一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种桨叶表面防雷击和电热防除冰涂层的制备方法与流程

2022-02-22 17:52:52 来源:中国专利 TAG:

1.本发明属于直升飞机防/除冰技术领域,具体涉及一种桨叶表面防雷击和电热防除冰涂层的制备方法。


背景技术:

2.直升飞机在寒冷、潮湿的空气中飞行时,过冷水滴撞击到机体表面、螺旋桨、发动机进气道及飞机其它部位都有可能引起不同程度的结冰。桨叶表面发生结冰时会引起重量和气动阻力增大、升力下降,从而导致飞机的操纵性和稳定性品质恶化。如果直升飞机部件没有有效的防/除冰措施,那么极易造成飞机的重大安全事故。英国吉凯恩航空服务有限公司提出了一种电热式加热衬垫和制造电热式加热衬垫的方法(cn 102822056),采用火焰喷涂技术将金属轨道喷涂到热塑性材料基体上起到防除冰的作用;专利cn 106811714公开了一种高电阻率电热涂层及其制备方法和应用,主要采用热喷涂法制备cumn合金和玻璃粉组成的复合粉体,涂层室温电阻率(50~1000)
×
10-8
ω
·
m;专利cn108220859公开了一种电热涂层及其制备方法,采用热喷涂技术制备绝缘涂层和fecraly发热涂层,由于树脂基复合材料耐热性能和导热性能与传统金属材料差距较大,直接采用热喷涂技术制备绝缘层极易造成复合材料制件的烧损,对于喷涂工艺的控制难度极大。另一方面,直升飞机飞行过程中桨叶属于易遭受雷击的部位,一旦遭遇雷击损伤防除冰系统将瞬间断路失效,给飞行安全造成极大的威胁。


技术实现要素:

3.本发明目的在于克服现有技术的不足,提供一种兼具防雷击和电热防除冰功能的桨叶制造方法。
4.为实现上述发明目的,本发明的技术解决方案为:
5.一种桨叶表面防雷击和电热防除冰涂层的制备方法,在复合材料桨叶表面制备一种兼具防雷击功能的多层结构电热防除冰涂层,该多层结构包含依次层叠于桨叶表面的树脂-sio2过渡层、电阻加热层、绝缘导热层和导电金属层;具体制备过程包含以下步骤:
6.(1)采用工业丙酮或碱性清洗剂对复合材料桨叶表面进行擦洗,采用压缩空气吹干表面后待用;(2)桨叶前缘区域层铺树脂-sio2过渡层,过渡层厚度为20μm~70μm;(3)对过渡层表面进行清洗和吹砂预处理;(4)采用爆炸喷涂工艺制备多孔金属电阻加热层,厚度为20μm~100μm,孔隙率满足30%~60%;(5)在电阻加热层表面层铺氧化铝改性树脂绝缘导热层,绝缘导热层厚度20μm~70μm,氧化铝体积分数满足30%~35%;(6)在绝缘导热层表面,采用爆炸喷涂工艺制备导电金属层,厚度为50μm~100μm;(7)采用封孔剂或聚氨酯涂料对涂层表面进行刷涂或喷涂防护。
7.优选的,所述sio2的体积分数为65%~80%。
8.优选的,所述吹砂预处理采用碳化硅砂粒,砂粒粒径应≤198μm。
9.优选的,所述的树脂-sio2过渡层和氧化铝改性树脂绝缘导热层采用与桨叶相同
的树脂材料,所述树脂材料为改性环氧树脂、聚酰亚胺树脂、聚醚醚酮树脂或聚醚酰亚胺树脂中的一种。
10.优选的,所述的爆炸喷涂多孔金属电阻加热层为镍基合金或铜基合金涂层,所采用的粉末粒径为10μm~30μm。
11.优选的,所述的导电金属涂层为纯铜或纯铝涂层,所采用的粉末粒径为15μm~30μm。
12.优选的,所述的氧化铝改性树脂绝缘导热层采用棱形氧化铝颗粒,最大粒径不低于绝缘散热层厚度。
13.优选的,所述的爆炸喷涂工艺需使用机械手搭载喷枪,喷涂过程中控制基体温度不高于60℃。
14.本发明具有的优点和有益效果,本发明在传统电阻加热涂层基础上,设计了由树脂-sio2过渡层、电阻加热层、绝缘导热层和导电金属层多层结构涂层,使桨叶部件同时实现电热防除冰和防雷击功能,替代传统桨叶电热贴片和前缘包铁的工艺。
15.本专利采用多孔金属作为电热元件,通过树脂-sio2过渡层和氧化铝改性树脂绝缘导热层中树脂的渗透成为一体,提升了电热元件的抗疲劳性能,降低了传统贴装电热元件胶黏剂老化剥离的风险;
16.通过爆炸喷涂导电金属涂层,实现了雷击防护与耐环境(雨蚀、冲刷、三防)性能的统一,改善了传统桨叶金属包边工艺易脱粘的难题,显著降低了构件质量。
17.采用喷涂工艺制备电阻加热层和导电金属层,具有工艺过程可控性强、成本低,沉积效率高、随型性好的优点。
具体实施方式
18.以下叙述并不限制本发明。
19.以下结合实施例对本发明作进一步详细说明。应该理解的是,本发明实施例所述制备方法仅仅是用于说明本发明,而不是对本发明的限制,在本发明的构思前提下对本发明制备方法的简单改进都属于本发明要求保护的范围。
20.一种桨叶表面防雷击和电热防除冰涂层的制备方法,在复合材料桨叶表面制备一种兼具防雷击功能的多层结构电热防除冰涂层,该多层结构包含依次层叠于桨叶表面的树脂-sio2过渡层、电阻加热层、绝缘导热层和导电金属层;具体制备过程包含以下步骤:
21.(1)采用工业丙酮或碱性清洗剂对复合材料桨叶表面进行擦洗,采用压缩空气吹干表面后待用;
22.(2)桨叶前缘区域层铺树脂-sio2过渡层,过渡层厚度为20μm~70μm,sio2的体积分数为65%~80%;通过树脂-sio2过渡层结构,一方面可以起到电绝缘和改善力学性能的作用,另一方面可以改善电热层与桨叶基体的热不匹配。
23.(3)对过渡层表面进行清洗和吹砂预处理,采用碳化硅砂粒,砂粒粒径应≤198μm;
24.(4)采用爆炸喷涂工艺制备多孔金属电阻加热层,厚度为20μm~100μm,孔隙率满足30%~60%;多孔金属电阻加热层为镍基合金或铜基合金涂层,所采用的粉末粒径为10μm~30μm;爆炸喷涂工艺需使用机械手搭载喷枪,喷涂过程中控制基体温度不高于60℃。电阻加热层采用爆炸喷涂多孔金属涂层,一方面有利于后续绝缘导热层材料的渗入,提升涂
