一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

多级改性的热塑性淀粉母粒及其在制备淀粉基生物降解薄膜中的应用的制作方法

2022-02-18 22:42:07 来源:中国专利 TAG:


1.本发明涉及一种多级改性的热塑性淀粉母粒、其制备方法及其制备淀粉基生物降解薄膜中的应用,以及制得的淀粉基生物降解薄膜,属于可生物降解塑料领域。


背景技术:

2.常规的塑料制品如聚乙烯(pe)、聚丙烯(pp)、聚苯乙烯(ps)等其性状非常稳定,可在自然界长期稳定存在,难以降解,被称为白色垃圾,造成了严重的环境污染。为缓解环境压力,生物降解塑料成了目前的研发热点。
3.生物降解塑料是指能够在常规环境条件下在较短的时间内分解为二氧化碳和水的聚合物材料。目前常见的有:生物降解均聚酯,如pha、pla、phb、 pcl、phbv等,生物降解共聚酯,如pbs、pbsa等;具有多糖结构的天然产物,如热塑性淀粉树脂(tps)、醋酸纤维素等。其中热塑性淀粉树脂是指淀粉经过酯化、接枝等步骤改性而成。热塑性淀粉成本低廉,可完全降解,是生物降解塑料的首选材料。但常见的热塑性淀粉制成的生物降解薄膜存在力学性能相对较差,薄膜表面较粗糙,透明性较差等缺点,同时淀粉与其它生物降解材料的相容性较差,淀粉添加量相对受限,淀粉含量的提高对力学性能和吹膜效率有很大影响。本发明主要能提高生物降解薄膜中的淀粉含量,制得的薄膜保持较好的力学性能、薄膜表面光洁度和一定的透明性。


技术实现要素:

4.本发明的目的在于提供一种多级改性的热塑性淀粉母粒,可有效提高淀粉与其它生物降解材料的相容性,同时提高生物降解薄膜中的淀粉含量,保持较好的力学性能、薄膜表面光洁度和一定的透明性。
5.本发明的目的通过以下技术方案实现:
6.一种多级改性的热塑性淀粉母粒,由以下重量份的原料制备而成:
7.[0008][0009]
其特征在于:所述淀粉进行四级分级改性处理,所述分级改性处理为:取 100份含水率在15-30%的淀粉,在室温下第一次在高速混合机中高速搅拌后;升温至50-70℃,加入聚丁二烯、增塑剂和化学改性剂,第二次高速搅拌;再升温至75-95℃,加入增粘剂、润滑剂、填充剂、扩链剂,第三次高速搅拌;在此温度下加入母粒用生物降解树脂,第四次高速搅拌;停止搅拌,保温一段时间后加入双螺杆挤出机熔融挤出。
[0010]
优选的,所述增塑剂为甘油、山梨醇、环氧大豆油中的一种或数种;聚丁二烯为端羟基聚丁二烯、环氧化聚丁二烯、1,2-聚丁二烯均聚物中的一种或数种;化学改性剂为马来酸酐、柠檬酸、甲基丙烯酸缩水甘油酯中的一种或数种;增粘剂为聚乙酸乙烯酯、乙烯-丙烯酸乙酯共聚物中的一种或两种、润滑剂为硬脂酸钙、油酸酰胺、芥酸酰胺中的一种或数种;填充剂为滑石粉、碳酸钙、硫酸钡、蒙脱土、云母粉的一种或数种;扩链剂为异氰酸酯类扩链剂、环氧类扩链剂、噁唑啉类扩链剂中的一种或数种的混合物。
[0011]
优选的,还包括1-10份改性淀粉,所述改性淀粉为氧化淀粉、羟丙基淀粉中的一种或两种。
[0012]
优选的,所述聚丁二烯为端羟基聚丁二烯和环氧化聚丁二烯的混合物,其中端羟基聚丁二烯与环氧化聚丁二烯的比例为3:1-1:1wt。
[0013]
优选的,所述增粘剂为聚乙酸乙烯酯与乙烯-丙烯酸乙酯共聚物,聚乙酸乙烯酯与乙烯-丙烯酸乙酯共聚物的混合比例为3:1-1:1wt。
[0014]
优选的,所述母粒用生物降解树脂为pbat、pbsa中的一种或两种。
