一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

单域抗体融合蛋白及其在止血中的应用的制作方法

2022-02-19 13:13:02 来源:中国专利 TAG:

单域抗体融合蛋白及其在止血中的应用
1.本发明技术领域
2.本发明主要涉及的是抗trem(triggering receptors expressed on myeloid cells骨髓细胞的触发受体)类转录因子

1(tlt

1)分子的单域抗体(sdab)。tlt

1分子存在于损伤部位的活化血小板上,尤其存在于血栓外围活化的血小板上。除此之外,本发明还涉及到单域抗体和组织因子的胞外(可溶性)结构域(stf)融合蛋白。这种融合蛋白可将stf引导至损伤部位的活化血小板表面从而促进止血。患有出血性疾病的个体,例如血友病a,血友病b,或由于外伤引起的急性出血,可以从使用这种融合蛋白的治疗中受益。
3.发明背景
4.血小板通常以静息(非激活)的状态在血流中循环。当血管受损时,血小板通过血小板糖蛋白(gp),例如gp ib

ix

v和gp iib/iiia受体以及在那里表达的组织因子,与受损的内皮下细胞相互作用。这种相互作用在损伤部位引发血小板粘附,聚集和活化以及血小板形状变化,以及随后的α

和致密颗粒释放。除了其他膜蛋白外,活化的血小板同时表达p

selectin和tlt

1受体,p

selectin介导与白细胞的相互作用,而tlt

1受体增强钙离子的流入并促进激活血小板在表面聚集。研究表明tlt

1受体仅在活化的血小板表面表达,这使其成为凝血因子定位的理想靶分子。活化的血小板基本上只在损伤部位被发现,也有研究认为血小板活化可能和某些疾病有关。活化的血小板(dale,2005,j.thromb.haemost.volume 3,pp.2185

2192)可定义为在血小板表面表达p

selectin,gpiib/iiia和cd40l蛋白等(yun等,2016,biomed res.inter.,第2016卷,e9060143)。活化的血小板还诱导膜磷脂酰丝氨酸(ps)翻转和导致其暴露于其表面,这些ps的功能是介导血小板与凝血蛋白的相互作用。含有ps的血小板衍生膜表面带负电荷,其在激活凝血酶原酶复合物的形成方面起着关键作用。这是驱动凝血酶产生的凝血途径的最后一步,随后形成纤维蛋白。
5.止血是一种自然凝血机制,发生在受伤部位以防止过度出血。治疗出血性疾病的理想治疗分子应该只作用于损伤部位,因此将凝血因子定位在损伤部位是止血治疗的关键所在。(novo nordisk,denmark)是一种在培养的哺乳动物细胞中产生的重组fviia(recfviia)分子。它一直是治疗已出现凝血因子fviii和fix抑制剂血友病患者的主要生物分子。因此,像重组fviia这样的分子常被称为“旁路剂”。在正常止血条件下,血液中循环的fvii因子可与血管外膜损伤部位暴露的组织因子(tf)结合,并被tf激活,以tf/fviia复合物的方式将fx裂解为fxa。重组fviia,作为一种独立的分子,给药后基本上“绕过了”fvii和tf的正常相互作用,并独立于组织因子(主要存在并仅在损伤部位暴露)作用于fx。为了达到这种效果,fviia需要以药理学上的大量给药来模拟天然fvii

tf激活(即fx激活)的效果。重组fviia与细胞膜的结合,不包括和tf的相互作用,似乎是由暴露于活化血小板脂质层中的磷脂酰丝氨酸介导的,并且与血浆来源的fvii非常相似,通过fviia活性位点蛋白水解介导fx的激活。血友病a和b患者治疗中需要大剂量的重组fviia的原因至少部分被认为是由于fviia与血小板的ps结合率低和缺乏与tf的协同性。其他“旁路剂”,如feiba(baxter international),由血浆来源的凝血因子的混合物组成,其中仅包括一小部分活
化的凝血因子,又如fviia,可用于治疗产生抑制物的血友病a和b患者;然而,由于其不同内容的性质和可变性,产品的精确分析很难做到。
6.与严格依赖凝血因子本身的特性不同,磷脂酰丝氨酸结合蛋白,如annexin v和乳粘蛋白c

2蛋白,已被认为是潜在的靶向载体,可将凝血因子和其他分子引导至位于受伤部位的被活化了的血小板的脂质双层,以加速止血的进程。例如,annexin v对细胞膜中的ps具有高亲和力和高特异性(thiagarajan和tait,1991,j.biol.chem.,第266卷,第24302

24307页;rescher和gerke,2004,j.cell sci.,第117卷,第2631

2639页),从而使其成为靶向活化血小板的理想选择。比如,将这些靶向蛋白区域与凝血因子结合的融合蛋白代表了一种与活化血小板相互作用的替代方法,可能比单独使用重组fviia具有更高的亲和力。组织因子胞外域与annexin v组成的融合蛋白在出血模型中具有很强的止血作用(huang等人,2006年,blood,第107卷,第980

986页),它代表了一种潜在的“旁路”剂。不幸的是,尽管它们具有潜在的用途,但是这种能与ps特异性结合的annexin v类似的分子有以下几个缺点:除了活化的血小板,磷脂酰丝氨酸可以在非血小板细胞的表面(如凋亡或垂死细胞)以及其他细胞类型上表达,另外ps结合蛋白或其融合蛋白可以与其他凝血因子竞争与活化血小板表面上的ps的结合,从而对凝血过程起到了阻碍(thiagarajan和tait,1991,j.biol.chem.,第266卷,第24302

24307页)。
7.实现对特定类型细胞的高亲和力和高特异性的另一种方法是通过抗体。单克隆抗体被广泛用于将治疗分子靶向各种细胞和血小板,包括将特定药物递送至癌症靶标(例如yang等,2018,biotechnol.lett.,第40卷,第789

795页;khongorzul等,2020,mol.cancer res.,第18卷,第3

19页)或损伤组织(runge等,1987,proc.natl.acad.sci.(美国),第84卷,第7659

7662页)。一般来说,它们的分子量过大(150kda),与其形成的融合蛋白的分子量甚至更大。并且由于其复杂的重链和轻链结构以及翻译后修饰所导致的灵活性上的限制,会导致和某些目标相关表位的结合能力降低,生产和纯化成本也会相对较高,从而限制了它们在开发治疗性融合蛋白衍生物中的应用。此外,它们较长的血浆半衰期对止血可能是不利的,在这种情况下,可能需要短暂的和自我调节的属性。事实上,很少有涉及单克隆抗体的分子融合蛋白被成功地生产或使用。
8.相比之下,单域抗体(sdab),也称为纳米抗体或vhh结构域,是源自骆驼科成员血清中存在的重链抗体(图1),在软骨鱼纲的一些成员中也发现了类似的sdab,没有重链ch1结构域,因此不像其他哺乳动物那样支持与同源轻链片段的结合。重链免疫球蛋白的可变区(所谓的vhh)是可用的最小的完整抗原结合结构域,这个结构域来自于功能性免疫球蛋白,其分子量范围为12

