一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种苯基修饰的PDMS分离膜、制备方法及其在芳香族化合物分离中的用途与流程

2022-03-08 22:12:45 来源:中国专利 TAG:

一种苯基修饰的pdms分离膜、制备方法及其在芳香族化合物分离中的用途
技术领域
1.本发明涉及一种苯基修饰的pdms分离膜、制备方法及其在芳香族化合物分离中的用途,属于分离膜材料技术领域。


背景技术:

2.从水溶液中有效回收挥发性有机化合物具有重要的环境和经济价值。芳香族化合物是一种典型的高沸点、大分子尺寸的vocs。这些化合物的选择性回收目前涉及蒸馏、溶剂萃取和吸附等过程,这些工艺显示出相当大的能量强度和复杂的后处理。而渗透蒸发膜技术作为一种节能工艺,广泛用于有机-水或有机-有机混合物的分离过程。渗透蒸发过程的分离性能依赖于膜材料中组分的优先吸附和扩散。因此,与蒸馏分离相比,渗透汽化过程只需要蒸发潜热,可以克服热力学汽液平衡的限制,消耗更少的能量。此外,可在中等温度范围内操作的渗透汽化过程有利于食品工业中热敏有机物(芳香族物质)的纯化处理。
3.具有高渗透性和选择性的膜材料是分离过程的关键部分。聚二甲基硅氧烷(pdms)是一种重要的有机硅材料,已被广泛应用于voc的回收过程。在过去二十年中,关于pdms膜的改性方法得到了越来越多的关注,而且这些方法成功促进了小分子有机物在聚合物膜层中的选择性传输(例如:乙醇,丁醇等)。然而pdms膜在快速和选择性地传输具有更大分子尺寸的芳族化合物(例如苯酚,2-苯乙醇)方面还存在着很多挑战。一方面,pdms膜的化学改性主要集中在提高膜材料对有机化合物的亲和力,以增强渗透过程的优先吸附,然而这些手段同时还会导致聚合物链段的溶胀,从而削弱了膜的选择性和稳定性。另一方面,很多拥有精密调控的孔尺寸的无机填料被开发出来并成功应用于小分子醇类的回收过程,如mfi沸石分子筛和zif-8有机金属框架。可惜的是这些填料的孔尺寸大多小于0.5nm,这种孔的尺寸太小不适合大尺寸的芳香类有机物。因此目前由链段堆积或者由多孔填料提供的传输通道不足以促进芳香类化合物分子的高效选择性渗透。


技术实现要素:

4.本发明所要解决的技术问题是:传统的pdms膜在用于分离芳香族化合物中存在着渗透通量低、选择分离性不高。本发明的技术方案是通过在聚硅氧烷链段中引入刚性间隔基来构建芳香类分子的高速渗透传输通道。如图1所示,将pdms主链上的部分对二甲基替换成了对二苯基,其作用是在相邻的聚合物链段之间构筑刚性隔基,在苯基的作用下,聚合物链间距增大,因此较低的空间位阻促使了剩余的甲基具有更高的运动性,同时,较大的苯基抑制了聚合物主链之间的协同运动从而抑制了链段之间的缠绕。因此,增加的自由性和更低传质阻力使得更接近聚合物自由体积的芳香类物质可以快速的在膜中传递。
5.一种苯基修饰的pdms分离膜,包括支撑层和选择分离层,所述的选择分离层具有如式i或者式ii所示的重复单元结构:
[0006][0007]
其中,r1或者r2中分别独立地选自h、取代的或者未被取代的苯基、带有支链或者不带有支链的含有1-4个碳原子的烷基,并且r1或者r2中至少有一个为取代的或者未被取代的苯基;
[0008]
r3是取代的或者未被取代的苯基。
[0009]
优选地,所述的支撑层的材质为多孔的聚合物。
[0010]
优选地,所述的支撑层的材质选自pvdf、ptfe、pan或者pes。
[0011]
上述的苯基修饰的pdms分离膜的制备方法,包括如下步骤:
[0012]
步骤1,将羟基封端的pdms基化合物、交联剂、催化剂在有机溶剂环境中进行交联反应,获得铸膜液;
[0013]
步骤2,将铸膜液涂于支撑体上,进行热交联反应,得到苯基修饰的pdms分离膜;
[0014]
其中,羟基封端的pdms基化合物和/或交联剂中上带有苯基。
[0015]
优选地,所述的羟基封端的pdms基化合物的结构如式iii所示:
[0016][0017]
优选地,所述的交联剂选自正硅酸四乙酯或者苯基三乙氧基硅烷。
[0018]
优选地,所述的催化剂是有机锡催化剂。
[0019]
优选地,所述的羟基封端的pdms基化合物在有机溶剂中的浓度范围是5-15wt%。
[0020]
优选地,羟基封端的pdms基化合物、交联剂、催化剂的质量比100:5-15:0.1-5。
[0021]
优选地,热交联反应过程的温度50-85℃,热交联反应的时间是1-36h。
[0022]
上述的苯基修饰的pdms分离膜在用于对含有机物的溶液分离中的用途。
[0023]
优选地,所述的有机物选自醇类或者芳香族类化合物。
[0024]
优选地,所述的溶液是水溶液。
[0025]
优选地,有机物在溶液中的浓度是0.1-10wt%。
[0026]
优选地,所述的苯基修饰的pdms分离膜用于提高分离过程中的有机物的通量。
[0027]
苯基在用于提高pdms基聚合物的分子链间距中的用途。
[0028]
有益效果
[0029]
本发明通过在制备过程中使用了带苯基的pdms,与交联剂进行交联反应后,获得了一种能够有效地对含有大分子(芳香族化合物)的体系的分离;通过苯基的修饰处理,可以地避免了pdms 网络的缠绕,提高了聚合物链间距,使大分子能够有效地透过膜层,具有较好的分离选择性和透过性。
附图说明
[0030]
图1四种pdms膜的红外图谱
[0031]
图2不同pdms-(c6h5)2含量的pdms-(c6h5)2/pdms/pvdf共混膜的断面sem图(a-f, pdms-(c6h5)2的含量为0wt%-100wt%)
[0032]
