一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种电梯乘运质量检测方法及检测系统与流程

2022-02-25 21:47:04 来源:中国专利 TAG:


1.本发明涉及电梯质量检测领域,更具体地,涉及一种电梯乘运质量检测方法及检测系统。


背景技术:

2.为实现对电梯乘运质量的测量,需要实时采集电梯运行过程中的加速度、速度、振动等乘运质量相关数据,根据采集的数据并与国标《国家标准gb/t 24474.1-2020》比较,从而来判断电梯的电梯乘运质量。对于电梯运行数据采集,目前通常都是安装加速度传感器直接采集电梯整个运行过程中的数据。如中国专利申请cn201620991424公开一种电梯振动加速度无线测量系统,该方案包括终端和与终端进行通信的轿厢振动监测传感系统,轿厢振动监测传感系统包括电源管理模块和依次连接的三轴加速度传感器模块、微处理器和无线通信模块,通过微处理器和三轴加速度传感器模块对电梯整个运行过程中的三个方向的振动加速度进行实时采集和记录。
3.现有商用传感器的自振频率通常在10000hz以上,且1hz以下的低频性能差,故传统的测量方法对低速重载的电梯承运质量测量不适用。适应于测量电梯乘运质量的三轴低频传感器,目前市面上还没有成熟的商业化产品。
4.另外,电梯在开、关门以及停靠过程中会存在较大振动、抖动或噪音等干扰信号,使用该过程采集的数据进行乘运质量测量分析,不仅会造成测量分析过程更为复杂,还会影响测量分析的精度。因此需要对采集到的信号进行滤波或者模式分解等信号处理,提高实测加速度信号的信噪比。


技术实现要素:

5.本发明针对现有技术中存在的技术问题,提供一种电梯乘运质量检测方法及检测系统,能够解决普通商用高频传感器低频性能差的问题,准确测量低频重载下的电梯关键数据,使得电梯乘运质量的检测结果更加可靠。
6.根据本发明的第一方面,提供了一种电梯乘运质量检测方法,包括:基于安装于电梯内部的低频电容式三轴加速度传感器采集电梯从关门动作完成到开门动作完成过程中,电梯运行时x轴、y轴、z轴三个方向上的时间序列加速度信号;对于每一个方向上的时间序列加速度信号,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量;选取与所述时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;将三个方向上的所述最佳分量与标准进行比对,基于比对结果,对电梯乘运质量进行分析。
7.根据本发明的第二方面,提供一种电梯乘运质量检测系统,包括包括低频电容式三轴加速度传感器和处理器;所述低频电容式三轴加速度传感器安装于电梯内部,用于采集电梯从关门动作完成到开门动作完成过程中,电梯运行时x轴、y轴、z轴三个方向上的时间序列加速度信号;所述处理器包括:分解降噪模块,用于对于每一个方向上的时间序列加
速度信号,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量;选取模块,用于选取与所述时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;比对分析模块,用于将三个方向上的所述最佳分量与标准进行比对,基于比对结果,对电梯乘运质量进行分析。
8.本发明提供的一种电梯乘运质量检测方法及检测系统,基于安装于电梯内部的低频电容式三轴加速度传感器采集电梯运行时的时间序列加速度信号;基于动态模式卡普曼分解法对时间序列加速度信号进行分解降噪,获取对应的多个特征向量;选取与时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;将最佳分量与标准进行比对,对电梯乘运质量进行分析。通过自制的低频应变式三轴加速度传感器对电梯关键数据进行测量,能够解决普通商用高频传感器低频性能差的问题,准确测量低频重载下的电梯关键数据,使得电梯乘运质量的检测结果更加可靠;以及通过动态模式卡普曼分解法对采集到的加速度进行分解降噪,并选择分量与原始信号之间有最大互相关系数的分量代表原始信号数据,大幅减少环境因素对原始数据产生的影响,减小电梯乘运质量的检测结果的误差。
附图说明
9.图1为本发明提供的一种电梯乘运质量检测方法流程示意图;
10.图2为本发明提供的一种电梯乘运质量检测方法的流程图;
11.图3为本发明提供的一种电梯乘运质量检测系统的结构示意图;
12.图4为低频电容式三轴加速度传感器的结构示意图。
13.附图中,各标号所表示的部件名称如下:
14.1、壳体,2、质量块,3、悬臂梁,4、电阻应变片,5、粘性油。
具体实施方式
15.下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
16.实施例一
17.一种电梯乘运质量检测方法,参见图1,主要包括:基于安装于电梯内部的低频电容式三轴加速度传感器采集电梯从关门动作完成到开门动作完成过程中,电梯运行时x轴、y轴、z轴三个方向上的时间序列加速度信号;对于每一个方向上的时间序列加速度信号,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量;选取与所述时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;将三个方向上的所述最佳分量与标准进行比对,基于比对结果,对电梯乘运质量进行分析。
18.可以理解的是,本发明实施例通过自主研发的低频电容式三轴加速度传感器和噪声传感器采集电梯运行数据,利用动态模式卡普曼分解(dmkd)对采集到的运行数据进行分解、滤波降噪,选取互相关峭度最高的一组数据作为数据分解后的最佳分量,并与《国家标准gb/t 24474.1-2020》中加速度、振动、噪声、a95、v95等进行比较,得出电梯乘运质量是否合格的结论。
19.其中,dmkd(dynamic mode koopman decomposition):动态模式卡普曼分解。a95:在定义的界限范围内,95%采样数据的加速度或振动的值小于或等于的值。a95加速度应是在值域之间的前半部分信号中,在最大速度的5%~95%的范围内计算。a95减速度应是在值域之间的后半部分信号中,在最大速度的95%~5%的范围内计算。v95:v95速度计算的界限范围应是:从加速段最大速度的95%后1s到减速段最大速度的95%前1s。
20.具体的,将低频电容式三轴加速度传感器安装于电梯的内部,比如,电梯的顶部,分别采集电梯从关门到开门这段过程中x、y和z轴三个方向上的时间序列加速度信号。分别对x轴、y轴、z轴三个方向上的时间序列加速度信号,动态模式卡普曼分解法对时间序列加速度信号进行分解降噪,获取时间序列加速度信号对应的多个特征向量。计算每一个特征向量与原始时间序列加速度信号之间的互相关系数,选取互相关系数最大的特征向量作为时间序列加速度信号的最佳分量,得到三个方向上时间序列加速度信号对应的最佳分量。根据三个方向上的最佳分量与标准范围的比对结果,对电梯的乘运质量进行分析,比如,电梯乘运质量是否合格。
21.本发明通过自制的低频应变式三轴加速度传感器对电梯关键数据进行测量,能够解决普通商用高频传感器低频性能差的问题,准确测量低频重载下的电梯关键数据,使得电梯乘运质量的检测结果更加可靠;以及通过动态模式卡普曼分解法对采集到的加速度进行分解降噪,并选择分量与原始信号之间有最大互相关系数的分量代表原始信号数据,大幅减少环境因素对原始数据产生的影响,减小电梯乘运质量的检测结果的误差。
22.实施例二
23.一种电梯乘运质量检测方法,参见图2,主要包括如下步骤:
24.s1,基于安装于电梯内部的低频电容式三轴加速度传感器采集电梯从关门动作完成到开门动作完成过程中,电梯运行时x轴、y轴、z轴三个方向上的时间序列加速度信号。
25.具体的,将低频电容式三轴加速度传感器安装于电梯内,当电梯从关门动作完成到再次开门开启的运行过程中,利用低频电容式三轴加速度传感器采集电梯运行过程中的x轴、y轴和z轴三个方向的时间序列加速度信号。
26.s2,对于每一个方向上的时间序列加速度信号,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量。
27.可以理解的是,对于每一个方向轴上的时间序列加速度信号,均基于动态模式卡普曼分解法对时间序列加速度信号进行分解降噪。动态模式卡普曼分解法的输入为时间序列加速度信号,输出为对应的分解特征。
28.作为实施例,定义时间序列加速度信号为sn={s1,s2,..,sn},n为时间序列加速度信号的长度,设置所述时间序列加速度信号sn={s1,s2,..,sn}的顺序参数d和动态模式选择数m,其中,d和m为正整数。基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,得到所述时间序列加速度信号对应的分解特征f
dmd
,所述分解特征f
dmd
包含多个特征向量。
29.其中,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量的具体过程为:
30.(1)基于所述时间序列加速度信号为sn={s1,s2,..,sn},定义
其中:
[0031][0032]
(2)对进行奇异值分解,得到其中,t为n
×
n的正交矩阵,t
t
表示t矩阵的转置,u为m
×
m的正交矩阵,∑表示m
×
n的对角矩阵。
[0033]
(3)定义高阶koopman算子,且对所述高阶koopman算子进行特征分解,得到其中,eig
vec
包含特征向量,每列一个,按eig
val
中多个特征值的大小排序。
[0034]
(4)获取分解特征其中x

