一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种环境感知自修复柔性储能电极材料制备方法及应用与流程

2022-02-20 00:33:20 来源:中国专利 TAG:


1.本发明属于储能电极材料技术领域,具体涉及一种环境感知自修复柔性储能电极材料制备方法及应用。


背景技术:

2.在过去的几十年中,人们对多孔晶态材料进行了广泛的研究。其中,金属有机框架(mofs)和共价有机框架(cofs)由于具有永久的孔隙率、大的比表面积以及高度的可设计性等优势在气体分离与存储、水的纯化、非均相催化、电极材料、化学传感、药物传输等领域具有潜在的应用前景。这两类材料分别由不同的分子构筑单元通过配位键或共价键组装而成。
3.氢键有机框架(hofs)是一类新型的多孔晶态材料,由有机或金属有机构筑单元通过分子间氢键作用组装而成。与共价键和配位键相比,氢键本质上具有作用力弱、柔性以及方向性较差等特点。在不同的溶剂以及合成条件下,hofs往往具有不同的结构,极大的增加了其结构的多样性。此外,由于这种有机框架结构中包含了大量的氢键,所以hofs材料在柔性应用方面具有潜力,这也使得hofs具有一些固有的优势,如合成条件温和、溶液可加工性、易于再生和修复等。
4.在中国专利cn113201144a中公开了一种刚性的四羧基氢键有机框架材料,该材料主要用于c3h4/c3h6混合气体中选择性分离吸附丙烯丙炔,但没有在电极方面做出应用尝试;中国专利cn113045460a中公开了一种高核水簇的氢键有机框架材料及其制备方法,该发明主要是调控疏水溶剂的比例构建,通过相同的小分子有机化合物构建不同的氢键有机框架结构,并且合成了一种全新的高核水簇有机框架材料,但未在应用层面做出阐释,更没有用于制备电极材料;中国专利cn112920794a中公开了一种氢键有机框架复合发光材料及其制备方法,该材料在照明、显示以及发光器件领域中有应用潜力,但在储能器件领域的应用并未报道;中国专利cn112724416a中公开了一种生物基氢键有机框架材料,将其应用于非均相光催化co2还原中,但在其他领域中的应用并未提及;中国专利cn109134882b中公开了一种咔唑基氢键有机框架材料,具有c2h4/c2h6选择性分离吸附性能,且具有良好的热稳定性与化学稳定性,重复使用成本低,主要应用于气体分离领域,未能够涉及超级电容储能领域;中国专利cn108727605b中公开了一种基于稠环配体构筑的氢键有机框架材料,由于该材料具有良好的生物兼容性和较低的生物毒性,在进一步复合抗癌药物之后,具有优良的复合化学-光动力学治疗能力,表现了出优良的癌症治疗效果,因此该材料主要用于生物领域。欧洲专利ep3871768a1公开了一种氢键有机框架结构,该材料具有半导电性、质子导电、多孔等特性,并未应用于储能领域;中国专利cn112090298a公开了一种全纳米多孔mof/hof复合膜、制备方法,这种材料主要应用在气体分离中;中国专利cn111636208a公开了一种介孔氢键有机骨架纤维复合材料,该材料主要用于对芥子气进行降解,以上各专利均无在储能领域中应用,主要是该材料在导电性方面欠佳,以至于很难在储能领域应用起来;中国专利cn112552524a中公开了一种离子型氢键有机框架材料,其主要用于质子导电材料;
中国专利cn112614997a中公开了一种基于氢键有机框架材料的氟化碳正极材料的制备方法,其以多孔材料—氢键有机框架材料作为原料,经过高温碳化可以获得含有杂原子的多孔碳材料,采用由氟气、氟化氢和氩气组成的混合气体作为氟化气体,在加热条件下对多孔碳材料进行氟化可获得含有杂原子的氟化碳正极材料,但该方法步骤繁琐,合成条件要求较高(需要900℃的高温环境,且中间有氟化氢等有害物质参与反应),不符合低成本、绿色、制备简单的合成路线。
5.综上所述,hof材料用在制备超级电容器电极方面的研究尚未见报道,尤其是这种具备环境感知功能性的柔性电极材料从未被提及。本发明主要解决氢键有机框架材料导电性差和一些设备材料在潮湿环境中极易损坏失效的问题,通过利用该电极材料制备的器件不仅具有高柔性和高比能量密度,而且可以增强其寿命,尤其是作为电化学储能器件在较为潮湿的环境中使用时效果不降反增。