图3四种硅橡胶膜的xrd谱图,图中标注了pdms和pdms-(c6h5)2的链间距
[0033]
图4四种硅橡胶膜的dma谱图
[0034]
图5pdms-(c6h5)2的1hnma光谱。插图是pdms-(c6h5)2的重复单元和chemdraw软件预测的pmps(聚甲基苯基硅氧烷)的1hnma光谱。
[0035]
图6四种硅橡胶复合膜分离乙醇/水(进料浓度:5wt%,进料温度40℃)和丁醇/水(进料浓度:1 wt%,进料温度40℃)体系的性能
[0036]
图7四种硅橡胶复合膜分离苯酚/水,苯甲醇/水和2-苯乙醇/水体系的性能(进料浓度:1wt%,进料温度50℃)
[0037]
图8苯酚分子在四种聚合物中的传质特性
[0038]
图9不同共混量对pdms/pdms-(c6h5)2/pvdf共混复合膜分离苯酚/水体系性能的影响(进料浓度 1wt%,进料温度50℃)
[0039]
图10使用不同支撑体制备得到的pdms-(c6h5)2复合膜的断面sem图
[0040]
图11使用不同支撑体制备的pdms-(c6h5)2复合膜对乙醇/水溶液的分离性能(进料浓度:5wt%,进料温度:40℃)。
[0041]
图12使用不同支撑体制备的pdms-(c6h5)2复合膜对苯酚/水溶液的分离性能(进料浓度:1wt%,进料温度:50℃)。
[0042]
图13由具有不同孔径的ptfe支撑体制备的pdms-(c6h5)2/ptfe复合膜对苯酚/水体系的分离性能 (进料:1wt%苯酚/水溶液,进料温度:50℃)
具体实施方式
[0043]
本发明中所采用的主要原料包括:
[0044]
羟基封端pdms和羟基封端的pdms-(c6h5)2,分子量mw=80000。
[0045]
另外,还包括作为交联剂的正硅酸四乙酯、苯基三乙氧基硅烷、己基三乙氧基硅烷,以及作为催化剂的二月桂酸二丁基锡。
[0046]
实施例1
[0047]
主链以和侧链基团之间的运动性一致性导致了pdms链段会以高度缠绕的结构进行堆叠。用于膜分离的pdms膜通常需要使用正硅酸四乙酯作为交联剂进行固化。
[0048]
本实施例的合成路线如下:
[0049][0050]
制备方法是:
[0051]
将一定量的羟基封端的pdms-(c6h5)2溶解在正庚烷中以配置10wt%的聚合物溶液。使用交联剂正硅酸四乙酯配合催化剂二月桂酸二丁基锡对铸膜液进行交联,其中聚合物:交联剂:催化剂=100:10:1(质量比)。当铸膜液达到合适的黏度后,使用刮刀在多孔pvdf支撑体上刮涂制膜。将制备的复合膜在室温下蒸发24小时,然后进一步在70℃下进行热交联12小时后得到最后的聚硅氧烷复合膜。
[0052]
将这种聚合物命名为pdms-(c6h5)2。
[0053]
将传统的正硅酸四乙酯交联剂替换成了苯基三乙氧基硅烷和己基三乙氧基硅烷,以此将苯基和己基引入到pdms聚合物网络中。以下为对照实验:
[0054]
对照例1
[0055]
与实施例1的区别在于:采用的聚硅氧烷不同,采用羟基封端pdms进行反应。
[0056]
本对照例的合成路线如下:
[0057][0058]
其它制备参与与实施例1相同。
[0059]
对照例2
[0060]
与实施例1的区别在于:采用的聚硅氧烷和交联剂都不相同,采用羟基封端pdms和己基三乙氧基硅烷进行反应。
[0061][0062]
其它制备参与与实施例1相同。
[0063]
将这两种聚合物命名为pdms-c6h
13

