一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器与流程

2022-02-20 12:48:18 来源:中国专利 TAG:


1.本发明涉及电子材料技术领域,具体而言,涉及一种反铁电高储能密度陶瓷材料及其制备方法和含有其的电容器。


背景技术:

2.随着科学技术的进步,人们对电子产品方便、简单、快捷的需求日益增长,促使相应的电子电路向着集成化、微型化、简洁化发展。储能电容器广泛应用于现代电子能源系统,如脉冲功率系统、混合动力汽车、新能源电力系统、微型电子设备等领域,开发具有小型化、轻量化的电容器已成为业界长期发展的方向。
3.陶瓷电介质材料具有机械强度高、老化速率慢、介电可调且温度适应性好以及可在复杂环境下使用等优点,是制备高储能密度电容器的理想材料。用作陶瓷电容器的介质材料主要有线性陶瓷、铁电陶瓷和反铁电陶瓷三类。在高储能应用方面,反铁电材料要明显优于铁电材料。反铁电(afe)陶瓷材料存在自发极化的偶极子,且总是方向相反,成对出现,宏观电矩为零,但在外电场作用下会发生反铁电(afe)-铁电(fe)相变,电场消失时,铁电体恢复为反铁电体,该过程伴随着极大的应力变化和高密度电荷瞬间释放的现象,对相变后的铁电体,通过加热或者加压等方式可使其回复为反铁电体。反铁电高储能密度陶瓷材料具有低介质损耗,高相变场强,高能量密度,放电能量大等特性,是制备脉冲功率电容器的优秀侯选材料。
4.目前,反铁电高储能密度陶瓷粉料系统中以铅镧锆钛(plzt)、铅镧锆锡钛(plzst)研究最多,材料储能密度可达6j/cm3。如申请号为cn202010272675.7的中国专利公开了一种高储能密度温度稳定性plzt反铁电高储能密度陶瓷粉料及其制备方法,所述plzt反铁电高储能密度陶瓷粉料的化学组成为pb
1-1.5x
la
x
zr
1-y
tiyo3,其中,0.10≤x≤0.15,0≤y≤0.08。但其始终未得到脉冲功率电容器的应用验证,无法对实现大电流脉冲功率电容器的生产,其应用仍具有较大的局限。另一方面,这类反铁电高储能密度陶瓷粉料在用于制备脉冲功率电容器时,其烧结温度均须在1260℃以上,为与高温烧结相匹配,必须采用贵金属钯作内电极,导制脉冲功率电容器制造成本直线上升,产品价格昂贵,对于推广脉冲功率电容器的应用极为不利。


技术实现要素:

5.本发明的目的在于提供一种反铁电高储能密度陶瓷粉料,其相变场强大,储能密度高;以及由反铁电高储能密度陶瓷粉料制得的脉冲电容器,已得到脉冲功率电容器的应用验证,实现了大电流脉冲功率电容器的生产,且烧结温度低,放电电流大。
6.本发明的实施例通过以下技术方案实现:
7.一种反铁电高储能密度陶瓷粉料,其组成化学通式为:
8.(0~0.5)(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3 (0.5~1)(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)
o3;其中,0.05≤x1≤0.15,0.01≤x2≤0.10;0.800≤y1≤0.900,0.01≤y2≤0.05,0.10≤y3≤0.15。
9.一种上述反铁电高储能密度陶瓷粉料的制备方法,包括以下步骤:
10.s1.组分为(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3的陶瓷烧块料的合成:
11.s11.基于各个元素的摩尔比称取pbo粉体、zro2粉体、tio2粉体、sno2粉体、la2o3和mnco3粉体作为原料;采用湿法球磨混合,得到原料粉体a;
12.s12.将上述原料粉体a进行烘干处理,向烘干后的原料粉体a中加入8%的去离子水并经筛分、加热处理后,得到合成组分为(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3的陶瓷烧块料,将烧快料筛分处理制得a粉料;
13.s2.组分为(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)o3陶瓷烧块料的合成:
14.s21.基于各个元素的摩尔比称取pbo粉体、zro2粉体、sno2粉体和la2o3粉体作为原料;采用湿法球磨混合,得到原料粉体b;
15.s22.将上述原料粉体b进行烘干处理,向烘干后的原料粉体b中加入8%的去离子水并经筛分、加热处理,合成组分为(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)o3的陶瓷烧块料,将陶瓷烧块料筛分处理制得b粉料;