技术实现要素:

6.针对现有技术的不足,本发明提供了一种环境感知自修复柔性储能电极材料制备方法,该方法包括以下步骤:
7.步骤1),在室温下将10mg pedot:pss(型号为ph 1000,来自贺利氏)与30ml去离子水混合均匀,制成溶液,然后用真空抽滤装置将pedot:pss溶液均匀涂在直径为50mm的滤膜上,得到带有导电聚合物的滤膜支架,并裁剪成直径18mm的圆片备用;
8.步骤2),在容器中加入0.15mmol金属盐和0.15mmol的六氟硅酸铵,然后加入去离子水制成6ml的水溶液,并将步骤1)制成的圆片滤膜支架放在水溶液上方;
9.步骤3),将1ml乙腈和1ml去离子水混合均匀后缓慢滴加在滤膜支架上方,此时滤膜支架上方和下方均有不同的溶液体系;
10.步骤4),将0.3mmol的腺嘌呤与3ml乙腈和3ml去离子水混合,制成混合溶液,然后缓慢加入到步骤3)溶液体系的上方,此时溶液呈分层状态,然后静置6天;
11.步骤5),将静置处理后的滤膜支架取出,并用甲醇洗涤活化处理,最后离心分离5-10min,并在60℃的真空干燥箱中干燥24h,即可得到环境感知自修复柔性储能电极材料。
12.优选地,步骤1)所述的混合方式是先在室温下磁力搅拌30min,然后超声混合30min。
13.优选地,步骤1)所述的滤膜为mce滤膜(购买于深圳市益百顺科技有限公司),孔隙为0.2μm。
14.优选地,步骤2)所述的金属盐为三氯化钌、六水合硝酸镍、三水合硝酸铜、高锰酸钾中的一种或者几种组合。
15.优选地,步骤5)所述的离心转速为1500rpm。
16.本发明还提供了一种环境感知自修复柔性储能电极材料,该电极材料是利用本发明的上述制备方法制备而成。
17.除此之外,本发明还提供了一种电极片,其是利用本发明所述的环境感知自修复柔性储能电极材料制备而成。
18.优选地,所述电极片的制备方法如下:
19.(1)将制备的环境感知自修复柔性储能电极材料与乙炔黑和聚四氟乙烯以重量比
为8:1:1研磨1h制备成前驱体;
20.(2)在步骤(1)的前驱体中加入乙醇,搅拌制备成糊状前驱体,其中乙醇和前驱体的质量比为15:2;
21.(3)然后将糊状前驱体均匀涂覆在泡沫镍衬底表面,并在150℃下干燥12h,所述糊状前驱体的涂覆量为0.0576mg/cm2;
22.(4)将干燥后的衬底材料在12mpa下压制2min,得到电极片。
23.本发明还提供了一种柔性超级电容器,即利用本发明所述的电极片作为正极组装成纽带型可穿戴非对称超级电容器。
24.与现有技术相比,本发明具有以下有益效果:
25.本发明将氢键有机框架结构与纤维支架材料(如滤膜、碳纤维、石墨烯、石墨烯纤维等)相结合制成一种电极材料,该电极材料能够感知环境湿度从而对自身材料结构做出修复。利用本发明的电极材料制备的器件具有较高的使用寿命,同时在潮湿环境中使用效果佳。
26.本发明感知型电极材料经拉伸实验测试和理论计算验证得到杨氏模量为0.1~3gpa、泊松比为0.3~0.5,均表明其具有极好的柔性。
27.同时利用本发明感知型电极材料制成纽带型可穿戴非对称超级电容器的拉伸强度可达28.9n,可以满足可穿戴设备要求。
附图说明
28.图1为本发明所述环境感知自修复柔性储能电极材料的制备工艺路线;
29.图2(a)-(b)分别为实施例2单组分hof电极材料在两种不同放大倍数下的sem图像;(c)和(d)分别为本发明实施例1环境感知自修复柔性储能电极材料不同比例下的sem图;
30.图3为本发明实施例3和实施例4所述电极片的循环伏安测试曲线图;
31.图4为本发明实施例3所述电极片在遇到湿润天气前后的循环性能测试曲线图;
32.图5(a)为不同扫描速率下的感知型hof//ac非对称超级电容器的cv曲线,(b)为不同电流密度下的感知型hof//ac非对称超级电容器的gcd曲线;
33.图6为本发明实施例3所述电极片在测拉伸性能时的实物图和拉伸测试曲线图。
具体实施方式
34.下面结合具体实施例对本发明作进一步说明。
35.实施例1
36.一种环境感知自修复柔性储能电极材料制备方法,步骤如下:
37.步骤1),将10mg pedot:pss与30ml去离子水先在室温下磁力搅拌30min,然后超声混合30min,制成溶液,然后用真空抽滤装置将pedot:pss溶液均匀涂在直径为50mm的mce滤膜(孔隙为0.2μm)上,得到带有导电聚合物的滤膜支架,并裁剪成直径18mm的圆片备用;
38.步骤2),在容器中加入0.15mmol三氯化钌和0.15mmol的六氟硅酸铵,然后加入去离子水制成6ml的水溶液,并将步骤1)制成的圆片滤膜支架放在水溶液上方;
