一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

增强电纺纤维膜力学性能的方法与流程

2022-02-25 22:49:27 来源:中国专利 TAG:


1.本发明属于纳米材料制备技术领域,具体涉及增强电纺纤维膜力学性能的方法。


背景技术:

2.在过去几十年中,经过大量的研发,创造了具有适当生物物理和生物化学特性的新型生物材料,能够再生受损组织并恢复其功能。在工程生物材料中,聚合物纳米纤维已成为多种生物医学应用的潜在候选者,包括药物输送、生物传感、组织工程和再生医学。聚合物纳米纤维的吸引人的特征包括比表面积大、具有机械柔性,易于制造,表面易改性以生产功能性纳米纤维,以及它们具有在体内模拟生理微环境方面的能力。
3.静电纺丝技术作为一种能够直接、连续地制备微纳米聚合物纤维材料的技术,受到了学术界和产业界的广泛关注。溶液静电纺丝的典型装置包括高压电源、注射泵、喷丝头和导电收集器。静电纺丝由电流体动力学过程控制,在此过程中,聚合物溶液通过喷丝头注入,产生悬垂液滴,然后受到电压源施加的电场的影响。因此,电荷积聚在液滴表面,将液滴拉长成射流,然后通过溶剂蒸发进行拉伸、伸长和固化,最终生成聚合物纳米纤维。这种纤维通常沉积在收集器上,形成非织造网,但是这种溶剂直接挥发得到的纳米纤维膜力学性能,从而较差,难以满足它的诸多应用。
4.目前,改善静电纺纳米纤维膜力学性能的方法主要有:1.聚合物共混改性法;2.热处理法;3.添加纳米颗粒共混法。上述方法不仅会降低纤维膜本身组分的纯度,也会影响纤维膜本身的多孔性,并且需要额外的耗能。


技术实现要素:

5.针对上述现有技术的不足,本发明提供了增强电纺纤维膜力学性能的方法,目的是为了解决电纺纳米纤维膜的力学性能不佳,现有改善方法不仅会降低纤维膜本身组分的纯度,也会影响纤维膜本身的多孔性,并且需要额外的耗能的技术问题。
6.本发明提供的增强电纺纤维膜力学性能的方法,具体技术方案如下:
7.增强电纺纤维膜力学性能的方法,包括如下步骤:
8.s1,配制致密层纺丝液,进行第一层静电纺丝处理,获得致密层纤维膜;
9.s2,配制粘合层纺丝液,并在粘合层纺丝液中加入增强溶剂,将静电纺丝机的接收板与纺丝喷头的接收距离调整为5-18cm,且接收板的接收面朝上,在步骤s1中的致密层纤维膜上进行第二层静电纺丝处理,获得双层纳米纤维膜;
10.所述粘合层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种;
11.所述增强溶剂为n,n-二甲基甲酰胺、二甲亚砜、乙二醇和乙二醇单甲醚中一种或多种;所述增强溶剂具有高的沸点,并且不会破坏纤维的结构,不具有强腐蚀性。
12.s3,配制无纺层纺丝液,在步骤s2中双层纳米纤维膜的致密层上进行第三层静电
纺丝处理,获得具有三层结构的电纺纤维膜。
13.在某些实施方式中,步骤s1中,所述致密层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种。
14.在某些实施方式中,在步骤s2中,所述接收板为平面接收板、弧面接收板或滚筒式接收板。
15.在某些实施方式中,在步骤s2中,所述粘合层纺丝液包括聚乳酸,所述增强溶剂为n,n-二甲基甲酰胺。
16.在某些实施方式中,在步骤s2中,所述粘合层纺丝液包括聚丁二酸丁二醇酯,所述增强溶剂为二甲亚砜。
17.在某些实施方式中,在步骤s3中,所述无纺层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种。
18.本发明具有以下有益效果:本发明提供的增强电纺纤维膜力学性能的方法,利用在粘合层纺丝溶液中添加增强溶剂,在静电纺丝的过程中降低接收距离。通过低挥发性溶剂使得纤维到达接收板时仍具有一定的流动性,在重力的作用下黏连在致密层纤维间膜上;并且粘合层接触的地方会发生黏连,纤维层之间更加紧密;最后将无纺层粘合在粘合层之上形成三层结构的电纺纤维膜。在结构不被破坏的情况下极大提升了电纺纤电纺纤维膜的力学性能。相对于现有的技术来说,本发明操作简单、可控性高、增强效果好、并且能保持电纺纤维膜表面的多孔结构;仅通过调节接收距离和低挥发性溶剂含量就可调节粘合层的孔隙率及拉伸时的共结晶程度。本发明在不破坏纤维结构的情况下,使得200μm厚度的电纺纤维膜承受大于32n的拉力。
附图说明
19.图1为本发明实施例1中致密层纤维膜的扫描电镜照片;
20.图2为本发明实施例1中粘合层纤维膜的扫描电镜照片;
21.图3为本发明实施例1中无纺层纤维膜的扫描电镜照片。
具体实施方式
22.为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图1-3,对本发明进一步详细说明。
23.本发明提供的增强电纺纤维膜力学性能的方法,具体技术方案如下:
24.增强电纺纤维膜力学性能的方法,包括如下步骤:
25.s1,配制致密层纺丝液,进行第一层静电纺丝处理,获得致密层纤维膜;
26.s2,配制粘合层纺丝液,并在粘合层纺丝液中加入增强溶剂,将静电纺丝机的接收板与纺丝喷头的接收距离调整为5-18cm,且接收板的接收面朝上,在步骤s1中的致密层纤维膜上进行第二层静电纺丝处理,获得双层纳米纤维膜;
27.所述粘合层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己
内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种;
28.所述增强溶剂为n,n-二甲基甲酰胺、二甲亚砜、乙二醇和乙二醇单甲醚中一种或多种;所述增强溶剂具有高的沸点,并且不会破坏纤维的结构,不具有强腐蚀性。
29.s3,配制无纺层纺丝液,在步骤s2中双层纳米纤维膜的致密层上进行第三次静电纺丝处理,获得电纺纤维膜。
30.具体地,步骤s1中,致密层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种。
31.具体地,步骤s2中,接收板为平面接收板、弧面接收板或滚筒式接收板。
32.具体地,在步骤s2中,粘合层纺丝液包括聚乳酸,增强溶剂为n,n-二甲基甲酰胺。
33.具体地,在步骤s2中,粘合层纺丝液包括聚丁二酸丁二醇酯,增强溶剂为二甲亚砜。
34.具体地,在步骤s3中,无纺层纺丝液为聚乳酸-羟基乙酸共聚物、聚l-丙交酯-己内酯、聚乳酸、聚己内酯、聚偏四氟乙烯、聚丁二酸丁二醇酯,聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯,聚乙烯醇,聚丙烯,玉米醇溶蛋白和聚丙烯腈中的一种或多种。
35.实施例1
36.将聚偏氟乙烯溶解在n,n-二甲基甲酰胺(dmf)与丙酮(ace)体积比为3:1的混合溶剂中,配制成质量体积比为25%的纺丝溶液作为致密层纺丝液和无纺层纺丝液。将聚乳酸-羟基乙酸共聚物溶解在n,n-二甲基甲酰胺(dmf)与丙酮(ace)体积比为9:1的混合溶剂中,配制成质量体积比为47%的纺丝溶液作为粘合层纺丝液。静电纺丝处理中均用滚筒作为接收装置制备电纺纤维膜,在第一次静电纺丝处理和第三次静电纺丝处理中,纺丝接收距离为30cm;第二次静电纺丝处理中,接收距离设置为12cm。从而获得了基于添加粘合层使纤维层与纤维间连接处产生黏连的三层电纺纤维膜,所得电纺纤维膜室温真空干燥,能够承受最大35n的拉力。
37.实施例2
38.将聚乳酸溶解在n,n-二甲基甲酰胺(dmf)与二氯甲烷(dcm)体积比为1:4的混合溶剂中,配制成质量体积比为20%的纺丝溶液作为致密层纺丝液和无纺层纺丝液。将聚乳酸-羟基乙酸共聚物溶解在n,n-二甲基甲酰胺(dmf)与丙酮(ace)体积比为5:1的混合溶剂中,配制成质量体积比为45%的纺丝溶液作为粘合层纺丝液。静电纺丝处理中均用滚筒作为接收装置制备电纺纤维膜,在第一次静电纺丝处理和第三次静电纺丝处理中,纺丝接收距离为25cm;第二次静电纺丝处理中,将纺丝接收距离设置为16cm。从而获得了基于添加粘合层使纤维层与纤维间连接处产生黏连的三层电纺纤维膜,所得电纺纤维膜室温真空干燥,能够承受最大32n的拉力。
39.实施例3
40.将聚l-丙交酯-co-己内酯溶解在六氟异丙醇(hfip)与二氯甲烷(dcm)体积比为1:1的混合溶剂中,配制成质量体积比为20%的纺丝溶液作为致密层纺丝液和无纺层纺丝液。将聚乳酸-羟基乙酸共聚物溶解在n,n-二甲基甲酰胺(dmf)与丙酮(ace)体积比为3:1的混合溶剂中,配制成质量体积比为47%的纺丝溶液作为粘合层纺丝液。静电纺丝处理中均用
滚筒作为接收装置制备电纺纤维膜,在第一次静电纺丝处理和第三次静电纺丝处理中,纺丝接收距离为28cm;第二次静电纺丝处理中,将纺丝接收距离设置为5cm。从而获得了基于添加粘合层使纤维层与纤维间连接处产生黏连的三层电纺纤维膜,所得电纺纤维膜室温真空干燥,能够承受最大40n的拉力。
41.综上所述,本发明提供的增强电纺纤维膜力学性能的方法,利用增强溶剂的低挥发性,在静电纺丝的过程中降低接收距离。通过增强溶剂使得纤维到达接收板时仍具有一定的流动性。在重力的作用下纤维间接触的地方会发生黏连,纤维层之间更加紧密。在结构不被破坏的情况下提升了电纺纤维膜的力学性能。相对于现有的技术来说,本发明操作简单、可控性高、增强效果好、并且能保持电纺纤维膜表面的多孔结构;仅通过接收距离和低挥发性溶剂含量就可增强不同材料电纺纤维膜的力学性能。本发明在不破坏纤维结构的情况下,使得电纺纤维膜的力学拉伸强度提升200%以上。
42.上述仅本发明较佳可行实施例,并非是对本发明的限制,本发明也并不限于上述举例,本技术领域的技术人员,在本发明的实质范围内,所作出的变化、改型、添加或替换,也应属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献