一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种压气机流动系统失稳的识别算法的制作方法

2022-03-08 20:06:30 来源:中国专利 TAG:


1.本公开涉及航空发动机喘振/失速甄别技术,尤其涉及一种压气机流动系统失稳的识别算法。


背景技术:

2.压气机作为航空发动机三大核心部件之一,其功能就是给下游部件提供源源不断的高压气流。当压气机在某一转速下的工作时,随着空气流量减少,压气机的压力和空气流量出现波动,甚至发生气流的轴向震荡,并伴有异常声响,说明压气机发生了流动失稳现象,而压气机流动的系统性失稳通常指喘振,一旦发生喘振,不但使性能急剧恶化,其由于气流轴向震荡带来的剧烈振动还可能会导致叶片断裂,进而造成重大事故,因此对压气机失稳的检测尤为关键。压气机出口压力较其他参数能够迅速的反应压气机的状态,测量也较容易,因此通常采用压气机出口压力作为输入信号,通过相关算法提取特征来甄别压气机是否发生失稳。
3.现在通常采用方差法、小波法、相关函数法以及能量法等,通常设定阈值,当压气机接近失稳状态时,用于检测的特征系数骤变,当超出阈值时,判定为压气机进入失稳状态。此类方法可以快速检测到压气机流动系统失稳现象,但仍存在以下问题:(1)通用性差。一种算法对某种类型的失稳检测有效,针对其他失稳类型效果未必好。(2)抗干扰能力差。在实际应用时由于受干扰等因素影响,检测效果大打折扣。(3)过渡态检测效果差。目前的方法大多对过渡态压力信号检测效果不佳。(4)阈值设定麻烦且不准确。阈值太低造成误报率高,阈值太高则及时性差,平衡点不易把握。


技术实现要素:

4.有鉴于此,本公开实施例提供一种压气机流动系统失稳的识别算法,该方法可以结合压气机失稳时出口压力骤降的特点,提取动态压力对时间的一阶导数,采用多窗口高斯系数加权旨在解决一阶导数信号平滑度与灵敏度冲突的问题,通过设计阈值可实现在线稳态、过渡态实时检测,保障发动机稳定安全工作。
5.为了实现上述目的,本发明提供如下技术方案:
6.一种压气机流动系统失稳的识别算法,包括如下步骤:
7.步骤1:设置初值,所述初值包括压气机出口动态压力信号采样率fs、窗口宽度twin、步长tstep、检测门限gth;
8.步骤2:计算压气机出口压力变化率:相隔nstep个样本点计算一次平均变化率,计算一阶导数,取时间窗口计算压力平均值,通过相隔j个窗口的平均值计算压力变化率,再根据当前压力计算得到相对变化率设为r(n),如式1:
[0009][0010]
步骤3:通过高斯加权系数g计算当前分析时刻压力的高斯平均变化率g,如式2:
[0011][0012]
其中,向量g长度为2j 1,服从高斯分布,即g~n(μ,σ2),μ和σ分别代表均值与标准差;
[0013]
步骤4:对比阈值判断:若高斯平均变化率g《检测门限gth,则判断为失稳,发出报警信号;否则,判断为压气机稳定工作状态。
[0014]
进一步地,步骤4之后还包括,当判断为压气机稳定工作状态时,返回至步骤2,持续进行在线检测。
[0015]
进一步地,当为前j个检测周期时,不进行步骤4中的对比阈值判断,直接返回步骤2。
[0016]
进一步地,所述步骤1中窗口宽度twin取值范围为10~50ms,步长tstep取值范围为1~5ms。
[0017]
进一步地,所述步骤1中窗口宽度twin取值为20ms。
[0018]
进一步地,所述步骤2中j取值范围为1~6。
[0019]
进一步地,所述步骤3中标准差σ取值范围为0.5~1。
[0020]
进一步地,所述步骤4中检测门限gth取值范围为-4~-1。
[0021]
进一步地,所述步骤4中检测门限gth取值为-3。
[0022]
本发明的压气机流动系统失稳的一种识别算法。具有以下有益效果:(1)以准确可靠地快速检测出压气机流动系统性失稳现象,检测滞后时间少于喘振1/4周期;(2)过渡态失稳检测无需调整阈值;(3)解决了压力变化率均值滤波中信号平滑度与灵敏度冲突的问题,在满足数据平滑的同时,与原数据贴合度高且大幅缩短滞后时间;(4)动态压力信号的采样率大于50hz即可,不需要过高的采样率。
附图说明
[0023]
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
[0024]
图1为本发明实施例中在线滑窗检测原理示意图;
[0025]
图2为本发明识别算法模型流程图;
[0026]
图3为本发明实施例中窗口加权示意图;
[0027]
图4为本发明实施例中某压气机出口静压动态信号及检测结果(稳态1);
[0028]
图5为本发明实施例中某压气机出口静压动态信号及检测结果(稳态2);
[0029]
图6为本发明实施例中某压气机出口静压动态信号及检测结果(过渡态);
[0030]
图7为本发明实施例中高斯加权效果图。
具体实施方式
[0031]
下面结合附图对本公开实施例进行详细描述。
[0032]
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书
所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
[0033]
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
[0034]
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
[0035]
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
[0036]
本公开实施例提供一种压气机流动系统失稳识别算法:
[0037]
步骤1.设置初值。设定压气机出口动态压力信号采样率fs(hz)、检测窗口宽度twin、步长tstep、检测门限gth;分析窗口长度twin一般取值10~50ms,典型取20ms(窗口样本点数nwin=fs
×
twin);步长tstep通常取值1~5ms(步长样本点数nstep=fs
×
tstep);检测门限gth取-4~-1,典型值取-3;滑窗检测原理见图1。
[0038]
步骤2.计算压气机出口压力变化率。相隔nstep个样本点计算一次平均变化率。计算一阶导数,取时间窗口计算压力平均值,相隔j个窗口的平均值计算压力变化率,再除以此时的压力得到相对变化率设为r(n)(式1):
[0039][0040]
其中,j取值范围1~6。
[0041]
步骤3.通过高斯加权系数g加权计算当前分析时刻压力的高斯平均变化率g(式2):
[0042][0043]
其中,向量g长度为2j 1,服从高斯分布,即g~n(μ,σ2),μ和σ分别代表均值与标准差,σ取值范围0.5~1。
[0044]
步骤4.对比阈值判断。若g≤gth,则判断为失稳,发出报警信号;否则判断为压气
机稳定工作状态。转向第2步,持续进行在线检测。(注:当为前j个检测周期时,不进行比较判断,直接转向第2步)。模型流程图见图2。
[0045]
接下来,结合实施例和附图对本发明做进一步描述。
[0046]
步骤1.设置初值。设定动态压力信号采样率fs=10khz、计算窗口长度n=200(即图1中twin=0.02s),检测周期nstep=50(步长tstep=0.005s)、检测门限gth=-3,j取4。检测信号采用压气机出口静压动态信号。
[0047]
步骤2.计算k时刻的r值。记p3(k-j)为当前分析窗口前第j个分析窗口的压力平均值,计算压气机出口压力变化率。相隔50个样本点计算一次平均变化率。取时间窗口计算压力平均值p3(k),相隔4个窗口的平均值计算压力变化率p3dot(k),采用式(1)计算此时的压力得到相对变化率设为r(k):
[0048][0049]
步骤3.采用式(2)计算当前分析时刻压力的高斯平均变化率g(k),向量g长度为9,服从高斯分布,即g~n(μ,σ2),μ为均值,σ标准差取值0.8,即:
[0050][0051]
窗口加权示意图见图3。
[0052]
步骤4.对比阈值判断。若g(k)《gth,则判断为失稳,发出报警信号;否则判断为压气机稳定工作状态。转向第2步,持续进行在线检测。(注:当为前4个检测周期时,不进行比较判断,直接转向第2步)。
[0053]
高斯加权的计算方法可以使得数据在满足平滑度要求的同时,与原数据贴合度高且大幅缩短滞后时间,最终所得的检测结果如图4~图6所示。图4和图5为某压气机稳态失稳数据,以图4中的检测结果为例,设压气机出口静压骤降的起始时刻为开始进入失稳的时刻(即图4中6.042s时刻),则可在其之后0.024s发出喘振报警信号(即图4中6.066s时刻);图6为某压气机过渡态失稳数据,在油门杆向上推的过程中发生喘振(即图6中2.411s时刻),在其之后0.034s发出喘振报警信号(即图6中2.445s时刻),可见模型对于过渡态失稳仍有不错的鲁棒性。效果对比结果如图7所示,数据仍选择图5中的压气机出口静压,与均值滤波相对比,例中高斯加权后的触发报警时间提前0.009s,在保证可靠性的同时,提高了压气机气动失稳检测的时效性。
[0054]
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献