一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

日盲AlGaN紫外光电探测器及其制备方法与流程

2022-03-26 13:39:50 来源:中国专利 TAG:

日盲algan紫外光电探测器及其制备方法
技术领域
1.本发明涉及紫外光电探测器,特别涉及一种日盲algan紫外光电探测器及其制备方法。


背景技术:

2.紫外光电探测器作为一种在国防预警、气象监测、通信保障等领域有重要作用的光电元器件而备受各界关注。传统的gan基紫外光电探测器由于材料本身禁带宽度窄、电子饱和迁移率低等缺点,造成响应频段窄、对可见光的过滤弱、器件发热严重、稳定性差等问题,难以满足日益增长的器件小型化、集成化、更短波长的要求,因此急需开发一种能应用于260nm波长工作条件下并同时满足器件小型化、集成化应用需求的新一代紫外光电器件,以algan为代表的iii族氮化物多元化合物紫外光电探测器的研究由此兴起。同时,由于mxene的引入,一方面与algan形成肖特基接触,并形成肖特基异质结;另一方面,mxene较高的电子迁移率和稳定性赋予了algan紫外光电探测器更好的光电子传输能力和光生电子空穴对的分离和光电子收集能力。这些特性赋予了algan基紫外光电探测器在更短波长下日盲光电探测器应用领域更广阔的应用前景与性能稳定性。因此,探索日盲algan紫外光电探测器及其实现方法具有开创性的革命意义与社会应用价值。


技术实现要素:

3.有鉴于此,本发明提供了一种日盲algan紫外光电探测器及其制备方法,该制备方法实现了高性能日盲algan紫外光电探测器,提高了algan紫外光电探测器在紫外日盲波段的响应度和探测率,且该制备方法具有与现有生产手段匹配性高且易于实现的优点。
4.本发明的第一个目的在于提供一种日盲algan紫外光电探测器。
5.本发明的第二个目的在于提供一种日盲algan紫外光电探测器的制备方法。
6.本发明的第一个目的可以通过采取如下技术方案达到:
7.一种日盲algan紫外光电探测器,包括紫外光电探测器外延片和设置在所述紫外光电探测器外延片上的绝缘层、欧姆接触电极和肖特基接触电极,以及设置在所述紫外光电探测器外延片两侧的sinz钝化层,z=1.33~1.5;其中:
8.所述紫外光电探测器外延片包括在硅衬底上依次生长非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga
1-y
n层和非掺杂n极性面al
x
ga
1-x
n层,其中,x=0.5~0.8,y=0.75~0.95;
9.所述绝缘层设置在所述非掺杂n极性面al
x
ga
1-x
n层上的一侧,所述欧姆接触电极设置在所述绝缘层上,所述肖特基接触电极设置在所述欧姆接触电极上,以及设置在所述绝缘层、欧姆接触电极的侧面和所述非掺杂n极性面al
x
ga
1-x
n层上,所述欧姆接触电极还设置在所述非掺杂n极性面al
x
ga
1-x
n层上表面的另一侧。
10.进一步的,所述肖特基接触电极采用二维mxene材料制备,所述绝缘层为al2o3绝缘层。
11.进一步的,所述绝缘层的厚度为200~300nm,所述欧姆接触电极的厚度为100~150nm。
12.进一步的,所述绝缘层高于所述非掺杂n极性面al
x
ga
1-x
n层的上表面。
13.进一步的,所述硅衬底以(111)密排面为外延面;
14.所述非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga
1-y
n层和非掺杂n极性面al
x
ga
1-x
n层均以(0001)为外延方向。
15.本发明的第二个目的可以通过采取如下技术方案达到:
16.一种日盲algan紫外光电探测器的制备方法,所述方法包括:
17.在硅衬底上依次生长非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga
1-y
n层和非掺杂n极性面al
x
ga
1-x
n层,得到紫外光电探测器外延片并进行处理;其中,x=0.5~0.8,y=0.75~0.95;
