一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于稀疏阵列激励的非接触激光超声损伤检测方法和系统与流程

2022-02-20 06:49:40 来源:中国专利 TAG:


1.本发明涉及无损检测技术领域,具体涉及一种基于稀疏阵列激励的非接触激光超声损伤检测方法和系统。


背景技术:

2.超声导波在构件传播时遇到不同界面将有不同的反射信号(回波),利用这一特性,可以通过激光试件进行扫查检测得到试件的激光超声导波波场图像,从而实现样品表面及内部的微缺陷的检测。
3.激光超声扫查检测因其可实现损伤可视化,在激光超声无损检测和结构健康管理领域得到迅速推广。不过激光扫描的时间非常长,特别是对大型结构的扫描,这引起了许多研究者的关注。基于两级扫描策略、二进制搜索等思想的加速激光扫描技术被引用到激光扫查中,以减少扫描点和扫描时间来实现激光超声波场传播可视化。然而,这些方法通过减少检测点的数量来加快检测速度,这将降低检测损伤的能力。压缩感知方法能够以远低于nyquist采样率的采样频率对信号进行采样,并从低维采样数据中恢复原始的高维信号,从而大大减少了采样点的数量。同时,在扫查检测中,扫查架的移动会带来振动,增加检测信号的噪声;检测中扫查架步进的误差也会造成成像点位置的误差,降低波场成像的质量。所以如何实现在加快扫查速度的同时保证检测精度,对激光超声的在役检测应用至关重要。


技术实现要素:

4.为了克服现有技术存在的缺陷与不足,本发明第一目的在于提供一种基于稀疏阵列激励的非接触激光超声损伤检测方法,第二目的在于提供一种基于稀疏阵列激励的非接触激光超声损伤检测系统,均基于压缩感知实现了激光扫查的快速检测。
5.为了达到上述目的,本发明采用以下技术方案:
6.本发明提供一种基于稀疏阵列激励的非接触激光超声损伤检测方法,包括下述步骤:
7.随机生成测量矩阵,进行激光稀疏阵列激励,获取观测矩阵,观测矩阵中每一个观测值对应测量矩阵的一行向量和一帧原始波场图像所有像素点的内积,测量矩阵的一行向量表示一次激光稀疏阵列激励;
8.对测量信号进行波场稀疏重构,依次选取观测矩阵中的列观测向量进行波场稀疏重构,得到原始波场的重构图像;
9.得到重构的原始波场重构图像后,基于巴氏距离进行波场损伤成像。
10.作为优选的技术方案,所述获取观测矩阵,具体步骤包括:
11.将二维原始波场图像矩阵信号转化为向量,得到原始波场信号矩阵,通过测量矩阵对每一帧原始波场图像信号进行压缩,得到观测矩阵。
12.作为优选的技术方案,所述测量矩阵的数值由0和1组成,其中数值1代表原始波场图像中的对应像素点有激励信号,数值0代表原始波场图像中的对应像素点没有激励信号。
13.作为优选的技术方案,所述测量矩阵的行数、列数根据激光激励阵列总点数和采样稀疏度计算确定。
14.作为优选的技术方案,所述依次选取观测矩阵中的列观测向量进行波场稀疏重构,具体对观测矩阵中的列观测向量采用l1范数最小化进行波场稀疏重构,波场稀疏重构的目标函数表示为:
15.argmin||x||1subject to||y-φx||2≤ε
16.其中,ε表示限制数据中的噪声量,||x||1表示重构矩阵x的l1范数,||y-φx||2表示y-φx的l2范数,y-φx表示观测矩阵中的列向量误差,φ表示测量矩阵;
17.对重构矩阵进行迭代求解,达到预设的迭代次数时,输出原始波场图像矩阵的近似解,将原始波场图像矩阵的近似解转换为图片格式,得到原始波场的重构图像。
18.作为优选的技术方案,所述基于巴氏距离进行波场损伤成像,具体步骤包括:
19.依次计算每个扫查点与周围参考扫查点的信号差值,根据扫查点与参考扫查点的差值,确定损伤位置,并进行波场损伤成像。
20.本发明还提供一种基于稀疏阵列激励的非接触激光超声损伤检测系统,包括:激励激光器、分光器、激光激励阵列探头、激光激励阵列控制器、激光检测仪、激光检测探头和计算机;
21.所述激励激光器与分光器连接,所述激励激光器用于激励激光信号,所述分光器设有多个,多个分光器将激励信号分成多路,对应插入激光激励阵列探头孔中;
22.所述激励激光器通过信号同步线分别与激光激励阵列控制器、激光检测仪连接,用于将激励信号同步传输至激光激励阵列控制器和激光检测仪;
23.所述激光激励阵列控制器与激光激励阵列探头连接,所述激光激励阵列控制器用于控制激光激励阵列激励出稀疏阵列激光信号;
24.所述激光检测仪与激光检测探头连接,用于检测激光信号,所述激光检测仪与计算机连接,所述计算机接收检测信号,用于执行上述的基于稀疏阵列激励的非接触激光超声损伤检测方法,通过损伤成像方法对待检管道进行成像。
25.作为优选的技术方案,所述激光激励阵列探头包括多路单路探头,单路探头包括侧挡板、激光探头、电磁铁、活动前挡板和托台,所述侧挡板设于电磁铁两侧,用于承接固定电磁铁,所述活动前挡板与电磁铁对应设置,设于托台上方,所述电磁铁通电时所述活动前挡板升起,用于遮挡激光探头,所述电磁铁断电时,所述活动前挡板下落至托台上;
26.所述激光激励阵列控制器预设激光激励阵列中每个电磁铁的通电顺序与测量矩阵相同,控制激光激励阵列激励出稀疏阵列激光信号。
27.作为优选的技术方案,所述测量矩阵一行的向量代表一次激励,数值0表示对应的激光激励探头电磁铁处于通电状态,数值1表示对应的激光激励探头电磁铁处于断电状态;
28.在激励激光器激励的同时,采用信号同步线将信号传输到信号控制器和激光检测仪中,控制激光激励探头前挡板起落,实现稀疏阵列激励,同时控制激光检测仪采集信号。
29.本发明与现有技术相比,具有如下优点和有益效果:
30.(1)针对激光扫查检测需要进行逐点扫查,存在位置误差、振动误差,扫查速度和检测精度相互制约的问题,本发明通过设计的阵列激光探头和压缩感知的数据处理方法,可减少扫查激励次数,减小扫查中由于位置误差和振动带来的检测误差。
31.(2)本发明中激光超声导波检测系统的稀疏阵列激光和检测探头都不用接触检测对象,可以进行完全非接触检测,通过本发明所设计的激光激励阵列探头可实现稀疏阵列激光激励,满足检测系统的激励需求,使之实现减少扫查次数,同时减小扫查中由于位置误差和振动带来的检测误差的目的。
附图说明
32.图1为本实施例基于稀疏阵列激励的非接触激光超声损伤检测方法的流程示意图;
33.图2为本实施例快速稀疏检测的原理示意图;
34.图3为本实施例扫查过程示意图;
35.图4为本实施例铜管道三维模型图;
36.图5为本实施例铜管道波场重构与损伤成像示意图;
37.图6为本实施例基于稀疏阵列激励的非接触激光超声损伤检测系统的结构框架示意图;
38.图7为本实施例激光激励阵列探头的结构示意图。
39.其中,1-激励激光器,2-分光器,3-激光激励阵列探头,4-信号同步线,5-激光激励阵列控制器,6-激光检测仪,7-激光检测探头,8-计算机,9-侧挡板,10-激光探头、11-电磁铁、12-活动前挡板,13-托台。
具体实施方式
40.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
41.实施例
42.如图1所示,本实施例提供一种基于稀疏阵列激励的非接触激光超声损伤检测方法,包括下述步骤:
43.s1:随机生成测量矩阵ф,进行激光稀疏阵列激励,获取观测矩阵y;
44.如图2所示,本实施例通过稀疏重构的思想,实现激光超声的快速扫描成像,稀疏重构为:原始波场信号矩阵是通过每个像素点组合而成的,假设原始波场图像中的像素点总数为n,每个像素点采集的时域信号长度为k,也即代表共有k帧原始波场图像,则将二维原始波场图像矩阵信号转化为向量后,可得到原始波场信号矩阵x
[n
×
k]
,再依次通过测量矩阵ф
[m
×
n]
(m《n)对每一帧原始波场图像信号进行压缩,得到观测矩阵y
[m
×
k]
。观测矩阵中每一个观测值都对应测量矩阵的一行向量和一帧原始波场图像所有像素点的内积。对于其中的一帧图像,通过测量矩阵对原始波场图像进行压缩,公式如下:
[0045]y[m
×
1]
=φ
[m
×
n]
x
[n
×
1]
ꢀꢀ
(1)
[0046]
式中,m=n
×
a,a表示采样稀疏度。测量矩阵的一行向量的物理意义代表着一次激光稀疏阵列激励。测量矩阵的数值只有0和1,其中数值1代表原始波场图像中的对应像素点有激励信号,数值0代表原始波场图像中的对应像素点没有激励信号。测量矩阵ф
[m
×
n]
的行数、列数的具体数值根据激光激励阵列总点数和采样稀疏度a确定,测量矩阵中的数值是随
机生成的。通过测量矩阵ф可减少激光超声扫查的检测次数。在本实施例中,采样稀疏度a优选值为0.6,原始波场图像的像素点数为225(15
×
15),生成只有0和1的测量矩阵ф
[135
×
225]

