一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有集成等离子体处理的束线架构的制作方法

2022-02-20 00:07:07 来源:中国专利 TAG:


1.本公开的实施例一般来说涉及半导体器件制作领域,且更具体来说涉及具有集成等离子体处理的束线离子植入架构。


背景技术:

2.随着电子组件变得更小、更复杂及更强大,在这些组件中所采用的半导体器件受到与缺陷、杂质及均匀性相关的越来越严格的公差限制。当对半导体晶片执行离子植入时,晶片的结构、纯度及均匀性都可能受到离子植入之前晶片表面上的天然氧化物及有机污染物的存在以及受到离子植入之后留下的残余材料(例如残余沉积物、刻蚀/溅镀残留物及聚合物化学物质)的存在的不利影响。因此,在离子植入之前及离子植入之后从半导体晶片移除表面污染物对于优化现代应用中的性能可能是有益的或必要的。迄今为止,对以不会对晶片通量(wafer throughput)产生负面影响且不会将晶片暴露于大气(其中表面污染物可能会被引入到晶片)的高效的、有成本效益的方式执行这种移除已经提出了重大的挑战。
3.对于这些及其他考虑,当前的改进可能是有用的。


技术实现要素:

4.提供本发明内容是为了以简化的形式介绍一系列概念。本发明内容不旨在识别所主张的主题的关键特征或必要特征,本发明内容也不旨在帮助确定所主张的主题的范围。
5.根据本公开实施例的束线架构的示例性实施例可包括:晶片搬送腔室;等离子体腔室,耦合到所述晶片搬送腔室且容纳等离子体源,以用于对工件执行离子植入前工艺(pre

ion implantation process)及离子植入后工艺(post

ion implantation process)中的至少一者;以及工艺腔室,耦合到所述晶片搬送腔室且适于对工件执行离子植入工艺。
6.根据本公开实施例的束线架构的另一示例性实施例可包括:晶片搬送腔室;真空加载锁(load

lock),耦合到所述晶片搬送腔室,以利于在大气环境与所述晶片搬送腔室之间传送工件;等离子体腔室,耦合到所述晶片搬送腔室且容纳等离子体源,以用于对工件执行等离子体预清洁工艺(plasma pre