15kda。与其他哺乳动物重链和轻链的可变区不同,vhh能够插入或渗透到结构域缝隙中,而常规抗体或其衍生物无法做到,它们通常是与蛋白质表面的表位结合(例如,schmitz等,2013,structure,第21卷,第1214

1224页)。
9.组织因子(tf)是止血的主要引发剂,是一种膜结合蛋白,通常不会在与血液直接接触的细胞表面表达。随着血管损伤,位于内皮下的tf暴露于血流并于血浆因子vii结合。由此产生的复合物启动凝血激活步骤和特定酶促反应的外源性级联反应,最终导致止血与血管闭合。全长tf及其可溶性胞外域(stf)都不能单独用做治疗分子。这是因为,一方面,全长tf对凝血系统的有效和普遍激活会导致大量播散性血栓形成,这在20世纪早期就已经注意到(howell,1912,am.j.physiol.,第31卷,第1

21页)。另一方面,stf的效力比全长形式
低几个数量级:那是因为tf的膜蛋白区域(膜锚定)对于支持fviia的完整蛋白水解活性至关重要(paborsky,1991;petrilo,2010);因此,stf本身基本上没有功能,尤其是在较低剂量时(morrissey,美国专利5,504,067)。
10.阻止出血的分子药物对于患有血友病a或b等遗传疾病的患者至关重要,除此之外对于由于事故,手术,或其他创伤等而遭受严重伤害的患者也至关重要。多年来,只有极少数分子药物被发明创造出来,证明了其用于出血性病症的有效性,即便如此,潜在的过度血栓形成的副作用以及药物成本削弱了这些分子的实用性。
11.对于治疗出血性疾病,仍然有相当大的需求要寻找负担得起且有效的生物药物。此类药物需要证明其关键属性,以满足正常或长效凝血因子(如长效fviii或fix)之外的需求,如新的分子,或更为有效但似乎有不良副作用的重组fviia分子。
12.附图的简要说明
13.图1是常规抗体,骆驼科抗体,和vhh的结构图示。常规抗体是一个四聚多肽单元,由两条相同的重链(h)和两条相同的轻链(l)通过二硫键连接在一起形成抗体的y形和n端可与抗原结合的可变区(vh

vl)。骆驼抗体没有轻链,仅由两条相同的重链组成,其中vhh结构域(也称为sdab或纳米抗体)与抗原结合。
14.图2展示了38个抗tlt

1 sdab序列的氨基酸序列,其中加亮(highlighted)的部分为互补决定区cdr1,cdr2和cdr3。
15.图3a展示了38个抗tlt

1 sdab的cdr1,cdr2和cdr3的氨基酸序列。图3b展示了10种优选的抗tlt

1 sdab的特异cdr1,cdr2和cdr3。
16.图4为组织因子胞外域(seq id no:100)的氨基酸序列(1

209),以及相同序列n端来源于表达载体的(小写字母)氨基酸和一个位于c端his

6标签的氨基酸(seq id no:101)。
17.图5a展示了基于sdab蛋白的氨基酸序列。两种具c端his标签的抗tlt

1sdab:(1)sdab
‑2‑
33

his(seq id no:102)和(2)sdab
‑2‑
90

his(seq id no:103),以及两种带有his标签的融合蛋白:(3)stf
209

pc1

sdab 2

33
tlt

his(seq id no:104)和(4)stf
209

pc1

sdab 2

90
tlt

his(seq id no:105)。抗tlt

1 sdab和stf
209
表达元件之间的连接肽包括一个来自人转甲状腺素蛋白的22个氨基酸的gly

ser连接序列(下划线)和一个来自人fviii的凝血酶切割位点(粗体)。所有示例中,n端的小写字母都表示来自表达载体的氨基酸;大写字母表示所述蛋白质的一级序列。
18.图5b展示了首选的tf与抗tlt

1 sdab融合的氨基酸序列。(1)stf
209

pc1

sdab 2

33
tlt
(seq id no:106)和(2)stf
209

pc1

sdab 2

33
tlt
(seq id no:107),含有靠近sdab的凝血酶切割位点。
19.图5c展示了组织因子和sdab组成的融合蛋白的首选序列。(1)stf
209

sdab 2

33
tlt
(seq id no:108)和(2)stf
209

sdab 2

33
tlt
(seq id no:109),他们不含凝血酶切割位点。
20.图5d展示了全长人组织因子(seq id 110),其中加亮部分为跨膜结构域。
21.图5e展示了两种具有xa因子切割位点的融合蛋白。(1)stf
209

pc2

sdab 2

33
tlt

his(seq id no:111)和(2)stf
209

pc2

sdab 2

90
tlt

his(seq id no:112)。抗tlt

1 sdab和stf
209
表达元件之间的连接肽包括一个来自人转甲状腺素蛋白的22个氨基酸的gly

ser连接序列和一个来自人凝血酶原的人凝血因子xa的切割位点。
22.图6a

6b为组织因子的可溶性结构域(stf)和单域抗体(sdab)组成的融合蛋白的示意图。(6a)stf
209
的c端通过包含gly

ser连接序列和fviii凝血酶切割位点的柔性多肽与sdab的n端融合,该图是基于stf和骆驼科sdab的晶体结构。(6b)(a)中类似结构的简笔图,表明在sdab与活化血小板表面上的tlt

