一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

包括感测单元和用于处理与可能在受试者的睡眠期间发生的干扰相关的数据的设备的系统的制作方法

2021-11-22 12:36:00 来源:中国专利 TAG:


1.本发明涉及用于检测可能在受试者的睡眠期间发生的干扰的设备、系统和方法。


背景技术:

2.为评估睡眠障碍并且更具体地睡眠障碍性呼吸发布的最常见的方法是实验室多导睡眠描记术(psg)。该测试需要在由受过训练的技术人员监督的专用设施中停留过夜。然而,该方法昂贵、耗时并且不能跟上需求。在psg测试期间通过不同类型的传感器(例如,eeg、emg、ecg、热敏电阻、压力、视频)来记录多个生理信号。来自这些传感器的数据稍后由医疗保健专业人员进行检查。
3.在本领域中考虑了替代性系统,us 2017/0265801涉及a bruxism detection system for detection of teeth grinding and tapping(一种用于检测磨牙和攻牙的磨牙检测系统)。该系统包括安装在下颚上的加速度计,该加速度计感测并记录下巴咬紧开始和结束时的加速度变化。处理来自加速度计的数据,以通过与加速度计阈值进行比较来将与磨牙症相关的运动与头部的其他运动区分开。
4.us 2017/0035350还涉及a bruxism detection system(一种磨牙检测系统)。该系统包括两个安装在咬肌上的加速度计,第一加速度计附接在左咬肌肌肉的皮肤上,第二加速度计附接在右咬肌肌肉的皮肤上。当两个加速度计的记录数据基本相等时,检测到磨牙。
5.us 2007/273366涉及a sleep disorder detector system(一种睡眠障碍检测器系统)。该系统包括用于通过检测所发射的磁场来测量距离的设备。该设备可以被安装在支撑件上,该支撑件被布置成应用于头部上以测量嘴的运动。处理来自该设备的数据以检测睡眠呼吸障碍,诸如打鼾。
6.已知系统的问题是,佩戴感测单元的受试者的头部的运动和他们的下颌骨的运动被彼此分开地考虑。这同样适用于头部的位置和下颌骨的位置,头部的位置和下颌骨的位置是根据加速度计测量的运动计算出来的。然而,来自加速度计的数据是有限的,并且可能会受到其他身体部位(诸如呼吸期间胸部或气管)的运动的影响。因此,不能充分考虑这些不同运动和位置之间的联系来分析睡眠干扰,这可能对基于测量的数据流的诊断产生负面影响。
7.事实上,下颌运动可以由呼吸运动或非呼吸运动诱导。因此,当人睡觉时头部的运动可能引起他们的下颌骨的运动。下颌骨可以被认为是与气管牵曳的机械连接或大脑控制的效应器。因此,下颌运动可以由气管牵曳的呼吸运动被动地诱导,或直接由大脑控制。牵曳是胸部在人的头部上施加的牵引力。这种牵引力具有人的呼吸频率,因为胸部随着呼吸而运动,因为呼吸肌肉受大脑的控制。因此,如果头部以呼吸频率运动,则附接到头部的下颌骨将以呼吸频率跟随由头部施加的运动。这是跟随头部的运动的被动运动。即使当头部可能不运动、或最经常不运动时,下颌运动可以同样地由大脑直接且主动地控制。大脑通过
刺激一组下巴肌肉来控制下颌运动。因此,能够在由大脑或由附接气管牵曳控制的下颌运动之间进行区分是有用的。需要一种能够更准确地解释来自大脑的信号并且更准确地识别睡眠障碍的系统。


技术实现要素:

8.本发明的目的是提供一种包括感测单元和数据处理设备的系统,该数据处理设备用于在测量数据的分析期间及时关联受试者的头部和下颌骨的运动和位置的测量。
9.具体地,本发明涉及一种包括感测单元和用于处理与可能在受试者的睡眠期间发生的干扰相关的数据的处理单元的系统(等效地,组合),该感测单元包括适于测量受试者的下颌骨的运动的陀螺仪。发明人令人惊讶地发现,陀螺仪的使用允许捕获下颌自旋,因此评估在睡眠期间控制下颌运动的脑干的活动。
10.在一些实施例中,本发明涉及一种包括感测单元和用于处理与可能在受试者的睡眠期间发生的干扰相关的数据的设备(例如,处理单元)的系统,该感测单元包括适于测量受试者的头部和/或下颌骨的运动的加速度计以及适于测量受试者的下颌骨的运动的陀螺仪。该感测单元适于基于所实现的测量产生测量信号,并且该处理单元包括第一输入和第二输入,第一输入和第二输入用于分别接收来自加速度计的测量信号的第一时间流、来自陀螺仪的测量信号的第二时间流。
11.因此,本文提供了用于表征具有头部和下颌骨的受试者的睡眠障碍的系统,该系统包括陀螺仪、数据分析单元,陀螺仪和数据分析单元通过数据链路连接。在具体实施例中,该系统的特征在于包括:
12.‑
陀螺仪,陀螺仪被配置成用于测量该受试者的下颌骨的旋转运动;
13.‑
数据分析单元和数据链路,数据链路被配置成用于将所测量的旋转运动数据从陀螺仪发送到数据分析单元;
14.其中,数据分析单元包括存储器单元,存储器单元被配置用于存储n个下颌骨运动类别,其中,n是大于1的整数,其中,n个下颌骨运动类别中的至少一个表示睡眠障碍事件;
15.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个旋转值集,每个第j个旋转值集表示与第j个类别相关联的下颌旋转的至少一个速率、速率变化、频率和/或振幅;
16.‑
其中,数据分析单元包括采样元件,采样元件被配置成用于在采样周期期间对所测量的旋转运动数据进行采样,从而获得采样的旋转运动数据;
17.‑
其中,数据分析单元被配置为从采样的旋转运动数据中导出多个所测量的旋转值;以及
18.‑
其中,数据分析单元还被配置成用于将所测量的旋转值与n个下颌骨运动类别进行匹配。
19.在一些实施例中,该系统包括加速度计,加速度计适于测量加速度,加速度表示受试者的头部和/或下颌骨的运动和/或位置,
20.‑
数据链路还被配置成用于将所测量的加速度数据从加速度计发送至数据分析单元;
21.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个加速度值集,每个第j个加速度值集表示与第j个类别相关联的至少一个下颌运动或头部运动;
22.‑
其中,采样元件被配置成用于在采样周期期间对所测量的加速度数据进行采样,从而获得采样的加速度数据;
23.‑
其中,数据分析单元被配置为从采样的加速度数据中导出多个所测量的加速度值;以及
24.‑
其中,数据分析单元还被配置成用于将所测量的加速度值与n个下颌骨运动类别进行匹配。
25.在一些实施例中,该系统还包括磁力计,磁力计适于测量磁场数据,磁场数据的变化表示受试者的头部和/或下颌骨的运动,
26.‑
数据链路还被配置成用于将所测量的磁场数据从加速度计发送至数据分析单元;
27.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个磁场数据值集,每个第j个磁场数据值集表示与第j个类别相关联的下颌运动或头部运动的至少一个速率或速率变化;
28.‑
其中,数据分析单元包括采样元件,采样元件被配置成用于在采样周期期间对所测量的磁场数据进行采样,从而获得采样的磁场数据;
29.‑
其中,数据分析单元被配置为从采样的磁场数据中导出多个所测量的磁场值;以及
30.‑
其中,数据分析单元还被配置成用于将所测量的磁场值与n个下颌骨运动类别进行匹配。
31.在一些实施例中,陀螺仪以及可选地加速度计和/或磁力计或陀螺仪以及可选地加速度计和/或磁力计的一部分被包括在感测单元中,感测单元可安装在受试者的下颌骨上。
32.在一些实施例中,n个下颌骨运动类别中的一个或更多个由预定频率范围来表征。
33.在一些实施例中,分析单元被配置成用于基于陀螺仪数据、基于加速度计数据和/或磁力计数据,来识别受试者的头部的运动。
34.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者苏醒,并且n个下颌骨运动类别中的多个表示受试者睡着。
35.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者处于n1睡眠状态;其中,n个下颌骨运动类别中的至少一个表示受试者处于rem睡眠状态;可选地,其中该n个下颌骨运动类别中的至少一个表示该受试者处于n2睡眠状态,和/或其中n个下颌骨运动类别中的至少一个表示受试者处于n3睡眠状态。
36.在一些实施例中,n个下颌骨运动类别中的一个或更多个表示阻塞性呼吸暂停、阻塞性呼吸减弱、与觉醒相关的呼吸努力、中枢性呼吸暂停和/或中枢性呼吸减弱。