clean process)、等离子体增强型化学气相沉积工艺(plasma enhanced chemical vapor deposition process)、等离子体退火工艺(plasma annealing process)、预加热工艺、及刻蚀工艺中的至少一者;工艺腔室,耦合到所述晶片搬送腔室且适于对工件执行离子植入工艺;以及阀门,设置在所述晶片搬送腔室与所述等离子体腔室之间,以用于将所述等离子体腔室与所述晶片搬送腔室及所述工艺腔室密封隔绝,其中所述等离子体腔室内的压力与所述工艺腔室内的压力能够彼此独立地改变。
7.根据本公开实施例的一种操作束线架构的方法的示例性实施例可包括:将工件从晶片搬送腔室移动到等离子体腔室中;对所述工件执行离子植入前工艺及离子植入后工艺中的至少一者;以及将所述工件从所述晶片搬送腔室移动到工艺腔室中且对所述工件执行离子植入工艺。
附图说明
8.作为实例,现在将参照附图阐述所公开的设备的各种实施例,其中:
9.图1是示出根据本公开束线架构的示例性实施例的平面图。
10.图2是示出操作图1中所示束线架构的示例性方法的流程图。
11.图3是示出根据本公开束线架构的另一示例性实施例的平面图。
12.图4是示出根据本公开束线架构的另一示例性实施例的平面图。
具体实施方式
13.现在将参照附图在下文中更全面地阐述本实施例,其中示出一些实施例。本公开的主题可以许多不同的形式来实施且不应被解释为仅限于本文中提出的实施例。提供这些实施例,因此本公开将是透彻及完整的,且将向所属领域中的技术人员充分传达主题的范围。在附图中,相同的编号始终指代相同的元件。
14.图1示出根据本公开示例性实施例的束线架构10(下文中为“架构10”)。架构10可包括一个或多个载体12、缓冲器14、入口真空加载锁16、出口真空加载锁18、晶片搬送腔室20、等离子体腔室22及工艺腔室24。入口真空加载锁16及出口真空加载锁18可包括各自的阀门16a、16b及18a、18b,以用于保持载体12及缓冲器14的大气环境与晶片搬送腔室20、等离子体腔室22及工艺腔室24的真空环境之间的气密分离,同时还利于工件(例如硅晶片)在它们之间的传送,如以下进一步阐述。
15.缓冲器14可包含一个或多个大气机器人25,所述一个或多个大气机器人25被配置成将工件从载体12传送到入口真空加载锁16以及从出口真空加载锁18传送到载体12。晶片搬送腔室20可包括一个或多个真空机器人26,所述一个或多个真空机器人26被配置成在入口真空加载锁16、等离子体腔室22、工艺腔室24及出口真空加载锁18之间传送工件,如以下进一步阐述。晶片搬送腔室20可还包括对齐站27,所述对齐站27被配置成在工艺腔室24中在处理之前以期望的方式对工件进行取向。举例来说,对齐站27可被配置成检测工件上的凹口或其他标记,以确定和/或调整工件取向。如果不需要工件对齐,则对齐站27可包括简单的基座或支架。对齐站27也可被配置成执行附加功能,例如衬底识别。
16.晶片搬送腔室20还可包括各种计量组件28。计量组件28可包括且不限于椭偏仪、反射仪、高温计等。计量组件28可利于在等离子体腔室22中在处理之前及处理之后和/或在工艺腔室24中在处理之前及处理之后测量工件的各个方面及特征。举例来说,计量组件28可利于检测及测量工件的表面上的天然氧化物及其他污染物。计量组件28还可利于测量沉积在工件的表面上的膜的厚度及组成。
17.工艺腔室24可连接到晶片搬送腔室20且可包括压板30或平台30,所述压板30或平台30具有配准(registration)、夹紧和/或冷却机构,以用于接纳待处理工件且在处理期间将这些工件保留在期望的位置及取向。在各种实施例中,工艺腔室24可为常规束线离子植入设备(下文中为“离子植入机”)的工艺腔室,所述常规束线离子植入设备被配置成将离子束投射到工件上以进行其离子植入。离子植入机(除了工艺腔室24之外未示出)可包括各种传统的束线组件,包括且不限于离子源、分析器磁体、校正器磁体等。在各种实施例中,离子植入机可响应于将具有期望物质的一种或多种进料气体(feed gas)引入到离子源中而产生作为点型离子束(spot type ion beam)的离子束。本公开并不仅限于此。如所属领域中
的普通技术人员将理解,离子植入机可包括各种附加的束处理组件,当离子束从离子源传播到设置在压板30上的工件时,所述各种附加的束处理组件适于对离子束进行成形、聚焦、加速、减速和/或弯曲。举例来说,离子植入机可包括静电扫描器以用于在相对于工件的一个或多个方向上扫描离子束。
18.与工艺腔室24类似,等离子体腔室22可连接到晶片搬送腔室20且可包括压板32或平台32,以用于接纳待处理工件且在处理期间保留这些工件。可在等离子体腔室22与晶片搬送腔室20的接合处实施阀门31,以利于它们之间的气密分离。因此,可通过独立于晶片搬送腔室20的真空环境来调节等离子体腔室22内的压力,以适应在等离子体腔室22中执行的各种工艺,如以下进一步阐述。
19.等离子体腔室22可包括等离子体源34,所述等离子体源34被配置成从由气体源(未示出)供应到等离子体腔室22的气态物质产生高能等离子体(energetic plasma)。在各种实施例中,等离子体源34可为射频(radio frequency,rf)等离子体源(例如,电感耦合等离子体(inductively

coupled plasma,icp)源、电容耦合等离子体(capacitively coupled plasma,ccp)源、螺旋波源(helicon source)、电子回旋共振(electron cyclotron resonance,ecr)源)、间接加热阴极(indirectly heated cathode,ihc)源或辉光放电源(glow discharge source)。在特定实施例中,等离子体源34可为rf等离子体源且可包括rf产生器及rf匹配网络。本公开并不仅限于此。
20.如所属领域中普通技术人员将理解,等离子体腔室22可被配置成对设置在压板32上的工件执行各种常规工艺。举例来说,等离子体腔室22可用于对工件执行等离子体清洁工艺,其中供应到等离子体腔室22的气态物质的等离子体激活原子及离子可分解工件的表面上的有机污染物,之后这些污染物可从等离子体腔室22排出。等离子体清洁可作为所谓的“预清洁”工艺的一部分来执行,其中在工件在工艺腔室24中经受离子植入之前,可从工件的表面移除天然氧化物及其他表面污染物。预清洁可防止或减轻离子植入期间不期望的氧原子“撞入(knock