18.对处理后的紫外光电探测器外延片进行光刻,得到隔离图案;对光刻后的紫外光电探测器外延片进行刻蚀,沿隔离图案刻蚀出凹槽;将刻蚀出凹槽的紫外光电探测器外延片放入等离子体辅助化学气相沉积设备中,在紫外光电探测器外延片的凹槽内沉积sinz钝化层,其中,z=1.33~1.5;
19.使用湿法刻蚀方法,将紫外光电探测器外延片上暴露出来的sinz刻蚀掉并进行处理;
20.通过掩模版对准,在所述非掺杂n极性面al
x
ga
1-x
n层上的一侧进行光刻,在所述非掺杂n极性面al
x
ga
1-x
n层上制备绝缘层图案;将制备有绝缘层图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀隔离层,得到隔离层,对制备有绝缘层的紫外光电探测器外延片进行处理;
21.通过掩模版对准,在所述绝缘层上和所述非掺杂n极性面al
x
ga
1-x
n层上的另一侧分别进行光刻,得到欧姆接触电极图案;将制备有欧姆接触电极图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀欧姆接触电极金属,得到欧姆接触电极金属,对制备有欧姆接触电极金属的紫外光电探测器外延片进行处理;
22.通过掩模版对准,在所述绝缘层一侧的欧姆接触电极金属上,以及所述绝缘层、欧姆接触电极的侧面和所述非掺杂n极性面al
x
ga
1-x
n层上进行光刻,得到肖特基接触电极图案;将肖特基接触电极材料充分均匀地覆盖在所述肖特基接触电极图案上,加热放置定型后,得到日盲algan紫外光电探测器。
23.进一步的,所述肖特基接触电极材料采用二维mxene材料,所述绝缘层为al2o3绝缘层。
24.进一步的,所述对处理后的紫外光电探测器外延片进行光刻,光刻胶的厚度为0.2~0.7μm,曝光时间为1~4s,显影时间为45~95s。
25.进一步的,所述凹槽的深度为1~2.5μm。
26.进一步的,所述硅衬底以si(111)密排面为外延面;
27.所述非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga1-yn层和非掺杂n极性面al
x
ga
1-x
n层均以(0001)为外延方向。
28.本发明相对于现有技术具有如下的有益效果:
29.1、本发明提供的制备方法,在肖特基接触电极结构设计时,采用新型二维mxene材
料,通过改善电子迁移率,能够增大响应度和探测率。
30.2、本发明使用以algan为代表的iii族氮化物作为紫外光电探测器的基础材料,iii族氮化物相比传统的si芯片有更加优异的材料性能,能更好地实现器件在更短波长应用上的小型化和集成化。
31.3、本发明以n极性面iii族氮化物作为器件基底材料,相比于传统金属极性面iii族氮化物,可以有效增强algan材料的高温热稳定性,使得器件制作更加容易,并能增强表面的光生电子的分离和转移,易于制作高性能的日盲紫外探测器
32.4、本发明设计了al2o3绝缘层结构,有效克服mxene在高温制备电极过程中易氧化的缺点,并使得mxene作为肖特基电极,修饰algan基紫外光电探测器。
33.5、本发明选用半导体工业最普遍应用的si材料作为器件外延衬底,易于实现器件的商业化集成应用。
附图说明
34.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
35.图1为本发明实施例的日盲algan紫外光电探测器结构示意图。
36.图2为本发明实施例的n极性algan(0002)x射线摇摆曲线图。
37.图3为本发明实施例的n极性面algan紫外光电探测器光学显微镜实拍图。
38.图1中:
39.1-硅衬底、2-非掺杂n极性面aln缓冲层、3-碳掺杂n极性面aln层、4-碳掺杂n极性面组分渐变alyga
1-y
n层、5-非掺杂n极性面al
x
ga
1-x
n层、6-sinz钝化层、7-绝缘层、8-欧姆接触电极、9-肖特基接触电极。
具体实施方式
40.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应当理解,描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。
41.实施例1:
42.本实施例提供了一种日盲algan紫外光电探测器的制备方法,包括以下步骤:
43.(1)如图1所示,在硅衬底1上依次生长非掺杂n极性面aln缓冲层2、碳掺杂n极性面aln层3、碳掺杂n极性面组分渐变alyga
1-y
n层4和非掺杂n极性面al
x
ga
1-x
n层(薄膜)5,得到紫外光电探测器外延片;
44.(2)将步骤(1)所得algan紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中超声处理,拿出后经去离子水清洗再用热高纯氮气吹干;
45.(3)台面隔离图案制备:对步骤(2)得到的algan整流器外延片进行绝缘台面隔离
图案光刻制备:通过旋涂匀胶在步骤(2)所得algan整流器外延片上均匀涂抹光刻胶,将涂有光刻胶的algan整流器外延片进行预烘,随后放入光刻机中进行曝光,最后将曝光后的外延片浸入显影液中进行光刻显影并清洗;
46.(4)台面隔离:对光刻后algan紫外光电探测器外延片进行反应离子刻蚀,在algan紫外光电探测器外延片中,沿凸台图案刻蚀出凹槽,得到分离绝缘的凸台并清洗;
47.(5)台面隔离钝化层制作:将步骤(4)所得的algan紫外光电探测器外延片放入等离子体辅助化学气相沉积设备中,升温并在抽高真空后通入载气与反应气体,在algan紫外光电探测器外延片刻蚀凹槽内沉积sinz钝化层6;
48.(6)使用湿法刻蚀方法,将暴露出来的sinz刻蚀掉,将algan紫外光电探测器外延片浸入去胶液后去除,使用去离子水冲洗并使用丙酮对algan紫外光电探测器外延片表面残留的光刻胶与sinz进行超声处理去除,超声后再经去离子水清洗,再用热高纯氮气吹干;
49.(7)对步骤(6)得到的algan整流器外延片进行绝缘层电极图案光刻制备:通过掩膜板中的对准标记,对algan外延片进行对准,重复(3)工艺;
50.(8)对algan整流器外延片进行绝缘层制备,将步骤(7)所得光刻显影出绝缘层图案的algan紫外光电探测器外延片置于电子束蒸发设备中,对蒸发腔体抽真空,随后蒸镀al2o3绝缘层7,蒸镀结束后,对algan紫外光电探测去外延片进行退火;
51.(9)将algan紫外光电探测器外延片浸入去胶液后去除,使用去离子水冲洗并使用丙酮对algan紫外光电探测器外延片表面残留的光刻胶与蒸镀金属进行超声处理去除,超声后再经去离子水清洗,再用热高纯氮气吹干;
52.(10)通过掩膜板中的对准标记,对algan整流器外延片进行对准,重复步骤(3)工艺,在相应位置上光刻显影,制备器件欧姆接触电极图案并清洗;
53.(11)对algan整流器外延片进行欧姆接触电极制备:将步骤(10)所得光刻显影出欧姆接触电极图案的algan整流器外延片放入电子束蒸发设备中,重复步骤(8)工艺,在algan紫外光电探测器外延片上蒸镀欧姆接触电极金属8;
54.(12)重复步骤(9)工艺,通过去胶液浸泡与超声清洗去除algan外延片表面残留的光刻胶与蒸镀金属;
55.(13)通过掩膜板中的对准标记,对algan整流器外延片进行对准,重复步骤(3)工艺,在相应位置上光刻显影,制备器件肖特基接触电极图案并清洗;
56.(14)对algan整流器外延片进行肖特基接触电极制备:将步骤(13)所得光刻显影出肖特基接触电极图案的algan整流器外延片置于盖玻片下方,从缝隙中滴入ti3c2t
x
液滴,用滤纸在另外一边吸取,使得mxene充分均匀地覆盖algan紫外光电探测器外延片表面。待均匀覆盖之后,用滤纸吸走多余的ti3c2t
x
溶液加热放置定型,得到肖特基接触电极9;最后制得日盲algan紫外光电探测器。
57.步骤(1)所述的硅衬底以(111)密排面为外延面,所述非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga
1-y
n层和非掺杂n极性面al
x
ga
1-x
n薄膜均以(0001)为外延方向;
58.步骤(2)、步骤(6)和步骤(9)所述超声处理时间均为3~15min;
59.步骤(3)所述光刻胶的厚度为0.2~0.7μm,所述曝光时间为1~4s,所述显影时间为45~95s;
60.步骤(4)所述凹槽的深度为1~2.5μm;
61.步骤(5)和步骤(8)所述的真空度均为1~5