[0015]
优选的,所述pbsa中,丁二酸占共聚比30-45%,己二酸占共聚比15-30%,丁二醇占共聚比40-55%。
[0016]
优选的,第一次高速搅拌速度为600-1000转/分钟,时间为1-5分钟,第二次、第三次、第四次高速搅拌速度均为800-1200转/分钟,第二次高速搅拌的时间为5-20分钟,第三次高速搅拌的时间为5-15分钟,第四次高速搅拌的时间为1-5分钟,保温时间为2-12小时。
[0017]
上述的热塑性淀粉母粒的制备方法,其步骤包括:
[0018]
(1)取100份含水率在15-30%的淀粉,在室温下进行第一次高速搅拌;
[0019]
(2)升温至50-70℃,加入增塑剂、聚丁二烯和化学改性剂,进行第二次高速搅拌;
[0020]
(3)升温至75-95℃,加入增粘剂、润滑剂、填充剂和扩链剂,进行第三次高速搅拌;
[0021]
(4)加入母粒用生物降解树脂,进行第四次高速搅拌;
[0022]
(5)停止搅拌,保温处理;
[0023]
(6)保温后的淀粉混合物加入到双螺杆挤出机中,挤出、风冷、切粒,制成热塑性淀
粉母粒。
[0024]
优选的,第一次高速搅拌速度为600-1000转/分钟,时间为1-5分钟,第二次、第三次、第四次高速搅拌速度均为800-1200转/分钟,第二次高速搅拌的时间为5-20分钟,第三次高速搅拌的时间为5-15分钟,第四次高速搅拌的时间为1-5分钟,保温时间为2-12小时。
[0025]
优选的,步骤(6)中采用双螺杆挤出机熔融挤出,双螺杆挤出机的长径比为44:1-60:1,温度范围为110-160℃,螺杆转速为150-600rpm,挤出机末端具有抽真空排气功能模块。
[0026]
优选的,步骤(1)中还加入1-10份改性淀粉,所述改性淀粉为氧化淀粉、羟丙基淀粉中的一种或两种。
[0027]
上述的热塑性淀粉母粒在制备淀粉基生物降解薄膜中的应用。
[0028]
一种淀粉基生物降解薄膜,其特征在于:由以下重量份的原料制备而成:
[0029]
上述的热塑性淀粉母粒40-80份
[0030]
生物降解树脂40-55份。
[0031]
优选的,所述生物降解树脂为pla、pbsa、pbat、ppc中的一种或数种的混合物。
[0032]
优选的,将热塑性淀粉母粒与生物降解树脂进行共混,吹塑成型制得淀粉基生物降解薄膜。
[0033]
优选的,吹膜温度为145-175℃,吹胀比为3:1-5.5:1。
[0034]
本发明的有益效果为:热塑性淀粉母料采用高混机先进行4级改性处理,第1级为室温混合原淀粉和改性淀粉,原淀粉控制一定的含水量将有利于淀粉在高混过程中更好的塑化和增塑剂的减量化,改性淀粉的加入则有利于糊化温度的降低,并同时提高糊化稳定性和与其它生物降解材料的相容性;第2级升温至 50-70℃,加入一部分助剂,进行第二次高速搅拌。其中,增塑剂的复配,例如固定比例的甘油与山梨醇或甘油与环氧大豆油,可以起到更高效的增塑效果;聚丁二烯与淀粉和pbsa等基体的相容性较差,微量聚丁二烯混合在增塑剂中添加后形成的微纳米聚丁二烯粒子能与改性淀粉和后期添加的改性pbsa通过耦合作用、部分氢键和化学作用形成拓扑网络结构,一方面能减少基体高分子链的缠结,在最终材料受到拉伸作用力时微纳米粒子是柔软的,首先变形,随后由于粒子附近存在这种拓扑结构,随着拉伸的继续会产生微孔和拉伸缩颈的现象,但同时这些微孔由于拓扑结构的存在又相对耐拉伸且吸收较多能量;另一方面由于颗粒周围形成了规整的拓扑结构,所以在拉伸过程中分子链在拉伸方向取向更利于诱导结晶,最终材料能获得较高的强度、韧性和适中的断裂伸长率。