1蛋白结合后stf与fvii的相互作用。“pc”代表蛋白水解切割位点。
23.图7a

7c展示的是表达抗tlt

1 sdab,stf和stf

sdab融合蛋白的质粒图谱。每种蛋白质相应的dna被亚克隆到特定的限制性酶切割位点,并在t7启动子(点状框)调控下表达。(7a)表达载体pnt

sdab 2

33
tlt
和pnt

sdab 2

90
tlt
的质粒图谱。表达元件包含编码带有一个c端his标签的sdab 2

33
tlt

his或sdab 2

90
tlt

his的dna序列,克隆位点是nco i和bam hi。(7b)表达载体pnt

stf
209

his的质粒图谱。包含编码带有一个c端his标签的组织因子胞外域氨基酸1

209(stf
209
)的dna序列。克隆位点是nhe i和bam hi。(7c)表达载体pnt

stf
209

pc

sdab 2

33
tlt

his和pnt

stf
209

pc

sdab2

90
tlt

his的质粒图谱。包含编码带有一个c端his标签的stf
209
和sdab(2

33
tlt
或sdab 2

90
tlt
蛋白)的dna序列;“pc”代表gly

ser连接序列c端的蛋白水解切割位点,克隆位点是nhe i和bam hi。
24.图8a

8d展示了重组蛋白的纯度和分子量。(8a)重组表达蛋白sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

his,stf
209

pc1

dab 2

33
tlt

his,和stf
209

pc1

sdab 2

90tlt

his的凝胶电泳图。将2μg的蛋白进行15%sds

page凝胶电泳并用考马斯亮蓝染色。(8b)图8a中泳道2,4和6的相应western blot结果。western blot使用抗tf标签抗体。(8c)图8a中泳道2,3,4,5,和6的相应western blot结果。western blot使用抗his抗体。泳道m:分子量标准(mw),泳道1:stf
209

his,泳道2:sdab
‑2‑
33
tlt

his,泳道3:stf
209

pc1

sdab 2

33
tlt

his,泳道4:sdab 2

90
tlt

his,泳道5:stf209

pc1

sdab 2

90
tlt

his。(8d)图3中全部十种重组表达的sdab的凝胶电泳图。泳道1:sdab 2
‑3tlt

his,泳道2:sdab 2

25
tlt

his,泳道3:sdab 2

33
tlt

his,泳道4:sdab 2

64
tlt

his,泳道5:sdab 2

90
tlt

his,泳道6:sdab 2

127
tlt

his,泳道7:sdab 2

132
tlt

his,泳道8:sdab 3

32
tlt

his,泳道9:sdab 3

38
tlt

his,泳道10:sdab 2

69
tlt

his。
25.图9a和9b展示了纳米抗体融合蛋白与人tlt

1胞外域的亲和力测定。将人tlt

1蛋白的胞外域包被到elisa 96孔板上,在4℃下孵育24小时并在室温(rt)条件下使用封闭缓冲液封闭2小时后,将浓度递增的10种抗tlt

1 sdab,stf
209

pc1

sdab 2

33
tlt

his,和stf
209

pc2

sdab 2

90
tlt
分别加入各个孔中,室温下孵育1小时。使用抗his hrp标记的抗体来评估结合能力。所有十种抗tlt

1 sdab(图9a),stf
209

pc1

sdab 2

33
tlt

his,和stf
209

pc1

sdab 2

90
tlt

his(图9b)的亲和力都小于10nm。根据这个标准,stf
209

his似乎不会影响sdab
tlt
与tlt

1结合的能力。
26.图10a和10b展示了蛋白与活化血小板的结合。使用人和小鼠的全血来鉴定sdab
‑2‑
33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his,和stf
209

pc1

sdab2

90
tlt

his是否只结合活化的人血小板(图10a)和小鼠血小板(图10b)。为了制备活化的人血小板,将adp(5和20μm)与人全血一起预孵育,然后将上述蛋白加入adp处理过的全血中。为了制备活化的小鼠血小板,将5μg/ml或10μg/ml的胶原与小鼠全血一起预孵育,然后将上述蛋白加入胶原处理过的全血中。利用fitc标记的抗his标签抗体来检测蛋白与血小板的结合。结果清楚地表明sdab
‑2‑
33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his,和stf
209

pc1

sdab 2

90
tlt

his蛋白只与活化的人和小鼠的血小板结合,将stf与sdab融合并不会改变它们与血小板tlt

1受体的结合。这个结果为使用小鼠出血模型来证明人stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白具有止血的功效提供了基础。
27.图11展示了fviia酰胺分解活性的特性。stf
209

pc1

dab 2

33
tlt

his,stf
209

pci

sdab 2

90
tlt

his,stf
209

his,sdab
‑2‑
33
tlt

his,和sdab 2

90
tlt

his蛋白作为该试验中的待测样品。结合曲线表明,与stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his类似,这些蛋白都具有相似的tf介导的,浓度依赖的fviia酰胺分解活性。这表明stf
209

his的功能不受其与纳米抗体融合的影响;相比之下,单独的sdab
‑2‑
33
tlt

his和sdab 2

90
tlt

his也不会影响fviia的酰胺分解活性。
28.图12展示了stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his,stf
209

his,sdab
‑2‑
33
tlt

his,和sdab 2

90
tlt

his在类似于aptt的凝血试验中的作用。来自血友病a患者的人乏fviii血浆与在表面稳定表达人tlt

1受体的转染cho细胞混合,对五种终浓度为1nm的蛋白全部进行了检测。结果显示只有sdab
‑2‑
33
tlt

his和sdab 2

90
tlt

his融合蛋白的凝血时间显著缩短,清晰的证明了这两种融合蛋白在a型血友病患者的血浆中具有促凝血活性。
29.图13说明了由融合蛋白促进的凝血酶产生。使用凝血酶生成试验(tga)来证明stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his,stf
209

his,sdab
‑2‑
33
tlt

his和sdab 2

90
tlt

his蛋白对凝血酶生成的影响。含有柠檬酸盐的人富血小板血浆(prp)与上述五种蛋白混合,每种蛋白的终浓度均为25nm。tga结果表明,靶向结合血小板的stf

sdab融合蛋白,而非单链抗体(sdab),能够显著缩短凝血酶峰值产生的滞后时间。
30.图14a

14b证明了融合蛋白在小鼠出血模型中的促凝血作用。通过皮下注射依诺肝素钠(30mg/kg)建立小鼠出血模型。待测样品,即stf
209

pc1

sdab 2

33
tlt

his,stf
209

pc1

sdab 2

90
tlt

his,和对照,以小鼠体重的90μg/kg的剂量进行给药。通过称量在尾部出血实验期间收集的血液来检测失血量,当出血停止时通过直接观察确定血凝块形成的时间。
31.发明详述
32.定义
[0033]“cdr”是抗体的vh或vl链的互补决定区,对于与抗原结合至关重要。
[0034]“结构域”是指多肽中独立于其他区域折叠成特定结构的一个区域。
[0035]“单域抗体”(sdab)或“重链抗体重链可变区”(vhh)也称为纳米抗体,是由一个单体形式的可变抗体组成的抗体片段,即抗体重链的可变区。单域抗体通常来自骆驼科。vhh和sdab在本专利中可互换使用。
[0036]“组织因子”(tf),也称为血小板组织因子,因子iii或cd142,是一种由f3基因编码的膜结合蛋白,存在于内皮下组织和白细胞中。它在凝血过程中的作用是启动酶原凝血
[0037]“trem(在骨髓细胞上表达的触发受体)类转录物