×
10-5
pa;
62.步骤(6)所述的浸泡时间为45~100min;
63.步骤(8)所述退火的问度为450℃~800℃,所述退火时间为30~120min。
64.实施例2:
65.本实施例提供了一种日盲algan紫外光电探测器的制备方法,具体包括:
66.(1)如图1所示,采用金属有机物化学气相沉积法技术在硅衬底上生长algan紫外光电探测器外延片,包括非掺杂n极性面aln缓冲层2、碳掺杂n极性面aln层3、碳掺杂n极性面组分渐变alyga
1-y
n层4和非掺杂n极性面al
x
ga
1-x
n层5,其中:
67.非掺杂n极性面aln缓冲层2生长在硅衬底1上,厚度为450nm;
68.碳掺杂n极性面aln层3生长在n极性面aln缓冲层2上,其掺杂浓度为2.0
×
10
18
cm-3
,厚度为420nm;
69.碳掺杂n极性面组分渐变alyga
1-y
n层4生长在碳掺杂半绝缘化n极性aln缓冲层3上,其掺杂浓度为8.0
×
10
16
cm-3
,厚度为520nm;
70.非掺杂n极性面al
x
ga
1-x
n层5生长在半掺杂n极性algan层4上,厚度为400nm;
71.(2)将algan紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中各自超声3min,去除后经去离子水冲洗,冲洗后的algan再用热高纯氮气吹干;
72.(3)台面隔离图案的制备:对清洗后的algan紫外光电探测器外延片旋涂正性光刻胶,型号为rzj304,光刻胶厚度为0.2μm,将涂有光刻胶的外延片置于热台上预烘90s,随后将涂有光刻胶的外延片放入光刻机中通过掩膜板对准标记对准,显影区域尺寸为2mm
×
1mm;随后进行曝光,曝光时间为15s,再将曝光之后的外延片浸泡入正性显影液中,显影液型号为rzx3038,浸泡时间为50s,最后将显影完成的外延片取出,用去离子水冲洗,并用热高纯氮气吹干,置于热台上烘烤坚膜,烘烤时间为90s;
73.(4)台面隔离图形刻蚀:将光刻后的algan紫外光电探测器外延片置于反应离子刻蚀机中对光刻暴露出来的隔离层图案进行反应离子刻蚀,刻蚀出对应图案的凹槽,凹槽深度为2μm,刻蚀完毕后使用去离子水冲洗外延片表面并用热氮气吹干;
74.(5)台面隔离钝化层制作:algan紫外光电探测器外延片放入等离子体辅助化学气象沉积设备中,仪器升温至800℃,腔体真空度抽至5
×
10-5
pa,在algan紫外光电探测器外延片刻蚀凹槽内沉积sinz(z=1.33~1.5)钝化层6,沉积时间120min;
75.(6)使用湿法刻蚀的方法,将暴露出的sinz钝化层刻蚀掉,取出后用去离子水冲洗,然后将制备好绝缘图案的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
76.(7)绝缘层图案的制备:通过掩膜版的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上进行光刻显影,制备algan紫外光电探测器外延片上暴露出器件绝缘层图案区域,尺寸大小为0.3mm
×
1mm;
77.(8)对光刻后的algan紫外光电探测器外延片进行绝缘层制备:将制备有绝缘层图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后蒸镀绝缘层物质al2o37,厚度为250nm;
78.(9)将制备好绝缘层的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞
出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
79.(10)欧姆接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件欧姆接触电极图案区域,尺寸大小为2
×
0.2mm
×
1mm,分别位于刻蚀台面的左右两侧;
80.(11)对光刻后的algan紫外光电探测器外延片进行欧姆接触电极制备:将制备有器件欧姆接触图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后依次蒸镀欧姆接触电极物质ti/al/ni/au,厚度为100nm;