[0047]
由上面介绍可知,经过m次采样之后可得到观测矩阵y
[m
×
k]
,其中k代表激光采集信号的时域长度,本实施例通过模拟得到的原始波场时间长度k=1000,故取得了观测矩阵y
[135
×
1000]

[0048]
s2:对测量信号进行波场稀疏重构,得到原始波场的重构图像;
[0049]
接下来通过观测矩阵y
[135
×
1000]
获得重构波场图像矩阵信号x
[255
×
1000]
。具体为依次取其中的列观测向量y
[m
×
1]
采用l1范数最小化进行波场稀疏重构,重构的目标函数为:
[0050]
argmin||x||1subject to y=φx
ꢀꢀ
(2)
[0051]
引入约束参数ε变换公式,得到如下公式:
[0052]
argmin||x||1subject to||y-φx||2≤ε
ꢀꢀ
(3)
[0053]
其中,ε限制数据中的噪声量,||x||1是x的l1范数,||y-φx||2是(y-φx)的l2范数。接下来对重构矩阵x进行迭代求解,将原模型公式(3)变为如下问题:
[0054][0055]
其中λ》0是正则化参数。令g(x)=||x||1,则
[0056][0057]
对公式通过拉格朗日乘子展开并进行二次近似,公式(5)可转化如下:
[0058][0059]
其中,α
(k)
=(x
(k)-y)
t
λ||x
(k)
||1,k表示迭代次数;
[0060]
收敛的判别公式见公式(7),当公式(7)成立或达到设置的迭代次数时,迭代结束;
[0061]
|x
(k 1)-x
(k)
|《θ
ꢀꢀ
(7)
[0062]
经过迭代,可得到原始波场图像矩阵的近似解x
[225
×
1000]
,再将其转换为图片格式f
[15
×
15
×
1000]
,实现原始波场图像重构,得到原始波场的重构图像。
[0063]
s3:通过重构的波场图像进行损伤成像
[0064]
得到重构的原始波场重构图像后,基于巴氏距离进行波场损伤成像:如图3所示,该方法依次计算每个扫查点与周围8个参考扫查点的信号差值(目标扫描区域边缘点除外),巴氏距离的计算公式如下:
[0065][0066][0067]
式中,x向量和y向量分别代表扫查点和参考扫查点的时域信号,p
x
和py分别为x向量和y向量的方差。当所选扫查点处于正常区域时,扫查点与参考扫查点的差值较小;当扫
查点处于损伤位置时,差异较大,根据扫查点与参考扫查点的差值,可确定损伤位置。
[0068]
接下来,通过铜管道的激光激励仿真信号来展示本发明方法的有效性。
[0069]
如图4所示,本实施例以铜管道仿真模型为例,进行激光激励模拟仿真及损伤检测,待测管道尺寸为60
×
65*1mm,为提高模拟效率,只建立了90
°
的管道仿真模型;为评价该方法的有效性,建立了正常管道,3
×
0.5mm裂纹损伤铜管和4
×4×
0.8mm腐蚀损伤铜管模型,扫描面积(检测区域)为15
×
15mm,含裂纹损伤和腐蚀损伤的铜管模型及激励扫查位置。铜管模型的建立及激光激励仿真的模拟采用商业软件abaqus完成,仿真的网格大小为

