一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种飞机机翼损伤自适应控制方法与流程

2021-12-07 21:35:00 来源:中国专利 TAG:


1.本发明涉及但不限于航空技术领域,尤指一种飞机机翼损伤自适应控制方法。


背景技术:

2.飞机飞行中因突发事件造成单侧机翼损伤后,气动力和力矩短时间发生较大改变,飞机重量重心产生偏移,飞行动力学方程变化剧烈,现有的控制方法很难实现飞机的稳定和自适应控制。现有技术中,有基于神经网络自适应鲁棒非线性模型逆的被动容错控制方法。该方法实现了飞机舵面卡死或单侧机翼面积损伤40%后的飞机稳定,但是由于被动容错控制的局限性,机翼损伤瞬间飞机姿态瞬态较大,控制性能需要改善。主动容错控制基于对未知故障或扰动在线观测、隔离等手段,在故障发生后调整控制增益或者控制结构。对于突发的损伤故障,在线观测的时延会使故障瞬态的抑制性能下降,而且观测器的快速自适应引起的高增益会引起飞机的高频振荡。


技术实现要素:

3.本发明的目的:提供一种飞机机翼损伤自适应控制方法,以减小机翼损伤瞬间的飞机瞬态,抑制高频振荡,改善控制性能。
4.本发明的技术方案:
5.第一方面,提供了一种飞机机翼损伤自适应控制方法,包括:步骤s1:接收飞机三轴角速度信号p,根据跟踪微分器进行微分控制确定飞机三轴近似角加速度信号ε;步骤s2:根据飞机已有的气动和舵效数据确定飞机的参考模型,将飞机状态τ和舵面偏度为u
s
输入飞机的参考模型确定飞机的参考角加速度ε
c
;步骤s3:接收s1中确定的近似角加速度和s2中确定的参考角加速度,根据超前控制模块进行超前控制确定飞机舵面指令的超前控制量u
l
;步骤s4:接收飞机姿态控制指令,飞机动力学相关状态,确定l1自适应控制律,根据l1自适应控制律进行自适应控制确定飞机舵面指令的l1自适应控制量u
a
;步骤s5:根据s3中确定的超前控制量u
l
和s4中确定的l1自适应控制量u
a
确定舵面偏度指令u
s

6.进一步地,跟踪微分器,具体为其中,z1和 z2为跟踪微分器生成的两个状态,z1(k)为k个采样时刻的z1值,z2(k)为k个采样时刻的z2值,z1和z2的初值为0,h为计算机的采样步长,ε(k)为k个采样时刻的ε值,r0为fhan函数的跟踪因子,h0为fhan函数的步长, fhan(z1(k)

p(k),z2(k),r0,h0)为:
[0007][0008]
sign为符号函数,μ1,μ2,s
z1
,μ,s
μ
为计算fhan函数涉及的中间变量。
[0009]
进一步地,参考模型为i
·
ε
c
=m1(τ) m2(τ,u
s
),其中,i为飞机的转动惯量, m1(τ)为舵面偏度为0时与飞机状态τ相关的飞机力矩,m2(τ,u
s
)为舵面偏度为u
s
时引起的飞机力矩,ε
c
为参考模型的输出。
[0010]
进一步地,舵面偏度指令u
s
的初始值为飞机当前状态下的配平舵偏。
[0011]
进一步地,超前控制量计算如下:
[0012]
其中,k
l
为超前控制的控制增益,t1(u
d
)表示对u
d
进行时间常数为t1的一阶平滑滤波。
[0013]
进一步地,确定l1自适应控制律,具体包括:确定飞机状态观测器,估计飞机剩余扰动,其中,状态观测器计算公式为扰动,其中,状态观测器计算公式为为观测的飞机状态,a
o
为期望的飞机运动模态特性相关的系统矩阵,b
o
为飞机操纵面的舵效矩阵,u
a
为l1自适应控制律输出的舵面指令,初值为飞机当前状态下的配平舵偏,为飞机机翼损伤等故障引起的未知输入增益的估计值,为飞机机翼损伤等故障引起的与状态相关的不确定参数的估计值,为未知的常值扰动估计值;
[0014]
确定快速自适应律,其中,γ是自适应增益,proj是投影算子,为状态观测器的观测状态与飞机机上传感器测量的实际状态x的差,为的转置,p为李雅谱诺夫方程的解,q满足q=q
t
>0;
[0015]
确定控制量解算算法,其中,r为系统参考输入,k
g
为跟踪增益,通常k
g