81.(12)重复步骤(9)工艺,通过去胶液浸泡与超声清洗去除algan外延片表面残留的光刻胶与蒸镀金属;
82.(13)肖特基接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在绝缘层图案侧对应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件肖特基接触电极图案区域,尺寸大小为1.6mm
×
1mm;
83.(14)对光刻后的algan紫外光电探测器外延片进行肖特基接触电极制备:将制备了肖特基接触电极图案的algan紫外光电探测器外延片粘贴在载玻片上,使用针管吸取少量mxene试样(浓度为0.1g/ml),滴在外延片表面,使用盖玻片使mxene充分铺开。放入真空烘箱,烘干algan紫外光电探测器外延片,使mxene定型,最后将algan外延片置于丙酮中浸泡50s,去除algan外延片表面残留的光刻胶和mxene。最后制得日盲algan紫外光电探测器。
84.本实施例制得的日盲algan紫外光电探测器结构如图1所示,algan层的x射线摇摆曲线如图2所示,半高宽为0.122
°
,晶体质量十分良好,非极性algan紫外光电探测器器件如图3所示。
85.实施例3:
86.本实施例提供了一种日盲algan紫外光电探测器的制备方法,具体包括:
87.(1)采用金属有机物化学气相沉积法技术在硅衬底上生长algan紫外光电探测器外延片,包括非掺杂n极性面aln缓冲层2、碳掺杂n极性面aln层3、碳掺杂n极性面组分渐变alyga
1-y
n层4和非掺杂n极性面al
x
ga
1-x
n层5,其中:
88.非掺杂n极性面aln缓冲层2生长在硅衬底1上,厚度为500nm;
89.碳掺杂n极性面aln层3生长在n极性面aln缓冲层2上,其掺杂浓度为3
×
10
18
cm-3
,厚度为440nm;
90.碳掺杂n极性面组分渐变alyga
1-y
n层4生长在碳掺杂半绝缘化n极性aln缓冲层3上,其掺杂浓度为1.0
×
10
17
cm-3
,厚度为530nm;
91.非掺杂n极性面al
x
ga
1-x
n层5生长在半掺杂n极性algan层4上,厚度为450nm;
92.(2)将algan紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中各自超声3min,去除后经去离子水冲洗,冲洗后的algan再用热高纯氮气吹干;
93.(3)台面隔离图案的制备:对清洗后的algan紫外光电探测器外延片旋涂正性光刻胶,型号为rzj304,光刻胶厚度为0.3μm,将涂有光刻胶的外延片置于热台上预烘90s,随后将涂有光刻胶的外延片放入光刻机中通过掩膜板对准标记对准,显影区域尺寸为2mm
×
1mm;随后进行曝光,曝光时间为15s,再将曝光之后的外延片浸泡入正性显影液中,显影液
型号为rzx3038,浸泡时间为50s,最后将显影完成的外延片取出,用去离子水冲洗,并用热高纯氮气吹干,置于热台上烘烤坚膜,烘烤时间为90s;
94.(4)台面隔离图形刻蚀:将光刻后的algan紫外光电探测器外延片置于反应离子刻蚀机中对光刻暴露出来的隔离层图案进行反应离子刻蚀,刻蚀出对应图案的凹槽,凹槽深度为2.5μm,刻蚀完毕后使用去离子水冲洗外延片表面并用热氮气吹干;
95.(5)台面隔离钝化层制作:algan紫外光电探测器外延片放入等离子体辅助化学气象沉积设备中,仪器升温至800℃,腔体真空度抽至5
×
10-5
pa,在algan紫外光电探测器外延片刻蚀凹槽内沉积sinz(z=1.33-1.5)钝化层6,沉积时间120min;
96.(6)使用湿法刻蚀的方法,将暴露出的sinz钝化层刻蚀掉,取出后用去离子水冲洗,然后将制备好隔离图案的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
97.(7)绝缘层图案的制备:通过掩膜版的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上进行光刻显影,制备algan紫外光电探测器外延片上暴露出器件绝缘层图案区域,尺寸大小为0.3mm
