一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种抑制切割边缘漏电的晶体硅太阳能电池片、电池组件及制备方法与流程

2022-02-21 03:55:31 来源:中国专利 TAG:


1.本发明属于太阳能电池领域,尤其是涉及一种抑制切割边缘漏电的晶体硅太阳能电池片、电池组件及其制备方法。


背景技术:

2.为了降低晶体硅太阳能电池的制造成本,光伏用直拉单晶硅和铸造晶体硅不断向着大尺寸化的方向发展,电池片面积的增大会导致电流的增大,因此会产生更大的功率损失。但是由于电池片切割成半片后电流减半,可以显著降低组件的功率损失,因此主流的组件工艺都配套了激光切割设备。
3.如公开号为cn211957655u的中国专利文献公开了一种适用于半片太阳能电池制作的太阳能电池,在位于电池片表面的栅极区设有十字形间隙,所述十字形间隙的交点与所述电池片的中心点重合,将栅极区分隔为4个相等的、独立区域。位于栅极区上的十字形间隙的间隙线位于所述电池片的中线上,与所述电池片的边长等长。
4.公开号为cn111151896a的中国专利文献公开了一种太阳能电池片的切割方法及其切割设备,该方法主要采用两束激光对准电池片的待分裂线进行切割,同时,冷却部向分裂线处喷射冷却介质,使电池片在较小的内应力下被切割,分裂线处不会形成堆积物。
5.然而,现有结构的晶体硅太阳能电池片,在通过激光划片将电池片划开之后,裸露的切割截面会形成大量的复合中心,影响载流子的分离和收集,其中最主要的损失来自于切割截面pn结的漏电,这将导致半片电池严重的电学性能损失。


技术实现要素:

6.为解决现有技术存在的上述问题,本发明提供了一种抑制切割边缘漏电的晶体硅太阳能电池片、电池组件及其制备方法,获得的半片电池的切割边缘将不存在pn结,避免了切割边缘pn结漏电引起的电学性能损失,从而可以获得更高转换效率的半片电池及更高输出功率的太阳能电池组件。
7.一种抑制切割边缘漏电的晶体硅太阳能电池片,制备过程中,采用经过清洗和制绒的p型或n型硅片,在硅片正面形成pn结之后,在将要进行激光划片的硅片中线附近区域内先形成一层掺杂类型与硅片基体相同的扩散前驱体层,然后通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的发射极的掺杂类型转变为与硅片基体相同,最后经过电池工艺形成电池片。
8.进一步地,所述扩散前驱体层中掺杂的掺杂剂包括但不限于硼、镓、磷或砷。
9.进一步地,所述扩散前驱体层的形成方式包括但不限于等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、干氧氧化、湿氧氧化、旋涂或喷涂。
10.进一步地,所述扩散前驱体层的宽度为0.2~2mm,厚度为0.02~2um。
11.本发明还提供了一种perc结构的抑制切割边缘漏电的晶体硅太阳能电池片制备
方法,包括以下步骤:
12.(1)提供p型晶体硅片,进行清洗、制绒处理;
13.(2)在获得的硅片正面进行高温磷扩散,形成pn结,然后去除扩散过程形成的磷硅玻璃以及绕镀;
14.(3)在步骤(2)处理后获得的硅片正面通过旋涂或喷涂法形成一层光刻胶作为掩膜,露出正面中线附近的待处理区;
15.然后通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、旋涂或喷涂方式在中线附近形成一层含p型掺杂剂的扩散前驱体层;所述的p型掺杂剂包括但不限于硼或镓,所述的扩散前驱体层包括但不限于氮化硼或氧化镓;
16.(4)将步骤(3)处理后的硅片上的光刻胶去除;
17.(5)将步骤(4)处理后的硅片正面的扩散前驱体层通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的磷发射极进行补偿从而转变为p型,并对硅片背面进行抛光;
18.(6)在步骤(5)处理后的硅片背面沉积氧化铝膜和氮化硅膜,在硅片正面沉积氮化硅膜;
19.(7)在步骤(6)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,高温烧结后形成电极。
20.本发明还提供了一种topcon结构的抑制切割边缘漏电的晶体硅太阳能电池片制备方法,包括以下步骤:
21.(1)提供n型晶体硅片,进行清洗、制绒处理;
22.(2)在获得的硅片正面进行高温硼扩散,形成pn结,然后去除扩散过程形成的硼硅玻璃以及绕镀;
23.(3)在步骤(2)处理后的硅片正面通过旋涂或喷涂法形成一层光刻胶,使用掩膜处理露出中线附近的待处理区,然后通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、旋涂或喷涂方式在中线附近形成一层含n型掺杂剂的扩散前驱体层;所述的n型掺杂剂包括但不限于磷或砷,所述的扩散前驱体层包括但不限于三氯氧磷或五氧化二磷;
24.(4)将步骤(3)处理后的硅片上的光刻胶去除;
25.(5)将步骤(4)处理后的硅片正面的扩散前驱体层通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的硼发射极进行补偿从而转变为n型,并对硅片背面进行抛光;
26.(6)在步骤(5)处理后的硅片背面沉积一层隧穿氧化层,接着在所述隧穿氧化层上沉积一层n型重掺的非晶硅层,退火后形成n型重掺的多晶硅层;
27.(7)在步骤(6)处理后的硅片正面沉积氧化铝膜和氮化硅膜,在硅片背面沉积氮化硅膜;
28.(8)在步骤(7)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,高温烧结后形成电极。
29.本发明还提供了一种hjt结构的抑制切割边缘漏电的晶体硅太阳能电池片制备方法,包括以下步骤:
30.(1)提供n型晶体硅片,进行清洗、制绒处理;
31.(2)在获得的硅片正反两面形成本征非晶硅层或氢化本征非晶硅薄层;
32.(3)在步骤(2)处理后的硅片正反两面分别制备p 型掺杂非晶硅薄层和n 型掺杂非晶硅薄层;
33.(4)在步骤(3)处理后的硅片正面通过旋涂或喷涂法形成一层光刻胶,使用掩膜处理露出中线附近的待处理区,然后通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、喷涂或旋涂方式在中线附近形成一层含n型掺杂剂的扩散前驱体层;所述的n型掺杂剂包括但不限于磷或砷,所述的扩散前驱体层包括但不限于三氯氧磷或五氧化二磷;
34.(5)将步骤(4)处理后的硅片上的光刻胶去除;
35.(6)将步骤(5)处理后的硅片正面的扩散前驱体层通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的硼发射极进行补偿从而转变为n型;
36.(7)在步骤(6)处理后的硅片正反两面分别沉积ito导电层;
37.(8)在步骤(7)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,低温退火使电极与ito导电层之间形成良好的欧姆接触。
38.与现有技术相比,本发明具有以下有益效果:
39.本发明通过在硅片上形成pn结之后,在将要进行激光划片的硅片中线附近区域内先形成一层掺杂类型与硅片基体相同的扩散前驱体层,然后通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的发射极的掺杂类型转变为与硅片基体相同,这种方法获得的半片电池的切割边缘将不存在pn结,避免了切割边缘pn结漏电引起的电学性能损失,从而可以获得更高转换效率的半片电池及更高输出功率的太阳能电池组件。
附图说明
40.图1为本发明实施例1中perc结构的抑制切割边缘漏电的晶体硅太阳能电池片结构图;
41.图2为本发明实施例2中topcon结构的抑制切割边缘漏电的晶体硅太阳能电池片结构图;
42.图3为本发明实施例3中hjt结构的抑制切割边缘漏电的晶体硅太阳能电池片结构图。
具体实施方式
43.下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
44.如图1所示,一种perc结构的抑制切割边缘漏电的晶体硅太阳能电池片,其制备过程如下:
45.(1)提供p型晶体硅片15,进行清洗、制绒处理;其中,p型晶体硅片15的电阻率为0.5~1.5ω
·
cm;p型晶体硅片15的厚度为100~160μm。
46.(2)将获得的硅片放入工业用高温扩散炉对正面进行高温磷扩散,形成扩磷层13,然后去除扩散过程形成的磷硅玻璃以及绕镀;其中,磷源为三氯氧磷,磷扩散温度为750~
1000℃,时间为60~180分钟,磷扩散后的方阻值为50~100ω/sqr。
47.(3)在步骤(2)处理后获得的硅片正面通过旋涂或喷涂法形成一层光刻胶作为掩膜,露出正面中线附近的待处理区,然后通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、旋涂、喷涂等方式在中线附近形成一层含硼或镓等p型掺杂剂的扩散前驱体层14,扩散前驱体层14包括但不限于氮化硼、氧化镓等;其中,扩散前驱体层14的宽度为0.5~3mm,厚度为0.1~3μm。
48.(4)将步骤(3)处理后的硅片上的光刻胶去除。
49.(5)将步骤(4)处理后的硅片正面的扩散前驱体层14通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的磷发射极进行补偿从而转变为p型,并对硅片背面进行抛光。
50.(6)在步骤(5)处理后的硅片背面沉积氧化铝膜16和氮化硅膜17,在硅片正面沉积氮化硅膜12。
51.(7)在步骤(6)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,高温烧结后形成电极11。
52.实施例2
53.如图2所示,一种topcon结构的抑制切割边缘漏电的晶体硅太阳能电池片,其制备过程如下:
54.(1)提供n型晶体硅片26,进行清洗、制绒处理;其中,n型晶体硅片26的电阻率为0.5~1.5ω
·
cm;n型晶体硅片26的厚度为100~160μm。
55.(2)将获得的硅片放入工业用高温扩散炉对正面进行高温硼扩散,形成扩硼层24,然后去除扩散过程形成的硼硅玻璃以及绕镀;其中,硼源为三溴化硼,硼扩散温度为750~1000℃,时间为60~180分钟,硼扩散后的方阻值为60~120ω/sqr。
56.(3)在步骤(2)处理后的硅片正面通过旋涂或喷涂法形成一层光刻胶,使用掩膜处理露出中线附近的待处理区,然后通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、旋涂、喷涂等方式在中线附近形成一层含磷或砷等n型掺杂剂的扩散前驱体层25,包括但不限于三氯氧磷、五氧化二磷等;其中,扩散前驱体层14的宽度为0.5~3mm,厚度为0.1~3μm。
57.(4)将步骤(3)处理后的硅片上的光刻胶去除。
58.(5)将步骤(4)处理后的硅片正面的扩散前驱体层25通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的硼发射极进行补偿从而转变为n型,并对硅片背面进行抛光。
59.(6)在步骤(5)处理后的硅片背面沉积一层隧穿氧化层27,接着在所述隧穿氧化层27上沉积一层n型重掺的非晶硅层,退火后形成n型重掺的多晶硅层28;其中,隧穿氧化层27为sio
x
;隧穿氧化层27的厚度为0.8~1.5nm;隧穿氧化层27可通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、干氧氧化或湿氧氧化等方式制备;重掺杂磷的非晶硅层可通过等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积等方式制备;重掺杂磷的非晶硅层28的厚度为50~200nm。
60.(7)在步骤(6)处理后的硅片正面沉积氧化铝膜23和氮化硅膜22,在硅片背面沉积氮化硅膜29;其中,氧化铝膜23通过原子层沉积等方式制备;氧化铝膜23的厚度为0.8~
3nm;氮化硅膜22和29通过等离子体增强的化学气相沉积等方式制备;硅片背面的氮化硅膜29的厚度为20~60nm;硅片正面的氮化硅膜22的厚度为60~100nm。
61.(8)在步骤(7)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,高温烧结后形成电极21;其中,电极浆料为含银的铝浆;烧结的峰值温度为700~850℃;烧结时间为45~70s。
62.实施例3
63.如图3所示,一种hjt结构的抑制切割边缘漏电的晶体硅太阳能电池片,其制备过程如下:
64.(1)提供n型晶体硅片36,进行清洗、制绒处理;其中,n型晶体硅片36的电阻率为0.5~1.5ω
·
cm;n型晶体硅片36的厚度为80~140μm。
65.(2)在获得的硅片正反两面形成本征非晶硅层或氢化本征非晶硅薄层34;其中,本征非晶硅层或氢化本征非晶硅薄层34通过可通过等离子体增强的化学气相沉积等方式制备;本征非晶硅层或氢化本征非晶硅薄层34的厚度为1.5~4nm。
66.(3)在步骤(2)处理后的硅片正反两面分别制备p 型掺杂非晶硅薄层33和n 型掺杂非晶硅薄层37;其中,p 型掺杂非晶硅薄层33和n 型掺杂非晶硅薄层37的厚度都为20~25nm;沉积温度为130~180℃。
67.(4)在步骤(3)处理后的硅片正面通过旋涂或喷涂法形成一层光刻胶,使用掩膜处理露出中线附近的待处理区,然后通过包括但不限于等离子体增强的化学气相沉积、常规化学气相沉积、物理气相沉积、原子层沉积、喷涂、旋涂等方式在中线附近形成一层含磷或砷等n型掺杂剂的扩散前驱体层35,包括但不限于三氯氧磷、五氧化二磷等;其中,扩散前驱体层35的宽度为0.5~3mm,厚度为0.1~3μm。
68.(5)将步骤(4)处理后的硅片上的光刻胶去除。
69.(6)将步骤(5)处理后的硅片正面的扩散前驱体层35通过退火、激光处理、电流注入或离子注入等方式将该区域覆盖的硼发射极进行补偿从而转变为n型。
70.(7)在步骤(6)处理后的硅片正反两面分别形成ito导电层32;其中,ito导电层32的厚度为100~120nm。
71.(8)在步骤(7)处理后的硅片双面印刷电极浆料作为主栅和副栅并烘干,低温退火使电极31与ito导电层32之间形成良好的欧姆接触;其中,电极浆料为含银的铝浆;低温退火的峰值温度为130~170℃。
72.将上述三个实施例制备的晶体硅太阳能电池片,沿着扩散前驱体层进行切割,并将切割后得到的小片电池组成太阳能电池组件。经过测试,组成的太阳能电池组件具有更高的输出功率,因此,本发明制备的电池片经过切割后可以得到具有更高的转换效率的小片电池。
73.以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献