1”(tlt

1),如本文所用,是仅在血小板和巨核细胞的α颗粒中发现的膜蛋白受体。tlt

1包含一个胞外v型ig样结构域,一个富含脯氨酸的区域以及一个胞质尾区的免疫受体酪氨酸抑制基序。血小板活化后,tlt

1迅速到达血小板表面并增强ca

内流和促进血小板聚集。
[0038]
本发明涉及可以特异性结合存在于活化而非静息状态的血小板上的小鼠和人
tlt

1蛋白的高亲和力单域抗体(sdab)。由于其分子量更小,稳定性较高,具有大量可使用的表位,相对较低的生产成本以及改进后的生产稳定性,所以本发明选择sdab作为制备融合蛋白的靶向制剂。
[0039]
本发明还涉及包含与这些单域抗体连接的组织因子(stf)的胞外(可溶性)域的融合蛋白,用于有效地将stf靶向血管损伤位点。靶向作用是通过sdab与tlt

1的结合达到的,tlt

1是一种膜蛋白受体,其表达仅局限于静息血小板和巨核细胞的α颗粒,然后在血小板活化后转移到血小板表面;stf与fvii相互作用是定位在活化的血小板膜上的,以实现促进促凝活性。这种靶向最大限度地提高了tf作为强止血剂的能力,同时最大限度地减少了因过量凝血酶形成而诱发弥散性血管内凝血(dic)的机会。本发明的融合蛋白满足了治疗患有严重出血障碍的患者的需要。
[0040]
tlt

1(trem类转录物1)单域抗体(sdab)
[0041]
tlt

1(trem类转录物1)蛋白在活化的血小板表面选择性表达,tlt

1蛋白表面包含许多凹槽(gattis等,2006,proc.natl.acad.sci.usa,第281卷,第13396

13403页)。文章认为这些凹槽使得tlt

1蛋白特别适合和单域抗体相互作用。这些表面凹槽似乎包含具有带负电荷和不带电荷的静电特性的氨基酸残基,可以和sdab上明显和构象显示的选定氨基酸相互作用。
[0042]
本发明已经制备了以tlt

1蛋白为靶点的高亲和力单域抗体,共制备了103个sdab,对其中38个sdab的序列进行了鉴定。图2显示了38个抗tlt

1 sdab的氨基酸序列,其中加亮部分为互补决定区cdr1,cdr2,和cdr3。图3a显示了38个抗tlt

1sdab序列的cdr区(cdr1,cdr2和cdr3)。通过固相配体结合分析方法择优选择了活性最高的10个sdab序列,分别为seq id nos.62,64,65,68,70,71,74,76,80,和95。图3b显示了这10个优选的抗tlt

1 sdab的特异性cdr1,cdr2和cdr3。
[0043]
本发明涉及一种针对tlt

1的单域抗体,包括从seq id no:1

30中选择的cdr1,从seq id no:31

39中选择的cdr2,以及从seq id nos:40

61中选择的cdr3。
[0044]
本发明还涉及针对tlt

1的单域抗体,包括:
[0045]
(a)cdr1,为seq id no:6,cdr2,为seq id no:32,cdr3,为seq id no:43;
[0046]
(b)cdr1,为seq id no:8,cdr2,为seq id no:31,cdr3,为seq id no:44;
[0047]
(c)cdr1,为seq id no:3,cdr2,为seq id no:31,cdr3,为seq id no:41;
[0048]
(d)cdr1,为seq id no:3,cdr2,为seq id no:31,cdr3,为seq id no:42;
[0049]
(e)cdr1,为seq id no:1,cdr2,为seq id no:31,cdr3,为seq id no:40;
[0050]
(f)cdr1,为seq id no:25,cdr2,为seq id no:35,cdr3,为seq id no:45;
[0051]
(g)cdr1,为seq id no:3,cdr2,为seq id no:31,cdr3,为seq id no:46;
[0052]
(h)cdr1,为seq id no:11,cdr2,为seq id no:31,cdr3,为seq id no:47;
[0053]
(i)cdr1,为seq id no:16,cdr2,为seq id no:31,cdr3,为seq id no:50;
[0054]
或(j)cdr1,为seq id no:25,cdr2,为seq id no:35,cdr3,为seq id no:59。(图3b)
[0055]
本发明进一步涉及一种从seq id no:62

99中选择的序列所组成的单域抗体,或由与其至少具有95%,或96%,97%,98%,99%同源性的序列所组成,而且序列变异发非cdr框架区。优选的单域抗体包括选自seq id no:62,64,65,68,70,71,74,76,80,和95中的
序列,最好的序列是seq id no.68和70,或与其至少具有95%,或96%,97%,98%,99%同源性的序列,而且序列变异在非cdr框架区中。序列变异即氨基酸变化最好是微小的氨基酸变化,例如保守氨基酸置换。保守氨基酸置换是本领域技术人员所熟知的。
[0056]
本发明提供了与人和小鼠tlt

1蛋白都能结合的单域抗体。此类抗体适用于在人类和小鼠出血模型中进行测试,例如血友病转基因小鼠模型或由于凝血途径抑制剂导致的获得性出血。
[0057]
融合蛋白
[0058]
本发明的第二个方面涉及一种融合蛋白,这种融合蛋白包含(a)一个组织因子胞外域,(b)一个针对tlt

1的单域抗体以及(c)一个连接肽。
[0059]
活化的血小板,特别是“涂层”血小板,是众多凝血级联成分的底物,与纤维蛋白原结合后,能够产生封闭血管损伤所需的纤维蛋白。本发明通过将sdab与人组织因子的可溶性结构域(stf)融合,证明了这些融合蛋白能直接且特异性地靶向结合活化血小板。因此,这种特异性靶向作用以重组fviia的方式“绕过”了正常的凝血级联反应。然而,这两个“旁路药物”的作用机制是非常不同的。对于嵌合stf

sdab融合蛋白,通过将融合蛋白中的高亲和力sdab插入tlt

1蛋白的相关空间表位,从而使tf的细胞外部分锚定在活化的血小板上;基于正确的表面定位,stf结构域在热力学上有利于与血液系统中的fvii结合,并在原位将其激活为fviia;fviia依次将fx激活为fxa,并进一步刺激和促进共同的凝血级联反应。这与重组fviia激活凝血因子并直接结合血小板的机制有很大不同。
[0060]
全长人组织因子蛋白的氨基酸序列见图5d(seq id no:110)。在本发明的融合蛋白中,组织因子(stf)的胞外域选自seq id no:110的1