×
1mm;
98.(8)对光刻后的algan紫外光电探测器外延片进行绝缘层制备:将制备有绝缘层图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后蒸镀绝缘层7物质al2o3,厚度为220nm;
99.(9)将制备好绝缘层的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
100.(10)欧姆接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件欧姆接触电极图案区域,尺寸大小为2
×
0.2mm
×
1mm,分别位于刻蚀台面的左右两侧;
101.(11)对光刻后的algan紫外光电探测器外延片进行欧姆接触电极8制备:将制备有器件欧姆接触图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后依次蒸镀欧姆接触电极物质ti/al/ni/au,厚度为120nm;
102.(12)重复步骤(9)工艺,通过去胶液浸泡与超声清洗去除algan外延片表面残留的光刻胶与蒸镀金属;
103.(13)肖特基接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在绝缘层图案侧对应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件肖特基接触电极图案区域,尺寸大小为1.6mm
×
1mm;
104.(14)对光刻后的algan紫外光电探测器外延片进行肖特基接触电极9制备:将制备了肖特基接触电极图案的algan紫外光电探测器外延片粘贴在载玻片上,使用针管吸取少量mxene(浓度为0.05g/ml)试样,滴在外延片表面,使用盖玻片使mxene充分铺开。放入真空烘箱,烘干algan紫外光电探测器外延片,使mxene定型,最后将algan外延片置于丙酮中浸泡50s,去除algan外延片表面残留的光刻胶和mxene。最后制得日盲algan紫外光电探测器。
105.本实施例制得的日盲algan紫外光电探测器测试结果与实施例2类似,在此不再赘述。
106.实施例4:
107.本实施例提供了一种日盲algan紫外光电探测器的制备方法,具体包括:
108.(1)采用金属有机物化学气相沉积法技术在硅衬底上生长algan紫外光电探测器外延片,包括非掺杂n极性面aln缓冲层2、碳掺杂n极性面aln层3、碳掺杂n极性面组分渐变alyga
1-y
n层4和非掺杂n极性面al
x
ga
1-x
n层5,其中:
109.非掺杂n极性面aln缓冲层2生长在硅衬底1上,厚度为350nm;
110.碳掺杂n极性面aln层3生长在n极性面aln缓冲层2上,其掺杂浓度为8
×
10
17
cm-3
,厚度为380nm;
111.碳掺杂n极性面组分渐变alyga
1-y
n层4生长在碳掺杂半绝缘化n极性aln缓冲层3上,其掺杂浓度为6.0
×
10
16
cm-3
,厚度为480nm;
112.非掺杂n极性面al
x
ga
1-x
n层5生长在半掺杂n极性algan层4上,厚度为370nm;
113.(2)将algan紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中各自超声3min,去除后经去离子水冲洗,冲洗后的algan再用热高纯氮气吹干;
114.(3)台面隔离图案的制备:对清洗后的algan紫外光电探测器外延片旋涂正性光刻胶,型号为rzj304,光刻胶厚度为0.4μm,将涂有光刻胶的外延片置于热台上预烘90s,随后将涂有光刻胶的外延片放入光刻机中通过掩膜板对准标记对准,显影区域尺寸为2mm
×
1mm;随后进行曝光,曝光时间为15s,再将曝光之后的外延片浸泡入正性显影液中,显影液型号为rzx3038,浸泡时间为50s,最后将显影完成的外延片取出,用去离子水冲洗,并用热高纯氮气吹干,置于热台上烘烤坚膜,烘烤时间为90s;
115.(4)台面隔离图形刻蚀:将光刻后的algan紫外光电探测器外延片置于反应离子刻蚀机中对光刻暴露出来的隔离层图案进行反应离子刻蚀,刻蚀出对应图案的凹槽,凹槽深度为3μm,刻蚀完毕后使用去离子水冲洗外延片表面并用热氮气吹干;
