一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种具备高效选择性的氮化磷制备方法及在除铀污染及海水提铀中的应用与流程

2021-12-08 00:32:00 来源:中国专利 TAG:


1.本发明涉及一种具备高效选择性氮化磷吸附剂及其制备方法和在除铀污染及海水提铀中应用,属于吸附剂技术领域。


背景技术:

2.化石燃料过度消耗引起的能源危机已成为社会经济发展的主要障碍之一。大力发展核能作为一种能够满足能源发展需求的重要途径,而受到广泛的关注。特别是在过去的20年里,核能作为一种成熟、安全、高效的清洁能源,逐渐得到了世界各国的认可。然而随着核电的需求不断增长,有限性陆地铀矿资源已成为重要的战略资源。然而不合理开采、尾矿弃置、严重核事故等人类活动产生的大量含铀水正在污染生态水系统,由于铀的毒性和放射性,造成严重的环境风险。此外海洋蕴藏着丰富的矿产资源,其中铀的总含量为45亿吨,是陆地的1000倍,但极低的浓度(≈3.3μg l
‑1)、复杂的海水环境和众多的竞争性离子成为限制从海水中提取铀的主要因素。因此分离和富集各类水体环境下的铀元素成为治理含铀废水,提高铀矿资源利用率,拓宽铀来源关键之一。目前常见的方法有化学沉淀,反渗透,电渗析,离子交换法。与这些方法相比,固相分离法具有选择性高,吸附容量大,操作简单,易于模块化,成本低,环境友好等优点。
3.固相分离法的核心是吸附剂材料。面对实际应用环境,吸附剂材料应具备强选择性,高效吸附速率,高吸附容量等优点。此外考虑工业运用,吸附剂材料还须满足制备简单,来源广泛,可重复利用等条件。近年来,不断有新的吸附材料被开发。在这里,吸附材料分为无机材料、有机聚合物、碳材料和多孔骨架材料四大类。第一类无机材料包括粘土矿物、金属氧化物、层状双金属氢氧化物(ldhs)和介孔二氧化硅(ms)材料等。第二类吸附剂以树脂、纤维素、壳聚糖等有机聚合物为代表,具有优越的骨架强度和可调节的物理化学性质。第三类吸附剂可称为碳材料,包括活性炭(ac)、介孔碳(mc)、碳纳米管(cnts)和氧化石墨烯(go)等。第四类以经过精心设计和开发的多孔骨架材料为代表,包括共价有机骨架(cofs)、多孔有机聚合物(pops)和金属有机骨架(mof)。吸附剂材料的吸附效果主要取决于官能团种类和单位质量上的官能团数量。铀是一种硬路易斯酸,很容易与路易斯碱形成稳定的配合物,包括羧基、磷酸盐、膦酸盐、氨基、胺肟等。基于这一理论,磷酸基团和氮基与铀原子之间具有很强的络合能力。六氯环三磷腈具有磷氮交替式的六元环状结构。这易于调节的独特无机骨架,引起了学术界的浓厚兴趣,并开发了具有不同特性的材料,涵盖了超疏水性,水溶性,阳离子和阴离子。六氯环三磷腈发生沉淀缩聚时,两端侧链可以通过亲核取代反应引入性能各异官能团。这也为聚磷腈网络引入不同官能团组合提供可能。


技术实现要素:

4.针对现有吸附剂技术的缺陷,本发明通过以六氯环三磷腈与氨基钠为原料,在其缩聚反应时原位引入磷酸和氮基官能团。其协同的络合能力远超单一的官能团,在吸附含
铀废水或海水中铀离子时展现超强的吸附能力和极高的选择性。此外,通过调节反应的时间和反应物之间的配比,本发明可以有效的调控吸附剂的形貌结构,达到增强吸附效果的目的。
5.本发明制备的吸附剂制备方法具有成本低,环境友好,吸附容量高,选择性强,吸附速率快,制备可控,可实现铀离子从水体中有效分离富集的目标。
6.本发明的目的之一:在于提供一种氮化磷吸附剂,所述氮化磷吸附剂具有相互交联的中空管状结构。
7.本发明的目的之二:在于提供一种氮化磷吸附剂制备的方法,具体步骤如下:
8.(1)将六氯环三磷腈和氨基钠在溶剂中超声分散均匀后,得到混合物a;
9.(2)将混合物a放入微波反应器中,功率调节至400