37.在一些实施例中,n个下颌骨运动类别中的一个表示磨牙,其中,所测量的旋转运动数据表示当运动是阶段性的时,在至少三个呼吸循环期间在0.5hz至5hz的范围内建立的频率下的至少1mm的下颌运动振幅,或以持续、紧张的方式超过1mm持续至少2秒的下颌运动振幅。
38.还提供了一种用于辅助表征具有下颌骨的受试者的睡眠障碍的方法,该方法包括以下步骤:
39.‑
通过数据分析单元并且经由数据链路,从位于受试者的下颌骨的陀螺仪接收旋转运动数据;
40.‑
借助于包括在数据分析单元中的存储器单元,存储n个下颌骨运动类别,其中,n是大于1的整数,其中,n个下颌骨运动类别中的至少一个表示睡眠障碍事件;
41.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个旋转值集,每个第j个旋转值集表示与第j个类别相关联的下颌旋转的至少一个速率、速率变化、频率或振幅;
42.–
借助于包括在数据分析单元中的采样元件,在采样周期期间对旋转运动数据进行采样,从而获得采样的旋转运动数据;
43.‑
借助于数据分析单元,从采样的旋转运动数据中导出多个所测量的旋转值;以及
44.‑
借助于数据分析单元,将所测量的旋转值与n个下颌骨运动类别进行匹配。
45.在一些实施例中,该方法还包括以下步骤:
46.‑
借助于加速度计测量加速度,加速度表示受试者的头部和/或下颌骨的运动和/或位置;
47.‑
借助于数据链路将所测量的加速度数据从加速度计发送至数据分析单元;
48.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个加速度值集,每个第j个加速度值集表示与第j个类别相关联的至少一个下颌运动或头部运动;
49.‑
借助于采样元件在采样周期期间对所测量的加速度数据进行采样,从而获得采样的加速度数据;
50.‑
借助于数据分析单元,从采样的加速度数据中导出多个所测量的加速度值;以及
51.‑
借助于数据分析单元,将所测量的加速度值与n个下颌骨运动类别进行匹配。
52.在一些实施例中,该方法还包括以下步骤:
53.‑
借助于磁力计测量磁场数据,磁场数据的变化表示受试者的头部和/或下颌骨的运动;
54.‑
借助于数据链路,将所测量的磁场数据从磁力计发送至数据分析单元;
55.‑
其中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个磁场数据值集,每个第j个磁场数据值集表示与第j个类别相关联的下颌运动或头部运动的至少一个速率或速率变化;
56.‑
借助于包括在数据分析单元中的采样元件,在采样周期期间对所测量的磁场数据进行采样,从而获得采样的磁场数据;
57.‑
借助于数据分析单元从采样的磁场数据中导出多个所测量的磁场值;以及
58.‑
借助于数据分析单元,将所测量的磁场值与n个下颌骨运动类别进行匹配。
59.在一些实施例中,该方法还包括以下步骤:借助于分析单元,基于陀螺仪数据、基于加速度计数据和/或磁力计数据来识别受试者的头部的运动。
60.在一些实施例中,n个下颌骨运动类别中的至少一个表示磨牙,其中,所测量的旋转运动数据表示当运动是阶段性的时,在至少三个呼吸循环期间在0.5hz至5hz的范围内建立的频率下的至少1mm的下颌运动振幅,或以持续、紧张的方式超过1mm持续至少2秒的下颌运动振幅。
附图说明
61.现在将借助于附图更详细地描述本发明,这些附图示出了系统及其操作。本系统可以被描述为包括感测单元和用于处理感测数据的设备或单元的系统。在附图中:
62.图1示出了根据本发明的系统。
63.图2a和图2b示出了在躺在床上的人的头部的位置变化期间的两个流。
64.图3a和图3b示出了在磨牙期间由感测单元捕获的流。
65.图4示出了环路增益。
66.图5示出了在预处理之后的微觉醒的识别。
67.图6示出了在应用带通滤波之后的所测量的信号。
68.图7示出了表示微觉醒的信号。
69.图8示出了在阻塞性呼吸暂停的情况下的第一测量信号流和第二测量信号流的示例;
70.图9示出了在阻塞性呼吸减弱的情况下的第一测量信号流和第二测量信号流的示例;
71.图10示出了在混合呼吸暂停的情况下的第一测量信号流和第二测量信号流的示例;
72.图11示出了在中枢性呼吸暂停的情况下的第一测量信号流和第二测量信号流的示例;
73.图12示出了在中枢性呼吸减弱的情况下的第一测量信号流和第二测量信号流的示例;
74.图13示出了在与觉醒相关的呼吸努力(rera)期间的第一测量信号流和第三测量信号流的示例;以及
75.图14示出了下颌运动的频率分布的频谱图。
76.图15示出了用于特征提取、数据处理和数据描述的示例性过程。
77.图16和图17示出了对借助于磁性传感器捕获的下颌运动数据的分析。
78.图18示出了用于根据借助于陀螺仪和加速度计捕获的下颌运动数据进行自动睡眠阶段检测的示例性方法。该方法在示例18中进一步讨论。
79.在图1中,使用以下参考标号:1