16.s3.降温剂的制备:
17.s31.分别称取zno粉体、b2o3粉体和sio2粉体;采用湿法球磨按照zno粉体、b2o3粉体和sio2粉体的总重量:球磨介质:去离子水=1:5:2.5的重量比混合5~6h,使zno粉体、b2o3粉体和sio2粉体混合均匀;
18.s32.将粉体上的水分烘干,烘干后将粉体煅烧,煅烧后依次经湿法球磨、烘干处理,即制得降温剂;
19.s4.反铁电高储能密度陶瓷粉料的制备:
20.将s1所制得的a粉料、s2所制得的b粉料和s3所制得的降温剂按配比称取相应的质量,进行球磨处理、筛分处理得到陶瓷浆料,然后将陶瓷浆料依次经烘干、筛分处理,最终制得反铁电高储能密度陶瓷粉料。
21.一种包括上述反铁电高储能密度陶瓷粉料的脉冲功率电容器。
22.一种脉冲功率电容器的制备方法,包括以下步骤:
23.s1.将制备好的陶瓷粉料与球磨介质、溶剂按照1:5:(1.2~1.6)的重量比进行球磨,然后加入5~12wt%的粘合剂,球磨后制成瓷浆;
24.s2.将瓷浆制成膜带,对膜带进行内电极浆料的印刷及烘干成形;
25.s3.将印有内电极的膜带与空白膜带按照外形尺寸为片式、内电极串联数至少2串、内电极层数不少于2层的设计进行叠膜,制成生坯巴块;
26.s4.对生坯巴块进行加压、压紧,在切割机上对生坯巴块进行切割,形成电容器生坯;
27.s5.通过升温处理排出粘合剂,继续升温烧结,然后冷却,制得脉冲功率电容器。
28.本发明实施例的技术方案至少具有如下优点和有益效果:
29.1、本发明通过分别制备相变应力小的粉料a陶瓷烧块和相变场强高的粉料b陶瓷烧块,再将两者混合后得到了具有弥散相变的(pbla)(zrsntimn)o3复合陶瓷粉料,该反铁电陶瓷粉体烧结成瓷后介质损耗小、相变场强大、储能密度高、耐电压高,其储能密度高达
7.92~13.19j/cm3。
30.2、本发明在(pb0la)(zrsntimn)o3复合陶瓷粉料中加入少量的降温剂,即可将烧结温度降至1060~1100℃烧结成瓷,实现中温烧结,大幅降低脉冲电容器制造成本。
31.3、本发明所制的反铁电高储能密度陶瓷粉料可用于制备脉冲功率电容器,已得到脉冲功率电容器的应用验证,实现了大电流脉冲功率电容器的生产,与pb-ag内电极匹配良好,放电电流高达6000a以上,且实现了中温烧结,大幅降低脉冲电容器制造成本;为研发具有优异储能性能的脉冲功率电容器奠定了坚实的基础,使其在储能领域表现出巨大的发展与应用潜力。
附图说明
32.为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
33.图1为本发明实施例1反铁电高储能密度陶瓷粉料电滞回线;
34.图2为本发明实施例1脉冲功率电容器的储能密度;
35.图3为本发明实施例2反铁电高储能密度陶瓷粉料电滞回线;
36.图4为本发明实施例2脉冲功率电容器的储能密度;
37.图5为本发明实施例3反铁电高储能密度陶瓷粉料电滞回线;
38.图6为本发明实施例3脉冲功率电容器的储能密度;
39.图7为对比例1中反铁电高储能密度陶瓷粉料电滞回线。
具体实施方式
40.为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
41.下面对本发明实施例提供的一种反铁电高储能密度陶瓷粉料及其制备方法进行具体说明。
42.一种反铁电高储能密度陶瓷粉料,其化学通式为:
43.(0~0.5)(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3 (0.5~1)(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)o3;其中,0.05≤x1≤0.15,0.01≤x2≤0.10;0.800≤y1≤0.900,0.01≤y2≤0.05,0.10≤y3≤0.15;
44.进一步地,0.07≤x1≤0.10,0.05≤x2≤0.10;0.830≤y1≤0.880,0.01≤y2≤0.04,0.11≤y3≤0.14;
45.进一步地,0.07≤x1≤0.10,0.05≤x2≤0.10;0.830≤y1≤0.880,0.01≤y2≤0.04,0.11≤y3≤0.14;
46.进一步地,x1=0.09,x2=0.06;y1=0.859,y2=0.02,y3=0.12;
47.进一步地,x1=0.05,x2=0.05;y1=0.854,y2=0.03,y3=0.11;