600w,升温至160

230℃,反应3

14h,得到氮化磷中间产物;
10.(3)将降至室温后的氮化磷中间产物置于乙醇中进行搅拌、离心、冷冻干燥,得到氮化磷吸附剂。
11.上述技术方案中,进一步地,所述步骤(1)中六氯环三磷腈:氨基钠的质量比1:(0.4

1)。
12.上述技术方案中,进一步地,所述步骤(1)中溶剂为乙醇、苯和甲醇中的一种或者几种。
13.上述技术方案中,进一步地,所述步骤(1)中超声分散时间为10

180min。
14.上述技术方案中,进一步地,所述步骤(3)中离心速率为12000rad/min,冷冻干燥时间为10

24h。
15.本发明的目的之三:在于氮化磷吸附剂在处理含铀废水和从海水中提取铀的应用。
16.所述处理含铀废水的应用方法为:
17.调节待处理的含铀废水的体积和吸附剂的质量比为50ml;0.01g,调节ph值为2

9,吸附温度为25

45℃,吸附时间为2

180min,加入氮化磷材料振荡吸附,振荡速度为370rad/min。
18.上述技术方案中,进一步地,所述吸附时间为60min,调节ph值为4.0,吸附温度为25℃。
19.上述技术方案中,
20.进一步地,调节ph值用0.5mol/l的盐酸溶液、1mol/l的氢氧化钠溶液调节。
21.所述从海水中提取铀的应用方法为:
22.调节待处理的海水的体积和吸附剂的质量比为50l:0.01g,吸附温度为25℃,吸附时间为7

15天,控制海水的流速为3.6l/h。
23.本发明的目的之一是这样实现的:氮化磷吸附剂结构式和吸附机理如图1所示。
24.氮化磷吸附剂具有中空管状交联结构,可以为铀离子进入提供合适的路径,加快反应速率。此外表面广泛分布的氮基和磷酸基团为铀离子提供丰富的活性吸附位点,可以将铀离子从水体环境中分离出来,且具有独特的选择性,将铀离子与其他竞争性例子区别开。
25.本发明的目的之二是这样实现的:采用简单的一步溶剂法制备了不同结构的氮化
磷。简而言之,将含有一定比例nanh2和p3n3cl6的溶液均匀混合,转移到微波反应器,反应数小时,然后经过数小时冷冻干燥,形成氮化磷。其中通过控制反应时间,反应温度原料的投料比,可以调节氮化磷的形貌结构。
26.本发明的目的之三是这样实现的:氮化磷材料用作铀吸附剂分别从含铀废水和天然海水中提取铀元素。氮化磷表面含有丰富的磷酸基团和含氮基团,可以快速的从海水和含铀废水中捕获铀离子,具有效率高,容量大,选择性强等优点。因此氮化磷吸附剂在海水提铀,废水处理,铀矿资源回收等领域具有广阔的应用前景。
27.相对于现有技术,本发明的有益效果为:
28.1)本发明的氮化磷材料具有相互交联的中空管状微观结构,使得离子能够快速进入材料内部。亲水性对于吸附剂吸附效果至关重要。氮化磷表面带有的磷酸官能团和氨基官能团可以改善材料的亲水性,克服常见的有机材料所带有的疏水性特征,这大大提高了吸附铀的效果。
29.2)本发明氮化磷材料应用范围广。其既可用于含铀废水处理又可以用于海水提铀。在含铀废水处理过程中,表现出大吸附容量,快吸附速率,高选择性等优点。从海水提取铀离子过程中,同样具备优异的吸附表现,克服了海水中碳酸根和其他金属离子的干扰。
30.3)本发明氮化磷制备流程具有过程简单,制备周期短,原料来源广泛,形貌可控,产量高,成本低,易于放大工业化生产等优势。
31.4)本发明氮化磷材料具备可重复使用性,并且多次吸附脱附后氮化磷仍能维持较高的吸附容量。此外氮化磷还具有耐酸耐碱性以及优异的热稳定性。这些特点大大降低其应用成本。
附图说明
32.图1为本发明氮化磷吸附剂结构式和吸附机理,其中a为氮磷吸附剂的结构式,b为氮磷吸附剂的吸附机理;
33.图2为本发明氮化磷吸附剂的红外光谱图;
34.图3为不同反应时间条件下制备的氮化磷吸附剂的扫描电镜图,a为3h,b为6h,c为9h,d为12h;
35.图4为本发明氮化磷吸附剂的扫描电镜图和透射电镜图,a为扫描电镜图,b为透射电镜图;
36.图5为本发明氮化磷的吸附容量随时间变化曲线图;
37.图6为本发明从实际海水吸附各种金属的吸附容量对比图;
38.图7为本发明氮化磷吸附剂循环利用图。
具体实施方式
39.为了更好的阐述本发明的,下面结合实际例子进一步说明。但本发明实际内容不限于此,例如其中的投料比需要等比例放大或者缩小。
40.实施例1
41.将375mg p3n3cl6浸泡在30ml甲醇,经过10min超声分散,直到它完全溶解,然后,在溶液中加入150mg nanh2;随后将悬浮液转移到圆底烧瓶中,并放入a放入微波反应器中,功
率调节至500w,加热至160℃,反应9h;离心回收固体产物,用水和乙醇洗涤,经冷冻干燥机冷冻干燥过夜,最终得到氮化磷材料。
42.实施例1制得的氮化磷材料的红外光谱如图2所示,图中3420cm
‑1处的宽吸收峰归属于磷酸基团中的