y是向量x和y的串联。
[0035]
s3,选取与所述时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量。
[0036]
具体的,上述步骤s2对时间序列加速度信号分解降噪后得到多个特征向量计算每一个特征向量与原始的时间序列加速度信号之间的互相关系数,其中,互相关系数的计算公式为:
[0037][0038]
通过上述公式计算得到n个互相关系数,选取最大互相关系数对应的作为时间序列加速度信号的最佳分量。
[0039]
对于x轴、y轴和z轴三个方向的时间序列加速度信号,均采用相同的方式选取最佳分量,得到三个最佳分量。
[0040]
s4,将三个方向上的所述最佳分量与标准进行比对,基于比对结果,对电梯乘运质量进行分析。
[0041]
可以理解的是,对于选择的分量与《国家标准gb/t24474.1-2020》中加速
度标准进行比对,得出电梯乘运质量是否合格的结论。
[0042]
具体的,如果三个方向上对应的最佳分量均在标准范围内,则电梯乘运质量合格,若只要有一个方向上对应的最佳分量不在标准范围内,则电梯乘运质量不合格。
[0043]
实施例三
[0044]
一种电梯乘运质量检测系统,参见图3,该检测系统包括低频电容式三轴加速度传感器10和处理器11。
[0045]
其中,低频电容式三轴加速度传感器10安装于电梯内部,用于采集电梯从关门动作完成到开门动作完成过程中,电梯运行时x轴、y轴、z轴三个方向上的时间序列加速度信号。
[0046]
处理器11包括分解降噪模块111、选取模块112和比较分析模块113,其中:
[0047]
分解降噪模块111,用于对于每一个方向上的时间序列加速度信号,基于动态模式卡普曼分解法对所述时间序列加速度信号进行分解降噪,获取所述时间序列加速度信号对应的多个特征向量;选取模块112,用于选取与所述时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;比对分析模块113,用于将三个方向上的所述最佳分量与标准进行比对,基于比对结果,对电梯乘运质量进行分析。
[0048]
作为实施例,低频电容式三轴加速度传感器10的结构可参见图4,在壳体1上固定一质量块2,其中,壳体1上抹上粘性油5,质量块2上的三个垂直方向上分别连接有悬臂梁3,每一个悬臂梁3的两面粘贴有电阻应变片4。利用三个垂直方向上的电阻应变片4采集电梯运行过程中在x、y、z三轴的时间序列加速度信号。
[0049]
具体的,由于商用传感器的自振频率通常在10000hz以上,且1hz以下的低频性能差,故传统的测量方法对低速重载的电梯承运质量测量不适用。
[0050]
本发明采用自制的低频应变式三轴加速度传感器对电梯关键数据如加速度进行测量。其中,低频应变式三轴加速度传感器的工作原理为:随着电梯加速度的变化,质量块会对三组相互垂直的电阻应变片施加力,电阻应变片受力后会产生相应的弯矩,通过电阻应变片的弯曲程度δx和灵敏度s的换算得出施加在电阻应变片上的力f=δx
·
s,根据牛顿第二定律:f=m
·
a,计算出加速度。
[0051]
本发明采用低频应变式三轴加速度传感器采集电梯运行过程中的加速度的优点为:
[0052]
(1)商用传感器的低频性能差,对低速重载的电梯乘运质量测量不适用,自制低频电容式三轴加速度传感器采用电阻应变片,对低频信号灵敏度高、响应快,能准确测量低频信号,适用于电梯乘运质量测量。
[0053]
(2)自制低频电容式三轴加速度传感器采用相互垂直的三组电阻应变片,能够测量x、y、z三轴的加速度,测量范围广,适用于电梯乘运质量测量。
[0054]
可以理解的是,本实施例三提供的电梯乘运质量检测系统与前述实施例一和实施例二提供的电梯乘运质量检测方法相对应,因此,实施例三提供的电梯乘运质量检测系统的相关技术特征可参考前述实施例一和实施例二提供的电梯乘运质量检测方法的相关技术特征,在此不再重复说明。
[0055]
本发明实施例提供的一种电梯乘运质量检测方法及检测系统,基于安装于电梯内部的低频电容式三轴加速度传感器采集电梯运行时的时间序列加速度信号;基于动态模式
卡普曼分解法对时间序列加速度信号进行分解降噪,获取对应的多个特征向量;选取与时间序列加速度信号互相关峭度最高的特征向量作为分解后的最佳分量;将最佳分量与标准进行比对,对电梯乘运质量进行分析。通过自制的低频应变式三轴加速度传感器对电梯关键数据进行测量,能够解决普通商用高频传感器低频性能差的问题,准确测量低频重载下的电梯关键数据,使得电梯乘运质量的检测结果更加可靠;以及通过动态模式卡普曼分解法对采集到的加速度进行分解降噪,并选择分量与原始信号之间有最大互相关系数的分量代表原始信号数据,大幅减少环境因素对原始数据产生的影响,减小电梯乘运质量的检测结果的误差。
[0056]
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
[0057]
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0058]
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献