x=0.2mm,时间间隔为

t=2

10-7
s,仿真时长20μs,模拟激光激励半径为0.5mm,激光脉冲宽度8ns。
[0070]
如图5所示,为裂纹损伤管道、腐蚀损伤管道的重构图像和损伤图像。图中的虚线框即为损伤位置,重构图像随机选择了一个时间点进行展示,可以看出,重构的图像对损伤展示效果不明显,经过巴氏距离进行损伤成像后,获得良好的损伤成像结果,该实施例说明了本发明的有效性。
[0071]
如图6所示,本实施例还提供一种基于稀疏阵列激励的非接触激光超声损伤检测系统,包括:激励激光器1、分光器2、激光激励阵列探头3、信号同步线4、激光激励阵列控制器5、激光检测仪6、激光检测探头7、计算机8;连接方式为:激励激光器1通过光纤传输激光,通过多个分光器2将激励信号分成多路,对应插入激光激励阵列探头孔中,激励激光器1通过信号同步线4分别与激光激励阵列控制器5和激光检测仪6连接,激光激励阵列控制器5通过控制线与激光激励阵列探头3连接,激光检测仪6通过光纤与激光检测探头7连接,通过信号传输线连接到计算机8。
[0072]
系统检测步骤包括:激励激光器1激励激光信号,通过光纤、分光器2将多路激光信号传输到激光激励阵列探头3。在本实施例中,激励激光器激励激光信号,能量经光纤传输,通过255个分光器2进行二等分,首先使用1个分光器将激励激光器发出的激光均分为2路能量相同的激光,接下来用2个分光器将激励激光器发出的激光均分为4路能量相同的激光,以此类推。将激励激光器发出的激光分为256路能量相同的激光。实现多路激光同时激励,其中225路放入15

15的激光激励阵列探头中,多余的激光路径进行封闭。
[0073]
同时激励激光器通过信号同步线4将激励时间信息传递到激光激励阵列控制器5,如图7所示,激光激励阵列探头包含15

15路的单路探头,单路探头包括侧挡板9、激光探头10、电磁铁11、活动前挡板12和托台13,电磁铁11由激光激励阵列控制器5通过导线控制通断。当电磁铁断电时,活动前挡板12由重力影响落在托台上13,激光探头发出的激光信号激励到铜管上;当电磁铁通电活动前挡板升起,激光信号没有激励到铜管上。通过在激光激励阵列控制器5上预设好激光激励阵列中每个电磁铁的通电顺序与测量矩阵相同,其中测量矩阵一行的向量代表一次激励,数值0表示对应的激光激励探头电磁铁处于通电状态,数值1表示对应的激光激励探头电磁铁处于断电状态。实现激光激励阵列控制器5控制激光激励阵列激励出稀疏阵列激光信号。在激励激光器激励的同时,由信号同步线将信号传输到信号控制器和激光检测仪中,控制激光激励探头前挡板起落,实现稀疏阵列激励,同时控制激光检测仪采集信号。
[0074]
激光检测仪通过激光检测探头7接收检测信号,传输到计算机8,经过m次采集之后,就可以得到观测矩阵y,接下来通过本发明设计的激光超声损伤检测方法就可以通过观
测矩阵得到重构的波场信号,最后通过损伤成像方法对铜管道进行成像。
[0075]
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献