in)”到工件中,以相对于在不存在预清洁工艺的情况下植入的工件产生更高质量、更好性能的工件。
21.等离子体腔室22还可用于对工件执行等离子体增强型化学气相沉积(pecvd),其中气态物质可沉积在工件的表面上以在上面产生期望材料的薄膜。举例来说,在工艺腔室24中使工件经受离子植入工艺之前,可将期望化学物质的薄膜施加到工件的表面,其中离子植入工艺可激活所施加的化学物质或者与所施加的化学物质相互作用,以在工件的表面上实现期望的组成或条件。在特定实例中,可将期望材料的薄掺杂层施加到工件的表面上,之后可在工艺腔室24中用离子将所施加的层撞入到工件中。在另一实例中,可通过pecvd来施加预清洁化学物质,以移除天然氧化物。在另一实例中,可在工件的离子植入之后执行pecvd,以实现用期望材料的膜覆盖工件(例如,氮化硅覆盖以防止激活退火期间掺杂剂因挥发损耗)。
22.等离子体腔室22也可用于在离子植入之后对工件执行等离子体退火。举例来说,由等离子体源34产生的高能等离子体可用于以预定速率将工件加热到预定温度,以便从工件移除缺陷。举例来说,退火工艺可包括将工件升温至500到600摄氏度的中间温度,且然后以150摄氏度/秒的速率升温至850到1050摄氏度之间的峰值温度。本公开并不仅限于此。
23.在其他实例中,等离子体腔室22可用于在离子植入之前和/或离子植入之后对工
件执行各种其他工艺。这些包括且不限于加热、冷却及刻蚀。
24.参照图2,表示示出根据本公开的操作上述架构10的示例性方法的流程图。现在将参照图1中所示本公开的实施例详细阐述所述方法。
25.在示例性方法的方块100处,大气机器人25可将工件从载体12中的一者移动到入口真空加载锁16。然后可关闭入口真空加载锁16的阀门16a且可将入口真空加载锁16抽气(pumped down)到真空压力或接近真空压力(例如,1
×
10
‑3托)。然后可打开入口真空加载锁16的阀门16b。
26.在示例性方法的方块110处,真空机器人26可将工件从入口真空加载锁16移动到计量组件28,在计量组件28处可测量或检测工件的各个方面及特征。举例来说,可使用计量组件28来检测或测量工件的表面上的天然氧化物及其他污染物,以确定将在等离子体腔室22中对工件执行什么工艺(如下所述)。
27.在示例性方法的方块120处,真空机器人26可将工件从计量组件28移动到等离子体腔室22的压板32。然后可关闭等离子体腔室22的阀门31,且可在等离子体腔室22内建立期望的压力(例如,通过打气(pump up)或抽气),以用于在等离子体腔室22内对工件执行一个或多个离子植入前工艺。在各种实例中,如上所述在等离子体腔室22中,工件可经受等离子体清洁工艺、pecvd工艺、预加热工艺等。本公开并不仅限于此。
28.在示例性方法的方块130处,可打开等离子体腔室22的阀门31,且真空机器人26可将工件从等离子体腔室22的压板32移动到计量组件28,在计量组件28处可测量或检测工件的各个方面及特征。举例来说,可使用计量组件28来判断在等离子体腔室22中执行的等离子体清洁工艺是否有效地将工件上的表面污染物减少到低于预定污染阈值的水平。
29.在示例性方法的方块140处,真空机器人26可将工件从计量组件28移动到对齐站27。对齐站27可用于在工艺腔室24中在处理之前以期望的方式对工件进行取向(如下所述)。举例来说,对齐站27可检测工件上凹口或其他标记的位置且可旋转或以其他方式对工件进行重新取向以将凹口移动到预定位置中。
30.在示例性方法的方块150处,真空机器人26可将工件从对齐站27移动到工艺腔室24中的压板30。如上所述,然后可在工艺腔室24内使工件经受一个或多个离子植入工艺。
31.在示例性方法的方块160处,真空机器人26可将工件从工艺腔室24的压板30移动到等离子体腔室22的压板32。然后可关闭等离子体腔室22的阀门31且可在等离子体腔室22内建立期望的压力(例如,通过打气或抽气),以用于在等离子体腔室22内对工件执行一个或多个离子植入后工艺。在各种实例中,如上所述在等离子体腔室22中,可使工件经受等离子体清洁工艺、pecvd覆盖工艺、等离子体退火工艺、刻蚀工艺等。本公开并不仅限于此。