48.进一步地,x1=0.91,x2=0.08;y1=0.856,y2=0.01,y3=0.13;
49.传统的pbzro3是典型的反铁电陶瓷,相变场强高,但其组分单一,烧结温度高,pb组分极易挥发,相变时应力和应变大;因此,在陶瓷材料中加入ti,利用ti进入晶格部分替代zr离子,稳定结构,促进烧结,抑制pb组分挥发,la组分与ti组分协同作用,增加反铁电相组分范围,抑制pb组分挥发,改善成瓷致密性,la含量在0.05~0.1时电性能较好,并且烧结温度相对较低,有利于陶瓷烧结的致密性;本发明陶瓷材料中zr、sn组分的比例配合下具有典型的反铁电特性,并且sn的加入可提高成瓷的均匀性和一致性,随sn组分含量的增加,介质损耗减小,但烧结温度升高,sn组分含量低于0.06at%(摩尔比)时烧结温度较低。最重要的是本发明中引入mn,降低整体材料的介质损耗,稳定烧结,减小场至相变时产生的应力;随着mn离子进入到(pbla)(zrsnti)o3主晶相晶格会增强主晶相的四方对称性,同时抑制晶粒长大,使得不同成分微区的相变场强发生变化,产生弥散相变,削弱了相变时的宏观应力;mn离子与(pbla)(zrsnti)o3主晶相离子相结合,还可一定程度的抑制pb组分的挥发,稳定烧结,有利于陶瓷烧结的致密性。
50.还包括降温剂,所述降温剂为zn-b-si玻璃粉,即锌氧化物-硼氧化物-硅氧化物玻璃粉,按重量百分比计,所述降温剂中的锌氧化物为55%~70%,硼氧化物为15%~30%,硅氧化物为12%~25%;所述降温剂的添加量为反铁电高储能密度陶瓷粉料的0.3~1.0wt%。
51.本发明中降温剂在烧结时可以形成液相,生成的液相发生流动扩散,排出气孔,填隙于颗粒间,且由于液相的粘滞性移动,发生对pbla(zrsnti)o3陶瓷晶体的拉紧作用,并包覆于晶粒表面,防止晶粒过度长大,使晶粒粒径减小,细化晶粒,加快烧结,有效降低烧结温度。同时zn-b-si对pbla(zrsnti)o3陶瓷性能影响不明显,可保持基体材料的优良电性能。因此,本发明陶瓷材料在烧结时仅需要添加适量的zn-b-si降温剂就可以将烧结温度降低至1100℃以下,满足脉冲功率电容器制备的中温烧结需求。
52.更优地,所述降温剂的添加量为反铁电高储能密度陶瓷粉料的0.5~0.8wt%。
53.一种反铁电高储能密度陶瓷粉料的制备方法,包括以下步骤:
54.s1.组分为(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3的陶瓷烧块料的合成:
55.s11.基于各个元素的摩尔比称取pbo粉体、zro2粉体、tio2粉体、sno2粉体、la2o3和mnco3粉体作为原料,按照原料:球磨介质:去离子水=1:5:1的重量比均匀混合4~6h,采用湿法球磨混合,得到原料粉体a;
56.s12.将上述原料粉体a进行烘干处理,将原料粉体a上的水分除掉;向烘干后的原料粉体a中加入8%的去离子水并经40目筛分处理,然后加热处理:送入加热炉内,并以4℃/min的升温速度升至850~880℃,保温2~3h后,合成组分为(pb
1-x1
la
x1
)(zr
y1
sn
y2
ti
y3
mn
1-y1-y2-y3
)o3的陶瓷烧块料,将烧快经40目筛分处理制得a粉料;
57.s2.组分为(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)o3陶瓷烧块料的合成:
58.s21.基于各个元素的摩尔比称取pbo粉体、zro2粉体、sno2粉体和la2o3粉体作为原料;采用湿法球磨混合,得到原料粉体b;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比均匀混合4~6h,得到原料粉体b;
59.s22.将上述原料粉体b进行烘干处理,将原料粉体上的水分除掉;向烘干后的原料粉体b中加入8%的去离子水并经40目筛分处理,然后加热处理:送入加热炉内,并以4℃/
min的升温速度升至890~920℃,保温2~3h后,合成组分为(pb
1-x2
la
x2
)(zr
1-y2
sn
y2
)o3的陶瓷烧块料,将烧快经40目筛分处理制得b粉料;
60.s3.降温剂的制备:
61.s31.分别称取zno粉体、b2o3粉体和sio2粉体;采用湿法球磨按照zno粉体、b2o3粉体和sio2粉体的总重量:球磨介质:去离子水=1:5:2.5的重量比混合5~6h,使zno粉体、b2o3粉体和sio2粉体混合均匀;