1/(inv(a
o
)
·
b
o
),其中inv(a
o
)表示矩阵a
o
的逆,f(w,u
p
)表示对信号u
p
进行低通滤波,滤波器的带宽为w,k
r
为控制增益。
[0016]
进一步地,步骤s5具体为:超前控制量u
l
和l1自适应控制量u
a
相加得到舵面偏度指令u
s

[0017]
进一步地,确定飞机状态观测器,具体包括:对于纵向姿态控制,相关的状态为(v,α,ω
z
,θ),其中v为飞机速度,α为飞机迎角,ω
z
为飞机俯仰角速度,θ为飞机俯仰角;对于横航向姿态控制,相关的状态为(β,ω
x

y
,γ,ψ),其中β为飞机侧滑角,ω
x
为飞机滚转角速度,ω
y
为飞机偏航角速度,γ为飞机滚转角,ψ为飞机偏航角。
[0018]
本发明的优点:
[0019]
本发明根据非线性跟踪微分器给出了飞机的近似角加速度信号,与参考模型输出的角加速度信号进行综合可以快速识别飞机的干扰信号。通过超前控制快速补偿飞机的干扰力矩和未建模动态,从而大幅抑制机翼损伤后的飞机瞬态,同时采用l1自适应控制对剩余扰动和动态进行自适应补偿,进而实现飞机机翼损伤后的稳定和精确控制。
附图说明:
[0020]
图1是本发明提供的一种飞机机翼损伤自适应控制方法的信号流图。
[0021]
图2是本发明实施例的跟踪微分器和参考模型计算的滚转角加速度差示意图;
[0022]
图3是本发明实施例的跟踪微分器和参考模型计算的超前控制量示意图;
[0023]
图4是本发明实施例的跟踪微分器和参考模型计算的l1自适应控制量示意图;
[0024]
图5是本发明实施例的跟踪微分器和参考模型计算的飞机的滚转角变化示意图。
具体实施方式:
[0025]
因此,为了克服上述现有技术的缺点,本发明提供一种飞机机翼损伤自适应控制方法,以减小机翼损伤瞬间的飞机瞬态,抑制高频振荡,改善控制性能。
[0026]
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图1,对本发明进一步详细说明。
[0027]
步骤s1:接收飞机三轴角速度信号p,设计跟踪微分器确定飞机三轴近似角加速度信号ε;
[0028]
跟踪微分器计算公式如下:
[0029][0030]
式中,z1和z2为跟踪微分器生成的两个状态,z1(k)为k个采样时刻的z1值, z2(k)为k个采样时刻的z2值,z1和z2的初值为0。h为计算机的采样步长。ε(k)为 k个采样时刻的ε值。r0为fhan函数的跟踪因子,h0为fhan函数的步长, fhan(z1(k)

p(k),z2(k),r0,h0)的计算公式如下,
[0031][0032]
式中sign为符号函数,μ1,μ2,s
z1
,μ,s
μ
为计算fhan函数涉及的中间变量,与传统微分相比,跟踪微分器输出的信号对采样时间不太敏感,信号更加平滑。
[0033]
步骤s2:根据飞机已有的气动和舵效数据确定飞机的参考模型,将飞机状态τ和舵面偏度为u
s
输入飞机的参考模型确定飞机的参考角加速度ε
c

[0034]
参考模型计算公式:
[0035]
i
·
ε
c
=m1(τ) m2(τ,u
s
)
[0036]
式中i为飞机的转动惯量,m1(τ)为舵面偏度为0时与飞机状态τ相关的飞机力矩,m2(τ,u
s
)为舵面偏度为u
s
时引起的飞机力矩,ε
c
为参考模型的输出,代表飞机正常状态的参考角加速度,其中舵面偏度指令u
s
的初始值为飞机当前状态下的配平舵偏。
[0037]
步骤s3:接收s1中确定的近似角加速度和s2中确定的参考角加速度,根据超前控制模块确定飞机舵面指令的超前控制量;
[0038]
超前控制量计算公式如下:
[0039][0040]
式中,k
l
为超前控制的控制增益,ε