32.在示例性方法的方块170处,可打开等离子体腔室22的阀门31,且真空机器人26可将工件从等离子体腔室22的压板32移动到计量组件28,在计量组件28处可测量或检测工件的各个方面及特征。举例来说,可使用计量组件28来确定在等离子体腔室22中执行的离子植入后工艺的效果。
33.在示例性方法的方块180处,真空机器人26可将工件从计量组件28移动到出口真空加载锁18。然后可关闭出口真空加载锁18的阀门18b且可将出口真空加载锁18打气到大气压力。然后可打开出口真空加载锁18的阀门18a且大气机器人25可将工件从出口真空加载锁18移动到载体12中的一者。
34.参照图3,示出根据本公开的另一示例性实施例的束线架构200(下文中为“架构200”)。架构200可类似于上述架构10且可包括类似于上述架构10的对应组件的一个或多个载体212、缓冲器214、入口真空加载锁216、出口真空加载锁218、晶片搬送腔室220、等离子体腔室222及工艺腔室224。
35.与上述架构10不同,架构200可还包括设置在晶片搬送腔室220与等离子体腔室222之间的传送腔室223。可分别在晶片搬送腔室220与传送腔室223的接合处以及在传送腔室223与等离子体腔室222的接合处实施阀门231、233,以利于它们之间的气密分离。可在传送腔室223内设置传送机器人235且可用于在晶片搬送腔室220与等离子体腔室222之间传送工件。传送腔室223可附加地容置类似于上述计量组件28的各种计量组件228(例如,计量组件228可相对于架构10的配置被重新定位到传送腔室223)。架构200可以类似于上述及图2中所示的方法的方式操作。
36.参照图4,示出根据本公开另一示例性实施例的束线架构300(下文中为“架构300”)。架构300可类似于上述架构200且可包括类似于架构200的对应组件的一个或多个载体312、缓冲器314、晶片搬送腔室320、等离子体腔室322、工艺腔室324及传送腔室323。与上述架构200不同,架构300可包括其中可在载体312与晶片搬送腔室320之间传送工件的组合的入口出口真空加载锁317,而不是具有单独的入口及出口的真空加载锁。另外,传送腔室323及等离子体腔室322可位于晶片搬送腔室320的与入口出口真空加载锁317、缓冲器314及载体312相同的侧上。架构300可以类似于上述及图2中所示的方法的方式操作。
37.如所属领域中的普通技术人员将理解,上述架构10、200及300以及上述方法提供关于半导体工件的束线处理的许多优点。举例来说,具体到架构10(且类似地在架构200及300中提供),由于等离子体腔室22及工艺腔室24直接连接到晶片搬送腔室20,因此当工件在等离子体腔室22与工艺腔室24之间传送时,可在使工件经受离子植入工艺之前和/或离子植入工艺之后立即对工件执行例如等离子体清洁、pecvd及等离子体退火等工艺,同时避免将工件暴露于大气(其中污染物可能被引入到工件)。此外,由于等离子体腔室22是独立的且与工艺腔室24分开,因此与腔室中的一者相关联的许多变量(例如,压力、材料、化学物质等)可改变为在此种腔室内完成期望工艺,且不需要考虑这些变量对腔室中的另一者的影响。
38.本公开的范围不受本文所述具体实施例限制。实际上,根据以上说明及附图,对所属领域中的普通技术人员来说,除本文所述实施例及润饰以外的本公开其他各种实施例及对本公开的各种润饰也将显而易见。因此,这些其他实施例及润饰都旨在落于本公开的范围内。此外,本文中已在用于具体目的的具体环境中的具体实施方式的上下文中阐述了本公开,所属领域中的普通技术人员将认识到,其适用性并不仅限于此。本公开可出于任意数目的目的而在任意数目的环境中有益地实施。因此,以上提出的权利要求应根据本文所述本公开的全部广度及精神来加以解释。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献