62.s32.将粉体上的水分烘干,烘干后将粉体送入加热炉内经600℃煅烧,煅烧后依次经湿法球磨、烘干处理,即制得降温剂。
63.s4.反铁电高储能密度陶瓷粉料的制备:
64.将s1所制得的a粉料、s2所制得的粉料b和s3所制得的降温剂按配比称取相应的质量,放入立式振动磨,球磨45~50h,球磨后经320目筛处理以得到陶瓷浆料,然后将陶瓷浆料顺次经烘干、100目筛处理,最终制得脉冲功率电容器用反铁电高储能密度陶瓷粉料。
65.本发明的陶瓷组分a料通过添加ti组分适当减小相变场强,通过sn、mn稳定结构,减小相变时的应力,使得a料相变后耐电压余量增加。陶瓷组分b料通过la、sn协调作用,改善烧结的同时保持了pbzro3基体组分的高相变场强和高电位移。通过陶瓷组分a料和陶瓷组分b料混合后得到的陶瓷材料相变应力小,相变场强高和电位移高,储能密度高。
66.在本实施例中,s11中球磨时按照原料:球磨介质:去离子水=1:5:1的重量比混合4~6h;s21中球磨时按照原料:球磨介质:去离子水=1:5:1的重量比混合4~6h。本发明中球磨时的球磨介质为氧化锆球、玛瑙球或高铝球。
67.在本实施例中,s12中,加热处理时,在加热炉内,以2~5℃/min的升温速率升至850~880℃,保温2~3h;s22中,加热处理时,在加热炉内,以3~6℃/min的升温速率升至890~920℃,保温2~3h。
68.一种脉冲功率电容器,具有包括上述的反铁电高储能密度陶瓷粉料。
69.一种脉冲功率电容器的制备方法,包括以下步骤:
70.s1.将制备好的陶瓷粉料与球磨介质、溶剂按照1:5:(1.2~1.6)的重量比进行球磨,4~5小时后加入5~12wt%的粘合剂,球磨7~8小时后制成瓷浆;所述溶剂包括甲苯、二甲苯、乙醇、甲基乙基酮、1,1,1-三氯乙烯、1,1,2-甲基吡咯烷酮中的一种或多种;
71.s2.将瓷浆在喷涂式流延机上进行瓷膜的流延制成膜带,在印刷机上对膜带进行内电极浆料的印刷及烘干成形;
72.s3.将印有内电极的膜带与空白膜带按照外形尺寸为片式、内电极串联数至少2串、内电极层数不少于2层(较优地内电极层数为70层)的设计进行叠膜,制成生坯巴块;
73.s4.通过温等静压机对生坯巴块进行加压、压紧,在切割机上对生坯巴块进行切割,形成电容器生坯;
74.s5.然后以1℃/min的速度升至550℃升温处理排出粘合剂,后以1.5℃/min的速度升至1060~1100℃,继续升温烧结3~4小时后随炉、冷却,制得脉冲功率电容器。
75.在本实施例中,s4中通过温等静压机对生坯巴块进行加压,温度:50-100℃,压强:5000-8000mpa,保压时间:20-50min。
76.在本实施例中,s5中,先以0.5℃/min~3℃/min的升温速率升至450℃~600℃,排出粘合剂;后以1℃/min~4℃/min的升温速率的速度升至1060~1100℃烧结,保温3~4小
时。
77.以下实施例均以化学通式:
78.(0~0.5)(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3 (0.5~1)(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3为例进行说明。
79.实施例1
80.本实施例中反铁电高储能密度陶瓷粉料的化学组成为:
81.(0.5)(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3 (0.5)(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3,其制备方法包括以下步骤:
82.s1.组分为(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料的合成:
83.s11.基于各个元素的摩尔比称取pbo粉体、zro2粉体、tio2粉体、sno2粉体、la2o3和mnco3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合4h,得到原料粉体a;
84.s12.将上述原料粉体a进行烘干处理,将原料粉体a上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至850℃,保温2h后合成组分(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料,将烧快料筛分处理制得a粉料;