这里面要获得这种拓扑结构,非常关键的一点是不相容的聚丁二烯能产生微纳米分散,同时与改性淀粉、改性pbsa等有合适的相互作用,相互作用太强和太弱都不利于获得这种拓扑结构。化学改性剂的添加则为了使热塑性淀粉具有一定的反应活性,又能与聚丁二烯产生一定的相互作用力,也能促进其与其它降解材料的相容性。同时加入马来酸酐、柠檬酸、甲基丙烯酸缩水甘油酯3种化学改性剂来接枝淀粉,同时改性pbsa,改性淀粉、改性pbsa与聚丁二烯微纳米粒子相互作用,进一步促进拓扑结构的形成,接枝反应部分发生在4级混合处理过程中,但主要发生在双螺杆熔融挤出过程中。其它助剂不在此添加是为了使化学改性剂与淀粉有更好的反应,避免化学改性剂与其它助剂发生反应;第3级升温至75-95℃,加入其余助剂(增粘剂、润滑剂、填充剂、扩链剂)进行第三次高速搅拌,在此条件下,增粘剂(聚乙酸乙烯酯与乙烯-丙烯酸乙酯共聚物的混合比例为1:1-3:1wt) 的
添加一方面提高各种粉体混合的分散稳定性(因为增粘剂已有部分软化),另一方面在后期熔融挤出过程中也能提高不同相的相容性,在吹塑过程中能改善熔体强度,提高吹塑时的气泡稳定性,保持更高的透明度和光泽度。润滑剂(硬脂酸钙、油酸酰胺、芥酸酰胺中的一种或数种)的添加,则提高了熔融挤出粒子的表面光洁度和吹塑薄膜的开口性和表面光洁度。填充剂(滑石粉、碳酸钙、硫酸钡、蒙脱土、云母粉一种或数种)则可以适当提高薄膜强度和开口性能,有些(如硫酸钡)还能适当提高薄膜的透光性。扩链剂的添加则可以在后期挤出和吹膜过程中通过反应性增容,提高淀粉与生物降解树脂的相容性,同时也能提高生物降解材料的稳定性和吹塑膜泡的稳定性;第4级随后再加入母粒用生物降解树脂 (pbat、pbsa中的一种或两种),因为前面的添加物均为粉体或液体,相互之间能更好的混溶,生物降解树脂为粒子形态,单独最后添加也相对容易混合,同时,添加的这些生物降解树脂在下一阶段的熔融挤出过程也能与化学改性的淀粉 (如马来酸酐改性淀粉)发生部分酯交换反应,这又将提高吹塑阶段时热塑性淀粉母料与其它生物降解树脂的相容性。搅拌结束,保温一段时间,则为了让淀粉充分的塑化和反应完全,保证这个阶段获得的淀粉混合物的产品稳定性。各级处理目标明确,整体过程高效、环保、能耗低。处理改性后的热塑性淀粉不仅本身性能比常规热塑性淀粉要提高很多,同时与其它生物降解材料的相容性大大提高,进而提高了生物降解薄膜中的淀粉含量,并保持较好的力学性能、薄膜表面光洁度和一定的透明性,这也将大大降低生物降解薄膜的成本,提高薄膜生物降解性能,废弃后可在家庭堆肥环境下堆肥降解。
具体实施方式
[0035]
环氧类扩链剂:可以采用的结构式如下:
[0036][0037]
,本发明的实施例中采用kl-e4370,山西省化工研究院产品。
[0038]
噁唑啉类扩链剂:可以采用的结构式如下:
[0039][0040]
,本发明的实施例中采用b1511,梯希爱(上海)化成工业发展有限公司产品。
[0041]
异氰酸酯类扩链剂:本发明的实施例中采用六亚甲基二异氰酸酯hdi。
[0042]
端羟基聚丁二烯的结构式如下
[0043][0044]
,本发明的实施例中采用日本曹达株式会社的g-1000;
[0045]
环氧化聚丁二烯的结构式如下
[0046][0047]
本发明的实施例中采用日本曹达株式会社的jp-200;
