45
al
50
ru5/k438界面的srz厚度较ni
50
al
50
ru0/k438减少,而ni
40
al
50
ru
10
/k438界面处只产生了tcp相,没有产生srz,ni
35
al
50
ru
15
/k438界面处tcp相的数量较ni
40
al
50
ru
10
/k438界面显著减少,并且没有出现srz。
[0062]
通过能谱得到在900℃下ni
45
al
50
ru5/k438界面处互扩散区产生的tcp相的化学成分(at.%)见表2。该tcp相富含cr、w、mo等难熔元素,这是由于al的外扩散和ni的外扩散,使基体表面γ/γ

组织失稳转变为β相,cr、w、mo等难熔元素在β相中的固溶度小于γ中的固溶度,因此在互扩散区形成了富含cr、w、mo的tcp相。显然互扩散区下方形成的srz也是由于互扩散导致。
[0063]
表2 900℃下ni
45
al
50
ru5/k438界面处互扩散区产生的tcp相的化学成分(at.%)
[0064][0065]
在四种nialru合金中,ni
35
al
50
ru
15
/k438的互扩散界面处产生了最少的tcp相,并且没有产生srz。这是因为四种nialru合金均由(ni,ru)al相组成,其ru含量增加可以使(ni,ru)al中rual相的占比较高,al在nial中为间隙扩散与空位扩散复合机制,al在rual相
为空位扩散机制,空位扩散较间隙扩散则需要更多的能量,则较多的rual相会减缓al的扩散速率,从而减缓al的内扩散,抑制基体表面发生γ/γ

组织失稳转变为β相,从而在扩散界面处产生较少的tcp相。
[0066]
因此,ni
35
al
50
ru
15
在900℃下具有较好的阻扩散和抑制互扩散区tcp相与srz产生的作用。
[0067]
实施例2
[0068]
将设计好的4种nialru合金即ni
50
al
50
ru0、ni
45
al
50
ru5、ni
40
al
50
ru
10
、ni
35
al
50
ru
15
,采用非自耗真空电弧熔炼炉熔炼后进行1200℃、8h的均匀化退火。
[0069]
将均匀退火后的nialru合金以及k438基体合金切割成规格为5mm
×
5mm
×
3mm的块体,然后采用标准金相技术将块体样品依次用用400#、600#、800#、1000#、1200#砂纸打磨,之后采用粒度为w=2.5的水溶性抛光膏抛光。
[0070]
再用钼夹具将nialru合金以及k438基体合金组装成固固扩散偶,并拧紧固定。将扩散偶真空封装在石英管中,在1150℃下真空扩散3天,热处理结束后采用冰淬以保留高温时产生的相。
[0071]
nialru/k438于1150℃扩散3天界面反应组织如图4所示。
[0072]
从图4可知,四种nialru合金与k438的界面处均未产生srz,随着ru含量的增加,界面处产生的tcp相数量逐渐减少,ni
35
al
50
ru
15
/k438界面处几乎没有观察到tcp相。经过能谱结果发现,在1150℃下四种nialru合金与k438界面反应时在互扩散区产生的tcp相为富含cr、w、mo的tcp相。之所以ru含量增加使得互扩散区tcp的数量明显减少,是因为四种nialru合金均由(ni,ru)al相组成,其中ru含量增加可使(ni,ru)al中rual相的占比较高,al在nial中为间隙扩散与空位扩散复合机制,al在rual相为空位扩散机制,空位扩散较间隙扩散则需要更多的能量,则较多的rual相会减缓al的扩散速率。从而减缓al的内扩散,抑制基体表面发生γ/γ

组织失稳转变为β相,从而在扩散界面处产生较少的tcp相。
[0073]
因此,ni
35
al
50
ru
15
在1150℃下具有较好的阻扩散和抑制互扩散区tcp与srz产生的作用。
[0074]
通过实施例1与2的分析可知:四种nialru合金与k438合金界面反应时,ni
35
al
50
ru
15
合金表现出较好的阻扩散、抑制互扩散区tcp与srz产生的作用。
[0075]
本技术通过调整nialru合金中ni与ru的含量,得到一种阻扩散作用较好、能够抑制互扩散区拓扑密堆相(tcp)与二次反应区(srz)产生的ni
35
al
50
ru
15
合金,按照上述比例配置的nialru合金的组分,可以有效地减缓涂层与基体之间元素的互扩散,改善涂层与基体合金之间互扩散严重而导致互扩散区产生大量tcp相和srz的问题,更好地为高温合金防护涂层的成分设计提供依据。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献