85.s2.组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3陶瓷烧块料的合成:
86.s21.基于各个元素的摩尔比称取pbo粉体、zro2粉体、sno2粉体和la2o3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合4h,得到原料粉体b;
87.s22.将上述原料粉体b进行烘干处理,将原料粉体b上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至890℃,保温2h后合成组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3的陶瓷烧块料,将陶瓷烧块料筛分处理制得b粉料;
88.s3.降温剂的制备:分别称取zno粉体、b2o3粉体和sio2粉体;采用湿法球磨按照zno粉体、b2o3粉体和sio2粉体的总重量:球磨介质:去离子水=1:5:2.5的重量比混合5h,使zno粉体、b2o3粉体和sio2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经600℃煅烧,煅烧后依次经湿法球磨、烘干处理,即制得降温剂。
89.s4.反铁电高储能密度陶瓷粉料的制备:
90.将s1所制得的a粉料、s2所制得的b粉料和s3所制得的降温剂按配比称取相应的质量,进行球磨处理、筛分处理得到陶瓷浆料,然后将陶瓷浆料依次经烘干、筛分处理,最终制得反铁电高储能密度陶瓷粉料。
91.本实施例中脉冲功率电容器用反铁电高储能密度陶瓷粉料性能测试样品的制备方法:
92.(1)圆片样品:制备好的陶瓷粉料加入7wt%石蜡造粒,使用液压机压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至1080℃,烧结3小时后随炉冷却,制得圆片测试样品。
93.(2)脉冲功率电容器样品:
94.s1.将制备好的陶瓷粉料与氧化锆球、甲苯、乙醇按照1:5:1.2的重量比进行球磨,然后加入5wt%的粘合剂,球磨后制成瓷浆;
95.s2.将瓷浆制成膜带,对膜带进行内电极浆料的印刷及烘干成形;
96.s3.将印有内电极的膜带与空白膜带按照外形尺寸为片式10.16mm
×
11.43mm、内电极串联数2串、内电极层数70层的设计进行叠膜,制成生坯巴块;
97.s4.在70℃、7000mpa下通过温等静压机对生坯巴块进行加压、压紧,保压30min,在切割机上对生坯巴块进行切割,形成电容器生坯;
98.s5.以0.5℃/min的升温速率升至450℃,排出粘合剂;后以1℃/min/min的升温速率的速度升至1060℃进行烧结,然后保温3小时后随炉冷却,制得脉冲功率电容器。
99.本实施例中,测得的反铁电高储能密度陶瓷粉料电滞回线如图1中所示,脉冲功率电容器的储能密度如图2中所示。
100.实施例2
101.本实施例中反铁电高储能密度陶瓷粉料的化学组成为:
102.(0.1)(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3 (0.9)(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3,其制备方法包括以下步骤:
103.s1.组分为(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料的合成:
104.s11.基于各个元素的摩尔比称取pbo粉体、zro2粉体、tio2粉体、sno2粉体、la2o3和mnco3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合6h,得到原料粉体a;
105.s12.将上述原料粉体a进行烘干处理,将原料粉体a上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至880℃,保温3h后合成组分(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料,将烧快料筛分处理制得a粉料;
106.s2.组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3陶瓷烧块料的合成:
107.s21.基于各个元素的摩尔比称取pbo粉体、zro2粉体、sno2粉体和la2o3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合6h,得到原料粉体b;
