一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种1.17μm自拉曼激光腔内泵浦3μm掺钬固体激光器的制作方法

2022-02-22 03:44:25 来源:中国专利 TAG:

一种1.17
μ
m自拉曼激光腔内泵浦3
μ
m掺钬固体激光器
技术领域
1.本发明涉及一种1.17μm自拉曼激光腔内泵浦3μm掺钬固体激光器,属于固体激光器技术领域。


背景技术:

2.中红外波段(即波长为3~5μm)激光逐渐成为国际激光技术领域的研究热点。中红外激光覆盖大气的重要传输窗口,对大雾、烟尘等具有较强的穿透力,且在海平面上传输时,受到气体分子的吸收和悬浮物的散射较小,可用于大气科学中痕量气体分析、废气检测以及对大范围地面的污染探测和大气污染分析。在医疗方面,由于生物细胞中水分子对中红外激光的吸收特性,中红外激光被广泛地应用于生物检测和医疗手术中,比如在牙科和眼科手术中,人们已经使用3μm波长的中红外激光来提高医疗的安全性和手术的准确性。但是目前3μm波长的中红外激光的激光器不仅结构复杂,而且价格高昂,不利于3μm激光广泛使用。
3.如图1所示,现有研究显示掺钬激光增益介质能够直接获得3μm激光,对应5i6→5i7激光跃迁过程。实现掺钬激光器3μm激光输出,最有效的泵浦方式为利用5i8→5i6跃迁,直接为激光上能级提供粒子数布局。5i8→5i6跃迁对应的吸收光谱在1.12~1.2μm范围。而该波段与目前成熟的商品化algaas、ingaas半导体激光器发射波长为0.8μm与其并不匹配。1.12~1.2μm高功率泵浦源的缺乏限制了3μm掺钬激光器的发展与应用。因此如何能利用已有的半导体激光器使掺钬激光器激发3μm波长的激光是本行业的研究方向。


技术实现要素:

4.针对上述现有技术存在的问题,本发明提供一种1.17μm自拉曼激光腔内泵浦3μm掺钬固体激光器,能利用已有的半导体激光器,通过掺钕激光自拉曼介质、掺钬固体激光介质和谐振腔镜的相互作用,最终实现3μm激光的持续稳定输出。
5.为了实现上述目的,本发明采用的技术方案是:一种1.17μm自拉曼激光腔内泵浦3μm掺钬固体激光器,包括壳体,以及壳体内设置的0.8μm半导体激光泵浦源、输入镜、掺钕激光自拉曼介质、中间镜、掺钬固体激光介质及输出镜;
6.所述中间镜处于输入镜和输出镜之间,输入镜表面设有第一镀膜,第一镀膜对0.8μm激光具有高透射率,同时对于1μm和1.17μm激光具有高反射率;中间镜表面设有第二镀膜,第二镀膜对1μm和1.17μm激光具有高透射率,同时对于3μm激光具有高反射率;输出镜表面设有第三镀膜,第三镀膜对1μm和1.17μm激光具有高反射率,同时对于3μm激光具有部分反射率;使输入镜与输出镜组成1μm基频光与1.17μm拉曼激光谐振腔;中间镜与输出镜组成3μm激光谐振腔;其中高透射率为透射率超过98%;高反射率为反射率超过99.8%;部分反射率为反射率处于85%至95%之间。
7.所述0.8μm半导体激光泵浦源处于输入镜的一侧,0.8μm半导体激光泵浦源用于向输入镜发射0.8μm激光对掺钕激光自拉曼介质进行泵浦;所述掺钕激光自拉曼介质放置在
输入镜和中间镜之间,用于吸收0.8μm激光产生1μm基频光与1.17μm拉曼激光,并在1μm基频光与1.17μm拉曼激光谐振腔内振荡;所述掺钬固体激光介质放置在中间镜和输出镜之间,用于吸收1.17μm拉曼激光产生3μm激光并且该激光部分在3μm激光谐振腔进行振荡,另一部分从输出镜直接输出3μm激光。
8.进一步,所述掺钕激光自拉曼介质为nd:yvo4或nd:gdvo4。
9.进一步,所述掺钬固体激光介质为ho:yag或ho:luyag。
10.进一步,所述0.8μm半导体激光泵浦源为algaas半导体激光器。
11.与现有技术相比,本发明采用0.8μm半导体激光泵浦源、输入镜、掺钕激光自拉曼介质、中间镜、掺钬固体激光介质及输出镜相结合的方式,其中受激拉曼散射是非线性光学领域重要的机制,属于光学三阶非线性范畴,可以大大扩展现有固体激光器的光谱覆盖范围。利用拉曼激光技术把成熟的1μm波段高功率激光波长拓展至更长波长范围研究与应用工作已较为成熟。自拉曼激光晶体是同时具有激光活性和拉曼活性的晶体,它的出现使得固态拉曼激光器的结构更加紧凑,成本更加低廉。本发明的掺钕激光自拉曼介质(如nd:yvo4晶体)为典型的自拉曼激光晶体。该晶体具有受激发射截面大、吸收带宽比较宽、吸收系数高、线偏振输出等优点,本发明通过808nm半导体激光器泵浦该介质能够高效产生1064nm激光,同时该介质在890cm-1
附近具备高增益的拉曼频移。因此基于808nm半导体激光器泵浦nd:yvo4能获得1175nm自拉曼激光。另外本发明中掺钬固体激光介质的5i8→5i6跃迁过程吸收的光谱较宽(一般处于1120-1180nm的光谱区间),其与上述掺钕激光自拉曼介质产生的自拉曼激光波长较为匹配。因此本发明通过0.8μm半导体激光器激发0.8μm激光,泵浦掺钕激光自拉曼介质产生1.17μm激光,从而可以匹配掺钬固体激光介质的吸收光谱,并通过输入镜、中间镜和输出镜的合理镀膜,将1μm和1.17μm激光谐振腔与3μm激光谐振腔从空间上部分分离,最终实现3μm激光的稳定输出,且该激光具有激光功率密度高且光束质量好的特点。另外0.8μm半导体激光器为成熟的商品化器件,不仅容易获得,而且性价比高。
附图说明
12.图1是ho离子能级跃迁示意图;
13.图2是本发明的原理结构示意图。
14.图中:1-0.8μm半导体激光泵浦源,2-输入镜,3-掺钕激光自拉曼介质,4-中间镜,5-掺钬固体激光介质,6-输出镜。
具体实施方式
15.下面将对本发明作进一步说明。
16.如图2所示,本发明包括壳体,以及壳体内设置的0.8μm半导体激光泵浦源1、输入镜2、掺钕激光自拉曼介质3、中间镜4、掺钬固体激光介质5及输出镜6;
17.所述中间镜处于输入镜2和输出镜6之间,输入镜2表面设有第一镀膜,第一镀膜对0.8μm激光具有高透射率,同时对于1μm和1.17μm激光具有高反射率;中间镜4表面设有第二镀膜,第二镀膜对1μm和1.17μm激光具有高透射率,同时对于3μm激光具有高反射率;输出镜6表面设有第三镀膜,第三镀膜对1μm和1.17μm激光具有高反射率,同时对于3μm激光具有部分反射率;使输入镜2与输出镜6组成1μm基频光与1.17μm拉曼激光谐振腔;中间镜4与输出
镜6组成3μm激光谐振腔;其中高透射率为透射率超过98%;高反射率为反射率超过99.8%;部分反射率为反射率处于85%至95%之间;
18.所述0.8μm半导体激光泵浦源1处于输入镜2的一侧,0.8μm半导体激光泵浦源1用于向输入镜2发射0.8μm激光对掺钕激光自拉曼介质3进行泵浦;所述掺钕激光自拉曼介质3放置在输入镜2和中间镜4之间,用于吸收0.8μm激光产生1μm基频光与1.17μm拉曼激光,并在1μm基频光与1.17μm拉曼激光谐振腔内振荡;所述掺钬固体激光介质5放置在中间镜4和输出镜6之间,用于吸收1.17μm拉曼激光产生3μm激光并且该激光部分在3μm激光谐振腔进行振荡,另一部分从输出镜6直接输出3μm激光。
19.上述第一镀膜、第二镀膜、第三镀膜、0.8μm半导体激光泵浦源1、输入镜2、掺钕激光自拉曼介质3、中间镜4、掺钬固体激光介质5及输出镜6均为现有部件或物质。
20.进一步,所述掺钕激光自拉曼介质3为nd:yvo4或nd:gdvo4。
21.进一步,所述掺钬固体激光介质5为ho:yag或ho:luyag。
22.进一步,所述0.8μm半导体激光泵浦源1为algaas半导体激光器。
23.工作时,0.8μm半导体激光泵浦源1向输入镜2发射0.8μm激光,由于输入镜2的第一镀膜对0.8μm激光具有高透射率,使0.8μm激光穿过输入镜2对掺钕激光自拉曼介质3进行泵浦,此时掺钕激光自拉曼介质3产生1μm基频波,并通过自身的受激拉曼散射散射效应将部分1μm基频光变频至1.17μm拉曼激光,由于输入镜2的第一镀膜和输出镜6的第三镀膜均对1μm和1.17μm激光具有高反射率,中间镜4的第二镀膜对1μm和1.17μm激光具有高透射率,然后这两种激光在输入镜2和输出镜6组成的1μm基频光与1.17μm拉曼激光谐振腔进行振荡,掺钕激光自拉曼介质3持续发生受激拉曼散射散射效应将部分1μm基频光变频至1.17μm拉曼激光,使内部的1.17μm拉曼激光持续增加;同时部分1.17μm拉曼激光被掺钬固体激光介质5吸收并产生3μm激光,由于中间镜4的第二镀膜对3μm激光具有高反射率,输出镜6的第三镀膜对3μm激光具有部分反射率,使得产生的3μm激光部分在中间镜4和输出镜6组成的3μm激光谐振腔进行振荡,另一部分从输出镜6直接输出3μm激光,在振荡过程中的3μm激光每次从输出镜6部分输出,同时掺钬固体激光介质5持续吸收1.17μm拉曼激光产生3μm激光,如此持续循环,最终实现3μm激光的稳定输出。
24.以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献