39.步骤3),将1ml乙腈和1ml去离子水混合均匀后缓慢滴加在滤膜支架上方,此时滤
膜支架上方和下方均有不同的溶液体系;
40.步骤4),将0.3mmol的腺嘌呤与3ml乙腈和3ml去离子水混合,制成混合溶液,然后缓慢加入到步骤3)溶液体系的上方,此时溶液呈分层状态,然后静置6天;
41.步骤5),将静置处理后的滤膜支架取出,并用甲醇洗涤活化处理,最后离心分离5-10min(转速为1500rpm),并在60℃的真空干燥箱中干燥24h,即可得到环境感知自修复柔性储能电极材料(即为感知型hof电极材料)。
42.实施例2
43.一种单组分hof电极材料的制备方法如下:
44.步骤1),在容器中加入0.15mmol三氯化钌和0.15mmol的六氟硅酸铵,然后加入去离子水制成6ml的水溶液;
45.步骤2),将1ml乙腈和1ml去离子水混合均匀后缓慢滴加到步骤1)的水溶液上部,形成缓冲层;
46.步骤3),将0.3mmol的腺嘌呤与3ml乙腈和3ml去离子水混合,制成混合溶液,然后缓慢加入到步骤2)溶液体系的上方,此时溶液呈分层状态,然后静置6天,形成蓝色晶体沉淀;
47.步骤4),将沉淀取出,并用甲醇洗涤活化处理,最后离心分离5-10min(转速为1500rpm),并在60℃的真空干燥箱中干燥24h,即可得到单组分hof电极材料。
48.从图2(a)-(b)中可以看出,实施例2的单组分hof电极材料主要由相互连接的不规则晶粒组成。粒子之间存在许多间隙,大孔和空隙,从而导致较大的氧化还原反应表面积,从而增加了比电容容量。并且可以在样品簇中观察到的层状结构的尺寸约小于10nm,这为通过电极/电解质界面的快速离子传输提供了途径。
49.同样,在图2(b)中观察到了可见的纳米块微观结构,这将显着减少离子扩散距离并改善电荷转移。图2(c)和(d)分别显示了实施例1感知型hof电极材料不同比例下的sem图。在图2(d)中可以观察到与图2(b)中相似的纳米级的层状结构,以及与层状晶粒紧密结合的纤维状结构。
50.实施例3
51.一种感知型hof电极片的制备方法如下:
52.(1)将实施例1制备的感知型hof电极材料与乙炔黑和聚四氟乙烯以重量比为8:1:1研磨1h制备成前驱体;
53.(2)在步骤(1)的前驱体中加入乙醇,搅拌制备成糊状前驱体;
54.(3)然后将糊状前驱体均匀涂覆在泡沫镍衬底表面,并在150℃下干燥12h,所述糊状前驱体的涂覆量为0.0576mg/cm2;
55.(4)将干燥后的衬底材料在12mpa下压制2min,得到感知型hof电极片。
56.(5)将制备的感知性hof电极片进行拉伸性能测试,实验装置和测试结果如图6所示。
57.实施例4
58.一种单组分hof电极片的制备方法如下:
59.(1)将实施例2制备的单组分hof电极材料与乙炔黑和聚四氟乙烯以重量比为8:1:1研磨1h制备成前驱体;
60.(2)在步骤(1)的前驱体中加入乙醇,搅拌制备成糊状前驱体;
61.(3)然后将糊状前驱体均匀涂覆在泡沫镍衬底表面,并在150℃下干燥12h,所述糊状前驱体的涂覆量为0.0576mg/cm2;
62.(4)将干燥后的衬底材料在12mpa下压制2min,得到单组分hof电极片。
63.对实施例3感知型hof电极片和实施例4制备的单组分hof电极片进行电化学性能测试。其中测试使用的仪器是chi 760e电化学工作站(上海晨华仪器有限公司,中国)。电解质溶液采用的是6m lioh,工作电极和参比电极分别是铂箔电极和饱和甘汞电极(sce,saturated calomel electrode)。
64.图3(a)和(b)分别显示了实施例4制备的单组分hof电极片和实施例3感知型hof电极片在10mv s-1
的扫描速率下0.1v~0.6v的电位范围内的cv曲线。从图3(a)和(b)中可以清楚的看到有明显的氧化还原峰,这说明在充放电过程中感知型hof电极片表面发生了氧化还原反应,证明了感知型hof电极片的储能原理与赝电容相似。在oh-离子的环境中,两种电极的阴极扫描曲线和阳极扫描曲线基本对称,在低扫描速率时如10mv s-1
更为明显,这表明两种电极具备良好的循环性能。对比图3(a)和(b),在扫描速率均为100mv s-1
时,本发明实施例3感知型hof电极片的阳极与阴极扫描曲线电流密度的峰值为82.3ag-1
和-80.4ag-1
,会高于单纯的hof电极片的电流密度峰值27.8ag-1
和-15.1ag-1