[0064]
对照例3
[0065]
与实施例1的区别在于:采用的聚硅氧烷和交联剂都不相同,采用羟基封端pdms和苯基三乙氧基硅烷进行反应。
[0066][0067]
将这两种聚合物命名为pdms-c6h5。
[0068]
对照例4
[0069]
与实施例1的区别在于:支撑体分别使用聚丙烯腈(pan)、聚醚砜(pes)和聚偏氟乙
烯(pvdf) 进行替换。
[0070]
红外表征:
[0071]
实施例1和对照例中的四种聚硅氧烷的化学结构通过傅里叶红外光谱进行表征(图1)。在图谱中,1019cm-1
处为si-o-si的不对称伸缩振动峰,1257cm-1
为si-ch3的弯曲振动峰,2969cm-1
处为-ch3的不对称伸缩振动峰。证实了交联反应后得到了相应的产物。
[0072]
sem表征:
[0073]
不同pdms-(c6h5)2含量的pdms-(c6h5)2/pdms/pvdf共混膜的断面sem图如图2所示,其中,a-f分别为pdms-(c6h5)2的含量为0wt%-100wt%。
[0074]
xrd表征:
[0075]
通过x射线衍射谱来验证pdms链段的堆积行为。如图3所示,在12.1
°
处表现出pdms的特征峰,通过布拉格方程可以计算出链间距在在引入比甲基大的c6基团(苯基或者己基) 后,聚合物的链间距出现了增大的趋势。并且,pdms-(c6h5)2和pdms-c6h5与pdms和 pdms-c6h
13
相比,链间距有了较大的增加,其中苯基作为分子隔基起到了关键的作用。相比于通过缩合反应随机引入的苯基对链间距增大的贡献要明显弱于pdms-(c6h5)2中的对二苯基,且pdms-(c6h5)2拥有最大的链间距为
[0076]
动态热机械分析(dma)测试
[0077]
使用动态热机械分析(dma)测试得到的损失因子来表征pdms链段之间的相互作用。损失因子越高代表链段之间摩擦所损失的能量越多。如图4所示,pdms-(c6h5)2表现出最高的损失因子,远高于pdms。如上所言,引入高位阻的刚性分子隔基会在纳米尺度上抑制链段间的协同运动,最终缓解了聚合物链段之间的过度缠绕。在这种情况下会因为链段之间的摩擦而更有可能使临近的聚合物链段产生多余的自由体积,即使整条链段的运动性因苯基的引入而下降,而且玻璃化转变温度会直接影响到损失因子同时反映了链段的运动性。根据dma测试数据,四种聚合物的运动性顺序如下:pdms-(c6h5)2《pdms-c6h5《pdms-c6h
13
,pdms,与差式扫描量热仪得到的玻璃化温度的结果一致。
[0078]
表1玻璃化转变温度
[0079][0080]
1h-nmr测试
[0081]
如图5所示,根据核磁氢谱分析,pmps(聚甲基苯基硅氧烷)中存在两种氢位移(0.66ppm 和0.08ppm),代表部分甲基被苯基取代,在pdms-(c6h5)2光谱中观察到甲基在0.1ppm处的氢位移,说明实施例1中制备得到的pdms-(c6h5)2有三分之一的对二甲基被替换
成了对二苯基(摩尔比)。
[0082]
有机分子分离性能测试
[0083]
考察具有不同尺寸的voc分子在不同结构膜材料中传输差异,系统考察了上述膜从水中分离乙醇丁醇苯酚苯甲醇和苯乙醇的性能。苯甲醇和苯乙醇的动力学尺寸未经报道,但是这两种物质的几何平局尺寸是要大于苯酚的。分离这些体系的渗透通量和分离因子由图6和图7所示。所有硅烷聚合物对于小分子有机物(乙醇,丁醇)通量比较接近,但是pdms-(c6h5)2和pdms-c6h5对苯酚,苯甲醇和苯乙醇这些相对较大的分子的通量要远高于 pdms-c6h
13
和pdms。而且pdms-(c6h5)2相比于pdms和pdms-c6h
13
,对于小分子有机物的分离因子较低但是对于大分子有机物分子具有较高的分离因子。为了进一步验证苯基对硅烷分离膜对大尺寸voc分子的促进作用,将pdms和pdms-(c6h5)2按照一定的质量比(2/8,4/6,6/4, 8/2)进行共混并制备了pdms/pdms-(c6h5)2共混膜,膜厚在7.5微米左右。在对苯酚/水体系的测试过程中,发现膜的渗透通量随着对二苯基的增加而不断上升,但分离因子基本维持在15。 pdms-(c6h5)2对苯酚分子选择性渗透的显着增强。显然,苯基的引入仅促进了大尺寸voc分子相对于水分子的选择性渗透。
[0084]
在不同支撑体上的分离膜的特性测试
[0085]
如实施例1和对照例4,采用了四种支撑体进行分离膜的制备,聚丙烯腈(pan)和聚醚砜(pes) 支撑体呈现出亲水性而且拥有非对称的孔结构,包括海绵孔层和指状孔层。如图10所示,pan和 pes表面的孔尺寸在25nm左右。聚偏氟乙烯(pvdf)和聚四氟乙烯(ptfe)支撑体是疏水的并具有200nm的海绵孔。图11和图12所示的分别是pdms-(c6h5)2复合膜在不同支撑体的表面表面出的对乙醇和苯酚的分离性能,从图可以看出,使用疏水性支撑体制备(pvdf,ptfe)的 pdms-(c6h5)2复合膜表现出优异的苯酚通量和分离因子,远高于使用亲水性支撑体制备的复合膜。
[0086]
上述的这些在不同支撑体上制备得到的分离膜具有较大的性能上差异,因为选择层的厚度基本保持在6微米,而且在分离乙醇/水体系时并未观察到这种现象。换而言之,这四种pdms膜对乙醇的分离因子和通量与支撑体无关。进一步使用具有疏水性的ptfe作为支撑体,但是孔径相对较小(110nm和50nm)。如图12所示,结果显示当支撑体孔径达到50nm时,膜性能开始下降。这就表明支撑体的孔径是影响复合膜分离苯酚/水体系的关键性因素,而不是支撑体的亲疏水性。在渗透汽化过程中,当渗透分子达到选择层的边界时,分子会以气态经过支撑层。一旦渗透物的平均自由程大于支撑体的孔径,渗透物会以努森流的形式进行扩散并造成渗透物分压快速下降。支撑体的孔径越小,越容易导致孔冷凝,并发生膜孔的堵塞,当渗透物分子的尺寸和沸点更高时,这种孔冷凝会更加明显,这就说明了支撑体的孔径会显著影响到pdms-(c6h5)2分离苯酚/水体系的性能。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献