一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于聚3-己基噻吩的电晕放电检测材料及其制备方法与流程

2022-03-19 21:59:56 来源:中国专利 TAG:


1.本发明属于检测电力系统中电晕放电技术,具体涉及一种基于聚3-己基噻吩的电晕放电检测材料及其制备方法。


背景技术:

2.电晕放电是带电体表面在气体或液体介质中发生局部放电的现象,常发生在高压导线的周围和带电体的尖端附近,在电力系统中容易发生电晕放电的设施和场所包括高压输电线路的绝缘子,变电所母线两端的耐张线夹,线路的耐张杆塔和直线杆塔,同时能产生臭氧、氧化氮等物质。随着输电电压等级的不断提高,电晕放电带来的危害日益严重,一方面给电力系统带来大量的能量损耗,据不完全统计,全国每年因电晕放电造成的电能损耗达到20.5亿kw
·
h,另一方面因臭氧对金属及有机物有强烈的氧化作用,对输电线路造成腐蚀,逐步破坏设备绝缘性能,降低绝缘设备使用寿命。因此,研究电晕放电实时监测技术对于消除或削弱高压输电线路电晕放电具有重要意义。目前常用的电晕放电检测技术包括红外热成像技术和紫外光谱探测技术,但是红外热成像技术主要探测发热现象,此时设备已经由于电晕放电而损耗严重,紫外光谱探测技术需在太阳辐射微弱情况下进行电晕探测,效率低且费用昂贵。


技术实现要素:

3.本发明的目的在于提供一种利用基于聚3-己基噻吩的电晕放电检测材料及其制备方法。
4.为达到上述目的,本发明采用如下的技术方案来实现的:
5.一种基于聚3-己基噻吩的电晕放电检测材料的制备方法,包括以下步骤:
6.1)将聚3-己基噻吩均匀分散于有机溶剂中,得到聚3-己基噻吩溶液;
7.2)将步骤1)中得到的聚3-己基噻吩溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构;
8.3)将步骤2)中制得的聚3-己基噻吩检测结构放置在电晕放电的环境中,利用电晕放电臭氧环境,使聚3-己基噻吩检测结构发生氧化反应,得到正一价聚3-己基噻吩检测结构;
9.4)测试步骤3)中得到正一价聚3-己基噻吩检测结构在不同电压和不同时间放电处理下的uv-vis光谱,得到峰值下降和峰位蓝移,以此作为判断电晕放电强度的依据。
10.本发明进一步的改进在于,步骤1)中,聚3-己基噻吩浓度在1mg/ml至20mg/ml之间。
11.本发明进一步的改进在于,步骤1)中,有机溶剂为氯仿、氯苯、四氢呋喃、邻二氯苯、对二氯苯中一种或两种混合物。
12.本发明进一步的改进在于,步骤2)中,利用旋涂仪将步骤1)中得到的聚3-己基噻吩溶液在检测材料上均匀旋涂成膜。
13.本发明进一步的改进在于,步骤2)中,聚3-己基噻吩的膜厚为10nm至1μm。
14.本发明进一步的改进在于,步骤3)中,利用紫外可见近红外分光光度计进行测试。
15.本发明进一步的改进在于,紫外可见近红外分光光度计的测试模式为透射模式,且为非原位测试。
16.一种基于聚3-己基噻吩的电晕放电检测材料,采用所述的制备方法制备得到。
17.相对于现有技术,本发明至少具有如下有益的技术效果:
18.在电晕放电的过程中随着放电电压的升高和放电时间的增长,放电产生的臭氧含量增加,导致聚3-己基噻吩检测结构的氧化反应加剧,在紫外吸收光谱上呈现为峰值的下降和峰位的蓝移,本发明通过将聚3-己基噻吩涂覆于绝缘聚合物表面,由于聚3-己基噻吩的颜色变化和光谱信息与电晕放电强度呈现明显线性相关性,可有效指示其表面电晕放电的发生,并且定量判断电晕放电的强度,实现电晕放电检测的可视化。
19.综上,本发明针对基于电晕放电的变色绝缘材料展开,提出电晕放电的可视化检测方法,对电力系统中通过材料颜色变化判断电晕放电提供新思路,有重要的工程应用价值及前景。本发明利用有机变色基团与绝缘材料旋涂的方法,制备变色/绝缘材料的复合材料,在不过多损失绝缘材料本身电气绝缘特性的前提下,实现对电力设备发生电晕放电的可视化定量判断。
附图说明
20.图1为聚3-己基噻吩检测结构。
21.图2为聚3-己基噻吩检测结构的电晕放电实验。
22.图3为聚3-己基噻吩检测结构的电晕放电试样。电压从上至下依次增大(5kv,10kv,15kv),加压时间从左往右依次增长(5mins,10mins,15mins)。
23.图4中(a)-(c)为相同电压不同放电时间聚3-己基噻吩检测结构的uv-vis光谱。
24.图5中(a)-(c)为相同放电时间不同放电电压聚3-己基噻吩检测结构的uv-vis光谱。
25.图6中(a)-(c)为不同浓度聚3-己基噻吩检测结构在相同放电电压和放电时间下的uv-vis光谱。
具体实施方式
26.下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
27.本发明提供基于聚3-己基噻吩的电晕放电检测材料的制备方法,包括以下步骤:
28.1)将聚3-己基噻吩均匀分散于有机溶剂中,得到聚3-己基噻吩溶液,其中聚3-己基噻吩浓度在1mg/ml至20mg/ml之间。所述有机溶剂为氯仿、氯苯、四氢呋喃、邻二氯苯、对二氯苯中的一种或二种混合物。
29.2)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩溶液在检测材料上均匀旋涂成
膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为10nm至1μm;
30.3)将步骤(2)中制得的聚3-己基噻吩检测结构放置在电晕放电的环境中,利用电晕放电臭氧环境,使聚3-己基噻吩检测结构发生氧化反应,得到正一价聚3-己基噻吩检测结构;
31.4)利用紫外可见近红外分光光度计,测试步骤(3)中得到正一价聚3-己基噻吩检测结构在不同电压和不同时间放电处理下的uv-vis光谱,得到峰值下降和峰位蓝移,其中紫外可见近红外分光光度计的测试模式为透射模式,且为非原位测试。
32.以下为实施例:
33.实施例1:
34.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为10mg/ml,绝缘聚合物浓度为10mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯苯。
35.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
36.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
37.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为5kv放电电压下聚3-己基噻吩检测结构处理5mins、10mins和15mins。
38.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在5kv放电电压作用下,随着放电时间的增加,峰值出现下降,峰的位置发生蓝移,检测结果如图4-a所示。
39.实施例2:
40.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为10mg/ml,绝缘聚合物浓度为10mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯苯。
41.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
42.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
43.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为10kv放电电压下聚3-己基噻吩检测结构处理5mins、10mins和15mins。
44.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在10kv放电电压作用下,随着放电时间的增加,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图4-b所示。
45.实施例3:
46.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为10mg/ml,绝缘聚合物浓度为10mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯苯。
47.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
48.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
49.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为15kv放电电压下聚3-己基噻吩检测结构处理5mins、10mins和15mins。
50.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在15kv放电电压作用下,随着放电时间的增加,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图4-c所示。
51.实施例4:
52.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为10mg/ml,绝缘聚合物浓度为10mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯苯。
53.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
54.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
55.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为在15mins放电时间对聚3-己基噻吩检测结构分别进行5kv、10kv和15kv的放电电压处理。
56.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在15mins放电时间下,随着放电电压的升高,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图5-c所示。
57.实施例5:
58.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为1mg/ml,绝缘聚合物浓度为1mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯仿。
59.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
60.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
61.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行
电晕放电处理。所述电晕放电处理为在10mins放电时间对聚3-己基噻吩检测结构进行10kv的放电电压处理。
62.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在10kv,10mins放电作用下,与未处理的检测结构相比,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图6-a所示。
63.实施例6:
64.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为5mg/ml,绝缘聚合物浓度为5mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯仿。
65.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
66.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
67.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为在10mins放电时间对聚3-己基噻吩检测结构进行10kv的放电电压处理。
68.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在10kv,10mins放电作用下,与未处理的检测结构相比,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图6-b所示。
69.实施例7:
70.(1)将聚3-己基噻吩和绝缘聚合物均匀分散于有机溶剂中,得到聚3-己基噻吩/绝缘聚合物混合溶液,其中聚3-己基噻吩浓度为20mg/ml,绝缘聚合物浓度为20mg/ml。所述绝缘聚合物为聚苯乙烯。所述有机溶剂为氯仿。
71.(2)依次用水、丙酮、异丙醇对玻璃基片进行清洗,之后用氮气吹干。
72.(3)利用旋涂仪将步骤(1)中得到的聚3-己基噻吩/绝缘聚合物混合溶液在检测材料上均匀旋涂成膜,得到聚3-己基噻吩检测结构,其中聚3-己基噻吩的膜厚为1μm。所述检测材料为步骤(2)中已经清洗的玻璃基片。
73.(4)利用聚3-己基噻吩检测结构在臭氧的作用下会发生氧化,得到一个空穴电荷,形成正一价p3ht ,颜色逐渐变浅。采用图2所示方法对制备的聚3-己基噻吩检测结构进行电晕放电处理。所述电晕放电处理为在10mins放电时间对聚3-己基噻吩检测结构进行10kv的放电电压处理。
74.(5)利用紫外可见近红外分光光度计,用非原位检测测试聚3-己基噻吩检测结构的uv-vis光谱,在10kv,10mins放电作用下,与未处理的检测结构相比,峰值出现明显的下降,峰的位置发生蓝移,检测结果如图6-c所示。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献