ε
c
代表了飞机机翼损伤的干扰力矩, t1(u
d
)表示对u
d
进行时间常数为t1的一阶平滑滤波,t1大小取决于飞机角速度的响应带宽,可以实现对干扰力矩的直接快速补偿,减小飞机机翼损伤瞬态,平滑滤波抑制了微分器带来的高频噪声,平滑了控制指令。
[0041]
步骤s4:接收飞机姿态控制指令,飞机动力学相关状态,设计l1自适应控制律,确定飞机舵面指令的l1自适应控制量;
[0042]
(1)设计飞机状态观测器,估计飞机剩余扰动;
[0043]
状态观测器计算公式为式中为观测的飞机状态,对于纵向姿态控制,相关的状态为(v,α,ω
z
,θ),其中v为飞机速度,α为飞机迎角,ω
z
为飞机俯仰角速度,θ为飞机俯仰角,对于横航向姿态控制,相关的状态为(β,ω
x

y
,γ,ψ),其中β为飞机侧滑角,ω
x
为飞机滚转角速度,ω
y
为飞机偏航角速度,γ为飞机滚转角,ψ为飞机偏航角,a
o
为期望的飞机运动模态特性相关的系统矩阵,系统稳定,b
o
为飞机操纵面的舵效矩阵,u
a
为l1自适应控制律输出的舵面指令,初值为飞机当前状态下的配平舵偏,为飞机机翼损
伤等故障引起的未知输入增益的估计值,为飞机机翼损伤等故障引起的与状态相关的不确定参数的估计值,为未知的常值扰动估计值。
[0044]
(2)设计快速自适应律;
[0045][0046][0047][0048]
式中γ是自适应增益,proj是投影算子,为状态观测器的观测状态与飞机机上传感器测量的实际状态x的差,为的转置,p为李雅谱诺夫方程的解,q满足q=q
t
>0。
[0049]
(3)控制量解算:
[0050][0051]
式中r为系统参考输入,k
g
为跟踪增益,通常k
g


1/(inv(a
o
)
·
b
o
),其中 inv(a
o
)表示矩阵a
o
的逆,f(w,u
p
)表示对信号u
p
进行低通滤波,滤波器的带宽为 w。w大小不大于飞机舵机的带宽,k
r
为控制增益。控制量u
p
可以对飞机剩余扰动进行有效补偿和稳定,实现对输入信号的精确跟踪,低通滤波器使控制量u
p
在控制器带宽范围内对扰动进行补偿,抑制了快速自适应引起的高频振荡,提升了控制性能。
[0052]
步骤s5:根据s3中确定的超前控制量u
l
和s4中确定的l1自适应控制量u
a
确定舵面偏度指令u
s
,控制飞机的姿态和运动。
[0053]
u
s
=u
l
u
a
[0054]
现有的针对飞机机翼损伤的控制研究中,不论是被动容错还是主动容错均无法兼顾机翼损伤后的飞机瞬态小和避免自适应引起的高频振荡问题,本发明首次将基于跟踪微分器的超前控制和l1自适应控制相结合,通过超前控制快速补偿飞机的干扰力矩,从而抑制机翼损伤后的飞机瞬态,同时采用l1自适应控制对剩余扰动和动态进行自适应补偿,进而实现飞机机翼损伤后的稳定和精确控制。
[0055]
实施例:
[0056]
以某常规布局飞机为研究对象,运用本发明提出的自适应控制方法开展飞机单侧机翼损伤动力学仿真,仿真步长设置为0.01秒,0秒飞机在5000米高度以0.6马赫速度水平飞行,滚转角保持0度,5秒设置右侧机翼从翼尖处按展长的40%损伤,图2是跟踪微分器和参考模型计算的滚转角加速度差,代表着飞机滚转方向的干扰力矩,图3是超前控制量,图4是l1自适应控制量,图5 是飞机的滚转角变化曲线,可以看出在超前控制的作用下,飞机机翼损伤后瞬态较小,并在l1自适应控制作用下飞机滚转角逐渐恢复并保持目标指令,控制量和飞机响应较为平滑,便于工程应用。
[0057]
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上
面所描述的特定特征和动作仅仅是实现权利要求书的示例形式,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献