116.(5)台面隔离钝化层制作:algan紫外光电探测器外延片放入等离子体辅助化学气象沉积设备中,仪器升温至800℃,腔体真空度抽至5
×
10-5
pa,在algan紫外光电探测器外延片刻蚀凹槽内沉积sinz(z=1.33~1.5)钝化层,沉积时间120min;
117.(6)使用湿法刻蚀的方法,将暴露出的sinz钝化层刻蚀掉,取出后用去离子水冲洗,然后将制备好隔离图案的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
118.(7)绝缘层图案的制备:通过掩膜版的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上进行光刻显影,制备algan紫外光电探测器外延片上暴露出器件绝缘层图案区域,尺寸大小为0.3mm
×
1mm;
119.(8)对光刻后的algan紫外光电探测器外延片进行绝缘层制备:将制备有绝缘层图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后蒸镀绝缘层物质al2o3,厚度为300nm;
120.(9)将制备好绝缘层的algan紫外光电探测器外延片浸入去胶液中浸泡100min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
121.(10)欧姆接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件欧姆接触电极图案区域,尺寸大小为2
×
0.2mm
×
1mm,分别位于刻蚀
台面的左右两侧;
122.(11)对光刻后的algan紫外光电探测器外延片进行欧姆接触电极制备:将制备有器件欧姆接触图案的algan紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1
×
10-5
pa,随后依次蒸镀欧姆接触电极物质ti/al/ni/au,厚度为150nm;
123.(12)重复步骤(9)工艺,通过去胶液浸泡与超声清洗去除algan外延片表面残留的光刻胶与蒸镀金属;
124.(13)肖特基接触电极图案制备:通过掩膜板中的对准标记,对algan紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在绝缘层图案侧对应位置上光刻显影,制备algan紫外光电探测器外延片上暴露出器件肖特基接触电极图案区域,尺寸大小为1.6mm
×
1mm;
125.(14)对光刻后的algan紫外光电探测器外延片进行肖特基接触电极制备:将制备了肖特基接触电极图案的algan紫外光电探测器外延片粘贴在载玻片上,使用针管吸取少量mxene试样(浓度为0.2g/ml),滴在外延片表面,使用盖玻片使mxene充分铺开。放入真空烘箱,烘干algan紫外光电探测器外延片,使mxene定型,最后将algan外延片置于丙酮中浸泡50s,去除algan外延片表面残留的光刻胶和mxene。最后制得日盲algan紫外光电探测器。
126.本实施例制得的日盲algan紫外光电探测器测试结果与实施例2类似,在此不再赘述。
127.综上所述,本发明公开了在硅衬底上依次生长非掺杂n极性面aln缓冲层、碳掺杂n极性面aln层、碳掺杂n极性面组分渐变alyga
1-y
n层和非掺杂n极性面al
x
ga
1-x
n层,得到紫外光电探测器外延片;在紫外光电探测器外延片上制备隔离层图案凹槽,并在凹槽中沉积绝缘al2o3层;制备欧姆接触电极图案,并在al2o3层和外延片层上面沉积欧姆接触电极;随后在绝缘层一侧的欧姆接触电极和外延片层上面制备肖特基接触电极图案,并在绝缘层一侧电极和外延片上面制备二维超薄ti3c2t
x
肖特基接触电极;最后对algan紫外光电探测器外延片进行台面隔离处理。本发明实现了高性能algan紫外光电探测器的制备,提高algan紫外光电探测器在紫外日盲波段的响应度和探测率。
128.以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献