65.同时本发明分别对不同条件下制备的实施例3感知型hof电极片进行了恒流充放电测试。在6ag-1
的电流密度下,对干燥环境中的感知型hof电极片进行10000次的循环充放电,测试结果如图4左图所示。可以看到,实施例3感知型hof电极片具有很好的循环寿命,在循环10000圈后分别保持了88.29%。然后在湿润的环境中存放8h后,再次使用电化学工作站的三电极体系对该电极进行了cv、gcd与长循环测试,结果如图4右图所示。可以看到实施例3感知型hof电极片的gcd曲线在开始时的比容量保持率从88.29%提升到了95.74%,说明本发明感知型hof电极片在湿润环境中具有感知修复作用。
66.实施例5
67.一种感知型hof//ac柔性非对称超级电容器的制备方法如下:
68.将实施例3制备的感知性hof电极作为正极,ac电极作为负极,以6m
69.的lioh水溶液为电解液,依次将正极感知型hof电极、隔膜、电解液、负极ac电极叠放组装成纽带型可穿戴非对称超级电容器。
70.该器件的cv曲线在电势窗口内(图5(a))在不同扫描速率下显示出理想的电容特性,表明其电化学性能非常稳定。在1至10ag-1
的电流密度下测得的感知型hof//ac非对称超级电容器的gcd曲线(图5(b))为几乎对称的三角形,表明其优异的充电/放电性能。比电容可以根据gcd测试与计算得出的,电容与电流密度之间的关系如图5(b)所示。可以看出,电池在1ag-1
时显示出良好的158.3f g-1

71.需要说明的是,以上列举的仅是本发明的若干个具体实施例,显然本发明不仅仅限于以上实施例,还可以有其他变形。本领域的技术人员从本发明公开内容直接导出或间接引申的所有变形,均应认为是本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献