108.s22.将上述原料粉体b进行烘干处理,将原料粉体b上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至920℃,保温3h后合成组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3的陶瓷烧块料,将陶瓷烧块料筛分处理制得b粉料;
109.s3.降温剂的制备:分别称取zno粉体、b2o3粉体和sio2粉体;采用湿法球磨按照zno粉体、b2o3粉体和sio2粉体的总重量:球磨介质:去离子水=1:5:2.5的重量比混合6h,使zno粉体、b2o3粉体和sio2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经600℃煅烧,煅烧后依次经湿法球磨、烘干处理,即制得降温剂。
110.s4.反铁电高储能密度陶瓷粉料的制备:
111.将s1所制得的a粉料、s2所制得的b粉料和s3所制得的降温剂按配比称取相应的质量,进行球磨处理、筛分处理得到陶瓷浆料,然后将陶瓷浆料依次经烘干、筛分处理,最终制得反铁电高储能密度陶瓷粉料。
112.本实施例中脉冲功率电容器用反铁电高储能密度陶瓷粉料性能测试样品的制备方法:
113.(1)圆片样品:制备好的陶瓷粉料加入12wt%石蜡造粒,使用液压机压成圆片,然
后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至1120℃,烧结4小时后随炉冷却,制得圆片测试样品。
114.(2)脉冲功率电容器样品:
115.s1.将制备好的陶瓷粉料与氧化锆球、甲苯、乙醇按照1:5:1.6的重量比进行球磨,然后加入12wt%的粘合剂,球磨后制成瓷浆;
116.s2.将瓷浆制成膜带,对膜带进行内电极浆料的印刷及烘干成形;
117.s3.将印有内电极的膜带与空白膜带按照外形尺寸为片式10.5mm
×
11.5mm、内电极串联数3串、内电极层数70层的设计进行叠膜,制成生坯巴块;
118.s4.在100℃、8000mpa下通过温等静压机对生坯巴块进行加压、压紧,保压时间:50min,在切割机上对生坯巴块进行切割,形成电容器生坯;
119.s5.以3℃/min的升温速率升至600℃,排出粘合剂;后以4℃/min的升温速率的速度升至1099℃进行烧结,然后保温4小时后随炉冷却,制得脉冲功率电容器。
120.本实施例中,测得的反铁电高储能密度陶瓷粉料电滞回线如图3中所示,脉冲功率电容器的储能密度如图4中所示。
121.实施例3
122.本实施例中反铁电高储能密度陶瓷粉料的化学组成为:
123.(0.05)(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3 (0.95)(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3,其制备方法包括以下步骤:
124.s1.组分为(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料的合成:
125.s11.基于各个元素的摩尔比称取pbo粉体、zro2粉体、tio2粉体、sno2粉体、la2o3和mnco3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合5h,得到原料粉体a;
126.s12.将上述原料粉体a进行烘干处理,将原料粉体a上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至860℃,保温3h后合成组分(pb
0.91
la
0.09
)(zr
0.859
sn
0.02
ti
0.12
mn
0.001
)o3的陶瓷烧块料,将烧快料筛分处理制得a粉料;
127.s2.组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3陶瓷烧块料的合成:
128.s21.基于各个元素的摩尔比称取pbo粉体、zro2粉体、sno2粉体和la2o3粉体作为原料;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合5h,得到原料粉体b;