oh的伸缩振动以及表明了材料表面带有

nh2,1645cm
‑1处的吸收峰是苯环的特征峰,1220cm
‑1和930cm
‑1分别归属于p=n和p

n的特征峰,1024cm
‑1处的峰归属于磷酸基团。上述吸收峰的出现表明成功制备了氮化磷材料,并且材料表面富集了磷酸基团和含氮基团。
43.本实施例条件下不同反应时间所制备的氮化磷材料的扫描电镜图如图3所示。从图3中我们能清晰的看出,材料的结构可以通过反应时间实现调整。如图4所示,反应时间为9h时,制得的氮化磷材料呈现出大小均匀的中空纳米管,具有最佳的吸附效果。
44.实施例2
45.氮化磷材料用于含铀废水处理,具体方法为:
46.首先将50ml铀浓度为25mg g
‑1的含铀废水的ph值调节至4,然后将10mg氮化磷材料投入溶液中,振动吸附30min。
47.如图5所示,氮化磷材料可以有效的去除废水中92.12%的铀,吸附容量达到230.29mg g
‑1。吸附容量的计算公式如下等式一所示:
48.q
e
=((c0‑
c
t
)v)/m
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
49.q
e
:吸附容量;c0:初始浓度;c
t
:平衡浓度;v:溶液体积;m:吸附剂质量。
50.实施例3
51.氮化磷材料用于海水提铀,具体方法为:
52.将10mg氮化磷材料填入填充柱,控制海水流速3.6l/h,吸附温度为25℃。
53.如图6所示,15天后,氮化磷材料达到了7.01mg g
‑1的高吸附容量。
54.实施例4
55.氮化磷的吸脱附循环寿命检验,具体方法为:
56.首先50ml铀浓度为32mg g
‑1的含铀废水的ph值调节至4,然后将10mg氮化磷投入溶液中,振动吸附30min,吸附剂离心分离,最将其投入提前配置含有碳酸钠和过氧化氢的洗脱液中,振荡30min,可以有效洗脱吸附在氮化磷上铀。
57.如图7所示,重复循环5次后,吸附容量能维持在初始容量的91.14%并且洗脱率可达96%。
58.以上实施例仅是本发明的优选施例,并非对于实施方式的限定。本发明的保护范围应当以权利要求所限定的范围为准。在上述说明的基础上还可以做出其它不同形式的变化或变动。由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献