208至1

221或1

209至1

220位氨基酸残基。例如,stf为seq id no:110的1

208,1

209,1

210,1

211,1

212,1

213,1

214,1

215,1

216,1

217,1

218,1

219,1

220,或1

221。首选的stf是seq id no:110的1

209。
[0061]
在本发明的融合蛋白中,sdab为前述部分中描述的任何sdab。
[0062]
在本发明的融合蛋白中,sdab可以位于stf的c端或n端,通过柔性连接肽将sdab与可溶性组织因子连接起来。柔性连接肽的长度是任意的,它可以连接两种蛋白并使其保持适当的间隔,而且不影响这两种蛋白的功能。连接序列的长度可以进一步优化,从而使融合分子中的stf定位在血小板表面的理想位置而发挥功能,即插入tlt

1分子并有效结合fvii因子,这是外源性凝血途径启动的第一步。连接序列的长度一般为5

40,10

30,或15

30个氨基酸,最适合的长度为18

26个氨基酸。
[0063]
柔性连接肽可以包含多种氨基酸。在一个实施例中,柔性连接肽包含由甘氨酸和丝氨酸以及其他氨基酸(如苏氨酸)组成的各种组合。例如,柔性连接肽可以是源自人转甲状腺素蛋白的天然氨基酸序列,如gsgggtgggsggsgggtgggsg(seq id no:113)。又比如,柔性连接肽可以是人工序列,如ggggsggggsggggs(seq id no:114)。
[0064]
在一个实施例中,本发明中的融合蛋白还可以包含蛋白酶切割位点。在该实施例中,融合蛋白包含:(a)一个组织因子胞外域,(b)一个针对tlt

1的单域抗体,(c)一个连接肽和(d)可以被蛋白酶水解的多肽序列。(d)的多肽序列包括但不限于一个凝血酶切割位点,一个fxa酶切割位点或一个fxia酶切割位点,以便能够自动调节凝血酶的产生(图6)。例如,凝血酶切割位点可以包含aieprsfsqn的氨基酸序列(seq id no:115)。例如,fxa酶切割位点可以包含lesyidgriveg(seq id no:116)或sdraiegrtats(seq id no:117)的氨基酸
序列。蛋白水解的切割位点可以位于柔性连接肽的c端或n端,也可以位于柔性连接肽的内部。蛋白酶切割位点的引入允许在stf

sdab融合区域附近由fxa/fii复合物产生的凝血酶进入该连接肽并将融合蛋白的两个部分(即tlt

1 sdab和stf结构域)分开,融合蛋白的任何一个单独部分都不具有活性。这种自限性机制会防止过量凝血酶产生,从而显著增加患者接受融合蛋白治疗的安全性。
[0065]
在一个实施例中,本发明提供了编码融合蛋白的核苷酸序列。核苷酸序列可以作为原核,真菌或真核表达载体的一部分,分别用于在细菌(如大肠杆菌),酵母(如酿酒酵母),昆虫细胞(如sf9,sf21和high five)或哺乳动物细胞中表达(例如cho,hek,bhk)。由于sdab体积较小,这种融合蛋白可以在细菌,酵母,昆虫细胞,或其他真核细胞(如哺乳动物细胞)中表达。
[0066]
在另一方面,本发明提供了一种药物组合,包括本发明的融合蛋白和药学上可接受的载体。
[0067]
另一方面,本发明还提供了一种治疗出血性疾病的方法,例如用于治疗先天性或获得性凝血障碍,治疗由于损伤引起的外伤性出血或者其它用于治疗不易控制的出血。该方法包括给有需要的患者施用有效剂量的本发明中的融合蛋白,例如可以通过注射或非消化道给药,或通过口服给药。
[0068]
本发明中的融合蛋白与活化血小板上的tlt

1分子紧密且特异性结合,随后在构象上促进了stf与fvii的相互作用,fvii分子被激活后进一步促进了下游共同凝血级联反应,从而促进了凝血酶的形成。合成的融合蛋白表现出功能性促凝血蛋白所需的特性:与活化血小板的高亲和力,与fvii的高亲和力并将其转化为fviia,将x因子转化为xa因子,以及结合蛋白水解(凝血酶)切割位点从而以自限性方式限制过量的凝血酶产生。蛋白水解使得stf结构域(负责fvii激活的结构域,只有以融合蛋白形式结合时才能发挥作用)和结合到活化血小板tlt

1上的sdab抗体结构域选择性分离(这些结构域在任何情况下都不会促进凝血或血小板聚集)。本发明中的融合蛋白选择性地在其c端插入了一个六个组氨酸的his标签以便于纯化和检测。
[0069]
本发明已经证明了两个高亲和力sdab结构域,sdab 2

33
tlt
(seq id:68)和sdab 2

90
tlt
(seq id:70)。这两个结构域作为融合蛋白的一部分与组织因子胞外域(seq id no:100的氨基酸1

209)结合,由此得到的优选融合蛋白命名为stf
209

pc1

sdab 2

33
tlt
(seq id:106)和stf
209

pci

sdab 2

90tlt(seq id:107)。它们通过与血小板tlt

1受体相互作用而有效结合小鼠和人的血小板,它们与fvii有效的结合,促进fx转化成fxa,促进凝血酶原生成凝血酶(fiia),从而减少小鼠出血模型的失血量。另一方面,在测试剂量下,单独的stf结构域,单独的sdab抗体结构域和stf

sdab融合蛋白都不能介导血小板聚集或活化。
[0070]
以下实施例进一步说明了本发明。这些实施例只是作为本发明的例证说明,而不应该理解为是本发明仅有的应用。
[0071]
实例
[0072]
表1缩写
[0073][0074][0075]
实施例1:人tlt

1氨基酸序列
[0076]
tlt

1是一种丰富的血小板i型跨膜受体,具有免疫球蛋白样结构,其氨基酸序列如下所示;下划线标记的序列是蛋白质n端的信号肽,加亮的序列是tlt

1跨膜结构域。用于产生抗tlt

1单域抗体(sdab)的人tlt

1胞外区是位于信号肽末端和跨膜结构域起点之间的含有147个氨基酸的蛋白质(下划线),uniprot序列q86yw5:
[0077][0078]
实施例2.抗人tlt

1单域抗体(sdab)的产生
[0079]
为了创造能够特异性靶向结合血小板的凝血辅助因子,本发明首先通过重组的可溶性人tlt

1蛋白免疫美洲驼五次,并回收免疫美洲驼b细胞中重链抗体片段的编码mrna,以此来鉴别人tlt

1特异性sdab。将信使rna转化为互补dna(cdna)并克隆到噬菌体m13的一种主要外壳蛋白基因(piii)中进行表达,通过噬菌体展示技术筛选感兴趣的vhh结构域(例如kushwaha等,2014,j.vis.exp.,第84卷,e50685;saw和song,2019,protein cell,第10卷,第787