129.s22.将上述原料粉体b进行烘干处理,将原料粉体b上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至900℃,保温2h后合成组分为(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3的陶瓷烧块料,将陶瓷烧块料筛分处理制得b粉料;
130.s3.降温剂的制备:分别称取zno粉体、b2o3粉体和sio2粉体;采用湿法球磨按照zno粉体、b2o3粉体和sio2粉体的总重量:球磨介质:去离子水=1:5:2.5的重量比混合5h,使zno粉体、b2o3粉体和sio2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经600℃煅烧,煅烧后依次经湿法球磨、烘干处理,即制得降温剂。
131.s4.反铁电高储能密度陶瓷粉料的制备:
132.将s1所制得的a粉料、s2所制得的b粉料和s3所制得的降温剂按配比称取相应的质
量,进行球磨处理、筛分处理得到陶瓷浆料,然后将陶瓷浆料依次经烘干、筛分处理,最终制得反铁电高储能密度陶瓷粉料。
133.本实施例中脉冲功率电容器用反铁电高储能密度陶瓷粉料性能测试样品的制备方法:
134.(1)圆片样品:制备好的陶瓷粉料加入10wt%石蜡造粒,使用液压机压成圆片,然后以2℃/min的速度升至450℃排出胶合剂,后以3℃/min的速度升至1100℃,烧结3小时后随炉冷却,制得圆片测试样品。
135.(2)脉冲功率电容器样品:
136.s1.将制备好的陶瓷粉料与氧化锆球、甲苯、乙醇按照1:5:1.5的重量比进行球磨,然后加入10wt%的粘合剂,球磨后制成瓷浆;
137.s2.将瓷浆制成膜带,对膜带进行内电极浆料的印刷及烘干成形;
138.s3.将印有内电极的膜带与空白膜带按照外形尺寸为片式11.00mm
×
12.00mm、内电极串联数5串、内电极层数70层的设计进行叠膜,制成生坯巴块;
139.s4.在50℃mpa、5000mpa下通过温等静压机对生坯巴块进行加压、压紧,保压时间:20min,在切割机上对生坯巴块进行切割,形成电容器生坯;
140.s5.以2℃/min的升温速率升至500℃,排出粘合剂;后以2℃/min的升温速率的速度升至1070℃进行烧结,然后保温4小时后随炉冷却,制得脉冲功率电容器。
141.本实施例中,测得的反铁电高储能密度陶瓷粉料电滞回线如图5中所示,脉冲功率电容器的储能密度如图6中所示。
142.对比例1
143.本对比例与实施例1的区别在于:反铁电高储能密度陶瓷粉料的化学通式不含mn,其化学通式为:
144.(0.5)(pb
0.91
la
0.09
)(zr
0.86
sn
0.02
ti
0.12
)o3 (0.5)(pb
0.94
la
0.06
)(zr
0.98
sn
0.02
)o3。
145.本对比例中,测得的反铁电高储能密度陶瓷粉料电滞回线如图7中所示。
146.结果分析
147.将实施例1-3及对比例1中所制备得到的反铁电高储能密度陶瓷粉料及电容器进行电学性能测试,测试结果如表1及表2所示。
148.表1陶瓷粉料圆片样品性能列表
[0149][0150][0151]
表2陶瓷粉料脉冲功率电容器样品性能列表
[0152][0153]
从表1数据可以看出,通过本发明制备得到的反铁电陶瓷粉料绝缘电阻高、介质损耗小、相变场强大、储能密度高、烧结温度低、耐电压高;对比例1相对于实施例1,不含mn的反铁电高储能密度陶瓷粉料的烧结温度、介质损耗、相变场强相对实施例1较高,绝缘强度相对实施例1降低,可见引入mn,可降低整体材料的介质损耗,稳定烧结,减小场至相变时产生的应力;随着mn离子进入到(pbla)(zrsnti)o3主晶相晶格会增强主晶相的四方对称性,同时抑制晶粒长大,使得不同成分微区的相变场强发生变化,产生弥散相变,削弱了相变时的宏观应力;mn离子与(pbla)(zrsnti)o3主晶相离子相结合,还可一定程度的抑制pb组分的挥发,稳定烧结,有利于陶瓷烧结的致密性。
[0154]
从表2数据可以看出,通过本发明制备得到的反铁电陶瓷粉料用于制备(10.16
±
1.00)mm
×
(11.43
±
1.00)mm尺寸的脉冲功率电容器,已得到脉冲功率电容器的应用验证,实现了大电流脉冲功率电容器的生产,与pb-ag内电极匹配良好,放电电流高达6000a以上,
且实现了中温烧结,大幅降低脉冲电容器制造成本;为研发具有优异储能性能的脉冲功率电容器奠定了坚实的基础,使其在储能领域表现出巨大的发展与应用潜力。
[0155]
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献