[0048]
1,2-聚丁二烯均聚物的结构式如下
[0049][0050]
本发明的实施例中采用日本曹达株式会社的b-2000。
[0051]
主实验组 实施例1-8
[0052]
热塑性淀粉母粒的制备方法,其步骤包括:
[0053]
(1)取100份淀粉,将淀粉调制到含水率在22%,加入氧化淀粉3份、羟丙基淀粉4份,室温下进行第一次高速搅拌;
[0054]
(2)升温至50-70℃,加入一部分助剂,进行第二次高速搅拌;
[0055]
(3)升温至75-95℃,加入其余助剂,进行第三次高速搅拌;
[0056]
(4)加入母粒用生物降解树脂,进行第四次高速搅拌;
[0057]
(5)停止搅拌,保温处理;
[0058]
(6)保温后的淀粉熔融挤出,制成热塑性淀粉母粒。
[0059]
其中配料表如表1所示,表1中均为重量份,每个步骤的工艺参数如表2 所示。
[0060]
其中淀粉选用玉米淀粉,但使用木薯淀粉、大米淀粉、马铃薯淀粉等其他淀粉也可。
[0061]
表1实施例1-8的配料表
[0062]
[0063]
[0064][0065]
表2实施例1-8的工艺参数
[0066][0067]
注1:表2中温度的单位为:℃,转速的单位为转/分钟,时间的单位为分钟。
[0068]
实施例9-16
[0069]
将实施例1-8制得的热塑性淀粉母粒分别制成淀粉基生物降解薄膜,其步骤为:将60份热塑性淀粉母粒与pbsa25份、pbat20份进行共混,吹膜温度为165℃,吹胀比为4:1,吹塑成型制得淀粉基生物降解薄膜。其中使用的pbsa与热塑性淀粉母粒中添加的pbsa成分一致。
[0070]
对制得的淀粉基生物降解薄膜进行检测,检测结果如表3所示。测试方法:gb/t1040.3-2006。
[0071]
表3实施例9-16的检测结果
[0072][0073]
淀粉实验组 实施例17-22
[0074]
热塑性淀粉母粒的制备方法,其步骤包括:
[0075]
(1)取100份淀粉和部分改性淀粉,将淀粉调制到含水率在15-30%,室温下进行第一次高速搅拌,转速为900转/分钟,时间为4分钟;
[0076]
(2)升温至60℃,加入甘油13份、山梨醇2.6份、端羟基聚丁二烯1份、环氧化聚丁二烯1份、马来酸酐0.8份、柠檬酸0.5份、甲基丙烯酸缩水甘油酯0.8份,进行第二次高速搅拌,转速为1200转/分钟,时间为15分钟;
[0077]
(3)升温至85℃,加入聚乙酸乙烯酯4份、乙烯-丙烯酸乙酯共聚物2份、硬脂酸钙3份、滑石粉3份、碳酸钙3份、异氰酸酯类扩链剂1.2份,进行第三次高速搅拌,转速为1000转/分钟,时间为12分钟;
[0078]
(4)保持温度在85℃,加入pbsa(丁二酸35%,己二酸18%,丁二醇47%) 16份,进行第四次高速搅拌,转速为1000转/分钟,时间为3分钟;
[0079]
(5)停止搅拌,保温处理300分钟;
[0080]
(6)保温后的淀粉熔融挤出,双螺杆挤出机的长径比为52:1,温度范围为130℃,螺杆转速为400rpm,挤出机末端具有抽真空排气功能模块,制成热塑性淀粉母粒。
[0081]
其中配料表如表4所示,表4中均为重量份,每个步骤的工艺参数参照表2 执行。
[0082]
其中淀粉选用玉米淀粉。
[0083]
表4实施例17-22的配料表