807页)。通过反复与固相人tlt

1蛋白以及无关蛋白结合实验,从抗体片段库中筛选出所需要的sdab;通过这种方法反复进行筛选以鉴别出那些和tlt

1具有真正高亲和力的sdab,去除非特异性结合的sdab。采用dna测序和序列比对来验证由此所得的特异性sdab的结构和序列。为了进一步鉴定这些候选分子,这些sdab首先在细菌中表达并纯化出来,然后通过流式细胞术来检测它们是否可以与人tlt

1受体相互作用。最后筛选出来的符合要求的sdab通过基因技术与stf组成融合蛋白,并通过动物模型来确定它们是否具有止血作用。
[0080]
动物免疫
[0081]
一只美洲驼以3周的间隔在多个注射部位进行皮下免疫。在使用0.5

1.0mg人tlt
‑1‑
his抗原(包括图1所示的tlt

1胞外区,但添加了六个组氨酸标签;sinobiological us,pa)的5轮注射过程中,针对该抗原的抗体滴度从无法检测增加到1∶12,800,这表明对注射抗原产生了高滴度反应。
[0082]
免疫文库构建与筛选
[0083]
免疫方案完成后,采集经免疫的美洲驼的全血用于分离pbmc。提取rna并通过凝胶电泳检测其是否完整。免疫球蛋白rna的vhh基因在逆转录后使用骆驼科可变区和恒定区序列特有的引物进行两轮pcr扩增。pcr产物和噬菌粒dna用sfi i限制性内切酶进行酶切割并用t4 dna连接酶连接在一起,将连接混合物转化到大肠杆菌tg1细胞中。最终构建的抗体库的库容为5.2
×
108,然后针对tlt
‑1‑
his蛋白的单域抗体进行三轮生物淘选,富集程度可达约一千倍。
[0084]
结合验证
[0085]
基于生物淘选策略,使用elisa共计验证了针对tlt

1的300个克隆,其中147个克隆被鉴定为阳性,dna序列表明147个克隆中有145个确定是真正的骆驼抗体,在氨基酸水平上共鉴定出103个不同的克隆。由于某些已鉴定的克隆具有相同的cdr3区但却具有不同的cdr1和/或cdr2区,因此基于其cdr3区(通过imgt数据库预测cdr区)对这些不同的序列进行了进一步分析。总共鉴定出了38个具有不同cdr1,cdr2,和/或cdr3的特定sdab序列(图2和图3)。在这38个sdab中,使用elisa重新检测了具有最高克隆频率的前10个克隆(表1),与阴
性对照蛋白相比,数据显示出强阳性信号。
[0086]
_elisa配体结合实验
[0087]
在最终的可溶性elisa验证试验中确认了前10个克隆。将带his标签的可溶性tlt

1胞外区(stlt
‑1‑
his)蛋白包被(0.1μg/孔)到96孔板上,4℃孵育过夜。在检测中使用具有his标签的无关蛋白和没有包被的孔作为阴性对照。第二天,包被的elisa板每孔加入200μl pbst缓冲液洗涤3次,然后每孔加入300μl封闭缓冲液37℃封闭1小时。封闭结束后弃去封闭缓冲液并用洗涤缓冲液洗涤elisa板3次。洗涤后,每孔加入100μl含有hrp

抗tlt

1 sdab抗体的封闭缓冲液,37℃孵育1小时。使用洗涤缓冲液洗涤elisa板3次后每孔加入100μl tmb底物液,室温孵育15分钟后加入100μl 2m硫酸终止反应,并使用酶标仪读取490nm吸光值(表2)。同时阴性对照组呈现出预期的低信号,这表明所有前10个克隆都没有与his标签发生交叉反应,可以与目标靶点特异性结合。
[0088]
表2[od 490nm]
[0089]
克隆号tlt

1蛋白(3μg/ml)his标签蛋白(3μg/ml)无蛋白2

20.7960.1030.0962

250.5120.0730.1042

331.5010.0700.0952

640.9110.0660.1042

690.4940.0760.0992

900.7620.0810.1322

1270.7600.0760.1022

1320.9810.1140.0793

320.8580.0970.1063

380.8180.0870.099
[0090]
实施例3.构建pnt

sdab 2

33
tlt

his,pnt

sdab 2

132
tlt

his,pnt

sdab 2

25
tlt

his,pnt

sdab 2

64
tlt

his,pnt

sdab 2

90
tlt

his,pnt

sdab 2

127
tlt

his,pnt

sdab 2
‑2tlt

his,pnt

sdab 3

32
tlt

his,pnt

sdab 3

38tlt

his and pnt

sdab 2

69
tlt

his表达质粒.
[0091]
为了评估这些新型抗体的效用,合成了表二中列出的10种单域抗体相应的dna,并进行了密码子优化以适应细菌表达(genscript,piscataway nj);相应的氨基酸序列和seq id号在图2中进行了展示。在5

端加入nco i限制性酶切割位点并在3

端加入bam hi限制性酶切割位点以便进行克隆。为了便于重组sdab纯化,还在bam hi酶切割位点上游合成基因的3

端加入了一个编码六个组氨酸(his)的序列。将合成的基因插入到pnt质粒表达载体的nco i和bam hi限制性酶切割位点中,由此得到的载体被命名为pnt

sdab 2

33
tlt

his,pnt

sdab 2

132
tlt

his,pnt

sdab 2

25
tlt

his,pnt

sdab 2

64
tlt

his,pnt

sdab 2

90
tlt

his,pnt

sdab 2

127
tlt

his,pnt

sdab 2
‑2tlt

his,pnt

sdab 3

32
tlt

his,pnt

sdab 3

38
tlt

his,和pnt

sdab 2

69
tlt

his(表2)。抗tlt

sdabs和stf

sdabs融合蛋白的质粒表达载体的代表性图解在图7a中进行了展示。
[0092][0093]
实施例4.pnt

stf
209

his表达质粒的构建
[0094]
如前所述合成了组织因子胞外区(stf)氨基酸1

209对应的dna,并进行了密码子优化以适应细菌表达。在5

端加入nhe i限制性酶切割位点并在3

端加入bam hi限制性酶切割位点以便进行克隆。为了便于重组stf的纯化,还在bam hi位点上游合成基因的3

端加入了一个编码六个组氨酸(his)的序列。将合成的stf
209

his插入到pnt表达载体的nhe i和bam hi限制性酶切割位点中,由此所得的载体被命名为pnt

stf
209

his(表2)。可溶性组织因子胞外区(stf)的质粒表达载体的代表性图解在图7b中进行了展示。
[0095]
实施例5.pnt

stf
209

pc1

sdab 2

33
tlt
和pnt

stf
209

pc1

sdab 2

90
tlt
表达质粒的构建
[0096]
合成了编码stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his的表达元件(genscript,piscataway nj),并进行了密码子优化以适应细菌表达。在5