层电阻率和抗疲劳性能;另一方面,通过爆炸喷涂工艺过程基体温度控制,降低喷涂过程中的热影响,进一步提升涂层界面性能。
25.(5)在电阻加热层表面层铺氧化铝改性树脂绝缘导热层,绝缘导热层厚度20μm~70μm,氧化铝体积分数满足30%~35%;采用棱形氧化铝颗粒,最大粒径不低于绝缘散热层厚度。
26.通过氧化铝颗粒的添加可以在一定程度上改善树脂材料的导热性能和耐温能力,降低累积过程中的高温烧蚀损伤。
27.(6)在绝缘导热层表面,采用爆炸喷涂工艺制备导电金属层,厚度为50μm~100μm;导电金属涂层为纯铜或纯铝涂层,所采用的粉末粒径为15μm~30μm;爆炸喷涂工艺需使用机械手搭载喷枪,喷涂过程中控制基体温度不高于60℃。采用爆炸喷涂金属涂层替代传统包铁工艺,实现了雷击防护与耐环境(雨蚀、冲刷、三防)性能的统一,改善了传统桨叶金属包边工艺易脱粘的难题,显著降低了构件质量。同时具有工艺可控性强、成本低,沉积效率高、随型性好的优点。
28.(7)采用封孔剂或聚氨酯涂料对涂层表面进行刷涂或喷涂防护。
29.实施例1
30.桨叶采用碳纤维增强环氧树脂基复合材料,采用工业丙酮或碱性清洗剂对复合材料桨叶表面进行擦洗,采用压缩空气吹干表面后待用;桨叶前缘区域层铺玻璃纤维增强环氧树脂基复材过渡层,采用的树脂为液态环氧树脂,其中sio2的体积分数为65%,在120℃的热压罐环境下,固化3小时,获得厚度为20μm的过渡层。
31.对过渡层表面进行清洗和吹砂预处理,其中喷砂采用碳化硅砂粒,砂粒粒径为125μm,喷砂后表面粗糙度为ra3.2μm;采用爆炸喷涂工艺制备多孔金属电阻加热层,选用市售nicr粉末,ni元素质量分数为80%,粒度为10μm~30μm,喷涂工艺参数为:氧燃比1.0,充枪量35%,喷涂距离180mm,喷涂过程中基体温度控制55℃。获得的nicr涂层厚度为40μm,孔隙率为30%,结构电阻为45ω,功率密度为1.0w/cm2。
32.采用气体喷枪在电热层表面层铺氧化铝改性环氧树脂绝缘导热层,氧化铝形状为棱形,最大粒径为50μm,绝缘层厚度35μm,氧化铝体积分数满足30%;在绝缘导热层表面,采用爆炸喷涂工艺制备导电金属层,金属层材料为纯铝粉,粉末粒径为15μm~30μm,导电金属层厚度为75μm,表面电阻为0.5mω;采用市售的改性环氧面漆(牌号:881-h01)对导电金属层进行封闭处理。
33.所获得的涂层性能如下:
34.检验项目检验结果界面强度20.6mpa疲劳寿命≥107次雷击损伤层深度0.070mm雷击前后电阻波动
±
5%
35.实施例2
36.桨叶采用碳纤维增强聚醚醚酮树脂基复合材料,采用工业丙酮或碱性清洗剂对复合材料桨叶表面进行擦洗,采用压缩空气吹干表面后待用;桨叶前缘区域层铺玻璃纤维改性聚醚醚酮材料,采用的树脂为玻纤改性聚醚醚酮粉体,其中sio2的体积分数为60%,在
200℃的热压罐环境下,固化3小时,获得厚度为40μm的过渡层。
37.对过渡层表面进行清洗和吹砂预处理,其中喷砂采用碳化硅砂粒,砂粒粒径为125μm,喷砂后表面粗糙度为ra3.2μm;采用爆炸喷涂工艺制备多孔金属电阻加热层,选用市售铜镍合金粉末,ni元素质量分数为40%,粒度为10μm~30μm,喷涂工艺参数为:氧燃比1.0,充枪量30%,喷涂距离150mm,喷涂过程中基体温度控制50℃。获得的铜镍涂层厚度为20μm,孔隙率为30%,结构电阻为23ω,功率密度为2.0w/cm2。
38.采用气体喷枪在电热层表面层铺氧化铝短纤维改性聚醚醚酮绝缘导热层,绝缘层厚度40μm,氧化铝体积分数满足35%;在绝缘导热层表面,采用爆炸喷涂工艺制备导电金属层,金属层材料为纯铜粉,粉末粒径为15μm~30μm,导电金属层厚度为50μm,表面电阻为0.3mω;采用市售的聚氨酯树脂可剥涂料(牌号:b-66)对导电金属层进行封闭处理。
39.所获得的涂层性能如下:
40.检验项目检验结果界面强度19.8mpa疲劳寿命≥107次雷击损伤层深度0.050mm雷击前后电阻波动
±
5%
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献