[0084] 淀粉实施例17含水量15%的市售淀粉100份,实施例18含水量22%的市售淀粉100份实施例19含水量30%的市售淀粉100份实施例20含水量22%的市售淀粉100份,氧化淀粉1份实施例21含水量22%的市售淀粉100份,氧化淀粉3份、羟丙基淀粉4份实施例22含水量22%的市售淀粉100份,氧化淀粉10份
[0085]
实施例23-28
[0086]
将实施例17-22制得的热塑性淀粉母粒分别制成淀粉基生物降解薄膜,其步骤为:将60份热塑性淀粉母粒与pbsa25份、pbat20份进行共混,吹膜温度为 165℃,吹胀比为4:1,吹塑成型制得淀粉基生物降解薄膜。其中使用的pbsa 与热塑性淀粉母粒中添加的pbsa成分一致。
[0087]
对制得的淀粉基生物降解薄膜进行检测,检测结果如表5所示。测试方法: gb/t1040.3-2006。
[0088]
表5实施例23-28的检测结果
[0089][0090]
可见添加改性淀粉可以进一步提供淀粉基生物降解薄膜的拉伸强度和伸长率。
[0091]
聚丁二烯实验组 实施例29-34及对比例1
[0092]
热塑性淀粉母粒的制备方法,其步骤包括:
[0093]
(1)取100份淀粉,将淀粉调制到含水率在22%,加入氧化淀粉3份、羟丙基淀粉4份,室温下进行第一次高速搅拌;
[0094]
(2)升温,加入一部分助剂,进行第二次高速搅拌;
[0095]
(3)升温,加入聚乙酸乙烯酯4份、乙烯-丙烯酸乙酯共聚物2份、硬脂酸钙3份、滑石粉3份、碳酸钙3份、异氰酸酯类扩链剂1.2份,进行第三次高速搅拌;
[0096]
(4)加入pbsa(丁二酸35%,己二酸18%,丁二醇47%)16份,进行第四次高速搅拌;
[0097]
(5)停止搅拌,保温处理;
[0098]
(6)保温后的淀粉熔融挤出,制成热塑性淀粉母粒。
[0099]
其中配料表如表6所示,表6中均为重量份,每个步骤的工艺参数参照实施例17执行。
[0100]
其中淀粉选用玉米淀粉。
[0101]
表6实施例29-34及对比例1的配料表
[0102][0103][0104]
实施例35-40、对比例2
[0105]
将实施例29-34制得的热塑性淀粉母粒分别制成淀粉基生物降解薄膜,其步骤为:将60份热塑性淀粉母粒与pbsa25份、pbat20份进行共混,吹膜温度为 165℃,吹胀比为4:1,吹塑成型制得淀粉基生物降解薄膜。其中使用的pbsa 与热塑性淀粉母粒中添加的pbsa成分一致。
[0106]
将对比例1制得的热塑性淀粉母粒分别制成淀粉基生物降解薄膜,其步骤为:将60份热塑性淀粉母粒与pbsa25份、pbat20份进行共混,吹膜温度为165℃,吹胀比为4:1,吹塑成型制得对比例2的淀粉基生物降解薄膜。其中使用的pbsa 与热塑性淀粉母粒中添加的pbsa成分一致。
[0107]
对制得的淀粉基生物降解薄膜进行检测,检测结果如表7所示。测试方法: gb/t1040.3-2006。
[0108]
表7实施例35-40及对比例2的检测结果
[0109][0110]
可见,添加微量的聚丁二烯可以进一步提升淀粉基生物降解薄膜的拉伸强度和伸长率。
[0111]
淀粉基生物降解薄膜实验组实施例41-46
[0112]
取实施例1的热塑性淀粉母粒,分别制成淀粉基生物降解薄膜,其中使用的 pbsa与热塑性淀粉母粒中添加的pbsa成分一致,配比和工艺参数如表8所示。
[0113]
表8实施例41-46的配比及工艺参数
[0114]
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献