端加入nhe i限制性酶切割位点并在3

端加入bam hi限制性酶切割位点以便进行克隆。为了便于重组融合蛋白的纯化,还在bam hi酶切割位点上游合成基因的3

端加入了一个编码六个组氨酸(his)的序列。为了使stf能够正确定位在细胞表面并限制凝血酶过度表达,分别将来源于人转甲状腺素蛋白(编码22个氨基酸)的gly

ser连接肽序列和来源于人因子viii(

pc1

)的凝血酶切割位点插入到stf和sdab序列之间。将合成的基因插入到pnt表达载体的nhe i和bam hi限制酶位点中,由此所得的载体分别命名为pnt

stf
209

pc1

sdab 2

33
tlt

his和pnt

stf
209

pc1

sdab 2

90
tlt

his(表3)。stf

sdab融合蛋白的质粒表达载体的代表性图解在图7c中进行了展示。
[0097][0098]
表3
[0099]
表达质粒名称编码蛋白描述1pnt

sdab 2

33
tlt

hissdab 2

33
tlt

his2pnt

sdab 2

132
tlt

hissdab 2

132
tlt

his3pnt

sdab 2

25
tlt

hissdab 2

25
tlt

his4pnt

sdab 2

64
tlt

hissdab 2

64
tlt

his5pnt

sdab 2

90
tlt

hissdab 2

90
tlt

his6pnt

sdab 2

127
tlt

hissdab 2

127
tlt

his7pnt

sdab 2
‑2tlt

hissdab 2
‑2tlt

his8pnt

sdab 3

32
tlt

hissdab 2

32
tlt

his9pnt

sdab 3

38
tlt

hisdab 2

38
tlt

his10pnt

sdab 2

69
tlt

hissdab 2

69
tlt

his11pnt

stf
209

hisstf
209

his12pnt

stf
209

pc1

sdab 2

33
tlt

hisstf
209

pc1

sdab 2

33
tlt

his fusion13pnt

stf
209

pc1

sdab 2

90
tlt

hisstf
209

pc1

sdab 2

90
tlt

his fusion
[0100]
实施例6.重组stf
209
,tlt

1 sdab和stf
209

sdab融合蛋白在细菌中的表达和纯化。
[0101]
将表2中描述的所有10种sdab以及stf
209
和两种stf
209

sdab融合蛋白的dna序列通过化学方法转化到大肠杆菌bl21菌株中并在lb培养基中表达。蛋白质表达后收获细菌,并在裂解缓冲液(20mm hepes ph 8.0,300mm kcl,和10%甘油)中进行超声处理,然后通过高速离心收集上清液,使用ge akta层析系统通过his

trap hp层析柱(ge)纯化带有his

标签
的蛋白。用20倍柱体积的洗涤缓冲液(20mm hepes ph 8.0,20mm咪唑,300mm kcl,和10%甘油)洗涤后,使用梯度洗脱缓冲液(20mm hepes ph 8.0,40

300mm咪唑,300mm kcl和10%甘油)洗脱层析柱上吸附的蛋白,然后将洗脱的蛋白浓缩并将缓冲液置换为pbs缓冲液。纯化蛋白使用10%sds

page分析并用蛋白质印迹法进行确认。图8a(sds

page),图8b(图8a的蛋白质印迹,使用抗tf抗体显色)和图8c(图8a的蛋白质印迹,使用抗his抗体显色)证明了纯化蛋白sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf209

pc1

sdab 2

33
tlt

his,stf209

pc1

sdab 2

90
tlt

his,和stf209

his的质量,所有蛋白都为单一条带并与预期分子量一致。图8d展示了10个纯化后sdab蛋白的sds

page结果。
[0102]
实施例7.tlt

1 sdab和stf
209

sdab融合蛋白与tlt

1受体胞外区的亲和力(kd)测定。
[0103]
sdab 2

33
tlt

his,sdab 2

132
tlt

his,sdab 2

25
tlt

his,sdab 2

64
tlt

his,sdab 2

90
tlt

his,sdab 2

127
tlt

his,sdab 2
‑2tlt

his,sdab 3

32
tlt

his,sdab 3

38
tlt

his和sdab 2

69
tlt

his,以及stf
209

pc1

sdab2

33
tlt

his和stf
209

pc1

sdab 290tlt

his蛋白与人tlt
‑1‑
fc标记蛋白(stlt
‑1‑
fc)胞外区之间的结合能力使用elisa进行分析。stlt
‑1‑
fc(3μg/ml)固定在96孔板上4℃下孵育24小时,然后将固定有stlt
‑1‑
fc的孔用2%bsa的pbst(pbs中加入0.1%tween 20)在室温(rt)下封闭2小时。将tlt

sdab和stf

sdab融合蛋白进行系列稀释(1000nm至0.001nm),稀释的蛋白加入包被的96孔板中孵育1小时。pbst洗涤3次后加入hrp标记的抗his抗体,室温孵育1小时。然后将96孔板洗涤3次以去除过量的hrp偶联物,再加入100μl tmb底物孵育10

15分钟,孔板中加入2m硫酸以停止显色反应。使用graphpad prism 8.0的od
450
nm吸光值计算亲和力(kd)(图9a和9b),数据表明sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his蛋白的kd均在低纳摩尔范围内(<10nm)。
[0104]
实施例8.与活化的人和小鼠血小板的结合。
[0105]
使用流式细胞术检测sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his,和stf
209

pc1

sdab 2

90
tlt

his蛋白与人和小鼠静息以及活化状态下的血小板的结合能力。在室温(rt)下收集人类(3名供试者)和小鼠(12只小鼠)的全血,加入柠檬酸盐作为抗凝剂,每个样品使用10μl全血。为了激活人血小板,使用adp(5和20μm)和全血一起在室温(rt)下孵育10分钟。为了激活小鼠血小板,使用i型纤维性胶原(5和10ug/ml)和全血在室温(rt)下孵育10分钟。此处用到的adp和胶原均来自helena laboratory,beaumont tx。然后每个血小板样品中加入1μg/ml的待测样品(即sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his或stf
209

pc1

sdab 2

90
tlt

his蛋白),接着加入以下或者其它标记抗体,标记血小板群体的apc标记的抗cd41a抗体,或者用于检测tlt

sdabs或stf
209

sdab与活化血小板tlt

1结合活性的fitc标记的抗his抗体。apc标记的抗cd62p抗体在检测中作为活化血小板结合的阳性对照抗体。室温下孵育30分钟后,所有样品在室温下用500μl 5%多聚甲醛固定10分钟,然后进行facs检测(lsr ii,beckon dickinson,san jose,ca)。图10a的数据显示的是在固定的时间内收集的阳性血小板的百分比,证明了sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his蛋白只能够结合活化的人血小板;图10b显示了使用小鼠血小板进行的同样的实验,结果显示sdab和stf

sdab之间没有显著的结合差异。这些结果证明了上述sdab在与小鼠和人活化血
小板上的tlt

1结合能力方面的新颖性,该结果还进一步证明了sdab及其融合蛋白可以直接在小鼠出血模型中进行检测,而无需使用输入人血小板来促进结合(实施例13)。
[0106]
实施例9.stf

sdab融合蛋白与fviia的结合
[0107]
stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白旨在通过sdab/tlt

1受体的相互作用将stf靶向结合到活化血小板表面。为了验证将tlt

1sdab融合到stf上是否会影响stf与fviia的结合,我们测定了fviia的酰胺分解活性。将各种浓度(0

100nm)的stf
209
和stf
209

sdab融合蛋白与fviia因子(5nm)在含有100mm nacl,50mm hepes,ph 7.4,5mm cacl2,0.1%bsa的缓冲液中于37℃孵育5分钟。通过添加5mm生色底物chromozym tpa后在室温下测量405nm的吸光值来测定fviia的酰胺分解活性。在测活实验中sdab 2

33
tlt

his和sdab 2

90
tlt

his均作为阴性对照。结果(图11)表明,由stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白引起的fviia酰胺分解活性与由stf
209

his以浓度依赖方式引起的活性没有差别。这些结果与基于stf和stf

膜联蛋白v的其他蛋白的观察结果一致(huang等,2006,blood,第107卷,第980

986页)。
[0108]
实施例10.靶向stf
209
在一期凝血法检测中的促凝作用。
[0109]
stf209靶向结合tlt

1受体被认为会促进凝血活性。为了证实这一假设,通过改良的一期法活化部分凝血活酶时间(aptt)凝血实验对stf
209

pc1

sdab 2

33
tlt
和stf
209

pc1

sdab 2

90
tlt
融合蛋白的促凝血活性进行了评估。aptt凝血时间使用star 4凝血仪(diagnostica stago)来检测。将50μl血友病a患者血浆(george king bio

medical,overland park,ks),50μl包含0.5
×
106个表达人tlt

1蛋白的cho

k1细胞和1nm待测样品(stf
209

pc1

sdab 2

33
tlt

his或stf
209

pc1

sdab 2

90
tlt

his)加入样品槽中,总体积为100μl。37℃下孵育200秒后加入50μl氯化钙(20mm)以启动血凝块的形成。结果(图12)显示,与stf
209
,sdab 2

33
tlt

his和sdab
‑2‑
90
tlt

his相比,含有1nm stf
209

pc1

sdab 2

33
tlt

his融合蛋白的血友病a患者血浆的凝血时间可以变得完全正常。stf
209

pc1

sdab 2

90
tlt

his融合蛋白也显著缩短了凝血时间,但在本实验中其效力低于stf
209

sdab 2

33
tlt

his。
[0110]
实施例11.stf靶向结合到活化的血小板表面促进凝血酶生成。
[0111]
含有0.32%柠檬酸钠的人全血以150x g的速度离心20分钟来制备人富血小板血浆(prp)。将20μl prp试剂(diagnostica stago),80μl prp和25nm待测样品加在一起进行凝血酶生成试验。在u型底的96孔板(thermofisher)中加入20μl fluca底物(diagnostica stago)启动反应,使用fluoroskan ascent荧光分析仪(thermofisher)检测来自底物的荧光信号。结果表明,与stf
209

his,sdab 2

33
tlt

his和sdab

290
tlt

his相比,stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab

290
tlt

his具有更高的凝血酶生成活性(图13)。stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his的凝血酶生成滞后时间比stf
209

his缩短约2

3倍。这些结果支持了下面的假设,即只有当筛选出的sdab直接与stf融合时才会促进sdab与tlt

1的结合,以及stf在空间构象上与内源性fvii结合,将其激活为fviia并随后形成凝血酶。
[0112]
实施例13.stf
209

sdab融合蛋白减少了依诺肝素诱导小鼠的尾部出血。
[0113]
在依诺肝素诱导的小鼠尾部出血模型中测试了stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白的促凝作用(华盛顿生物技术公司,巴尔的摩)。小鼠(每组4只)皮下注射依诺肝素钠(30mg/kg),两小时后腹腔内注射氯胺酮/甲苯噻嗪(10mg/
kg)进行麻醉。通过距尾尖10mm处横切小鼠尾巴来确定出血时间和失血量的基线。记录止血所需的时间,并通过在温热(37℃)的生理盐水中收集血液来确定失血量。第一次出血时间测定完成后立即静脉注射stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白(90μg/kg),然后在注射上述蛋白后的5分钟进行第二次出血时间测定,并以上述相同的方式确定出血时间和失血量。结果表明,注射stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his融合蛋白使该出血模型中的出血时间完全恢复正常,与对照动物的出血时间相同(图14a),并显著减少了失血量(图14b)。
[0114]
实施例14.stf靶向结合到活化血小板表面促进人全血中纤维蛋白血凝块的形成(预言性实施例)
[0115]
含柠檬酸盐的人全血(hwb)取自正常供试者。通过血栓弹力图仪(teg5000)(haemonetics,boston,ma)检测血凝块的形成。将终浓度为0

100nm的sdab 2

33
tlt

his,sdab 2

90
tlt

his,stf
209

his,stf
209

pc1

sdab 2

33
tlt

his和stf
209

pc1

sdab 2

90
tlt

his加入340μl含有高岭土催化剂的全血中,再加入20μl0.2m cacl2并开始检测凝血的形成。连续跟踪teg轨迹最长至60分钟,记录r时间(凝血时间)用于比较待测样品的效力。与stf
209

his,sdab 2

33
tlt

his和sdab 2

90
tlt

his蛋白相比,stf
209

sdab融合蛋白预计能够以浓度依赖方式缩短r时间(凝固时间)。结果有望进一步证明如在实施例11中所看到的增强凝血酶生成能够产生真正的纤维蛋白,这是产生功能性血凝块所必须的。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献