感测单元;2

加速度计;3

陀螺仪;4

磁力计;5

血氧计;6

温度计;7

音频传感器;8

肌电图单元;9

脉冲光体积描记器;10

用于处理数据的设备;11
‑1‑
第一输入;11
‑2‑
第二输入;11
‑3‑
第三输入;11

4第四输入;12

识别单元;13

分析单元。
具体实施方式
80.在描述本发明的系统和过程之前,应当理解,这不限于所描述的特定系统和方法或组合,因为这样的系统和方法以及组合当然可以变化。还应当理解,本文使用的术语不旨在是限制性的,因为范围将仅由所附权利要求限制。
81.如本文中所使用的,除非上下文另外明确规定,否则单数形式“一”、“一个”和“该”包括单数和复数所指对象。
82.如本文所使用的术语“包括”、“包含”和“由
……
组成”与“包涵”、“涵盖”或“含有”、

包罗”同义,并且是包容性的或开放式的,并且不排除另外的、未列举的成员、元件或方法步骤。应当理解,如本文中所使用的术语“包括”、“包含”和“由
……
组成”包括术语“构成”、“组成”和“由
……
构成”。
83.由端点叙述的数值范围包括包含在相应范围内的所有数字和分数,以及叙述的端点。
84.如本文所使用的术语“约”或“大约”在指诸如参数、量、持续时间等可测量值时,意在包含指定值的 /

10%或更小的变化、优选指定值的 /

5%或更小的变化、更优选地指定值的 /

1%或更小的变化、并且还更优选地指定值的 /

0.1%或更小的变化,只要这样的变化适合在所公开的方面和实施例中执行。应当理解,修饰语“约”或“大约”所指的值本身也是确切地并且优选地公开的。
85.尽管术语“一个或更多个”或“至少一个”,诸如一组成员中的一个或更多个或至少一个成员,本身是清楚的,但借助于进一步举例说明,该术语尤其包括对成员中任一个的引用,或对成员中的任何两个或更多个的引用,例如,成员中的任何≥3、≥4、≥5、≥6或≥7等,并且直到所有成员。
86.本说明书中引用的所有参考文献通过引用整体并入本文。具体地,本文具体提及的所有参考文献的教导通过引用并入。
87.除非另有定义,否则本文使用的包括技术术语和科学术语的所有术语均具有如本领域普通技术人员通常理解的含义。通过进一步指导,包括术语定义以更好地理解如本文描述的教导。
88.在以下段落中,更详细地定义了不同方面。除非明确指出相反,否则如此定义的每个方面都可以与任何其他一个或更多个方面组合。具体地,被表示为优选的、特别的或有利的任何特征可以与被表示为优选的、特别的或有利的任何其他一个或更多个特征组合。
89.本发明涉及睡眠受试者的下颌运动的测量和评估。下颌骨或下颚骨位于上颌骨下方并形成下巴。(不考虑中耳小骨)它是人类颅骨的唯一可运动骨。在运动期间,下颌骨围绕颞下颌关节枢转,其中,下颌骨连接到耳前面的颅骨(颞骨)上。在下颌运动期间,固定在下颌骨上的肌肉纤维的长度与张力之间的关系将改变,这可能导致在睡眠期间处于不稳定风险的受试者中的上呼吸道变硬。这种运动在激动肌和拮抗肌下被激活,用于升高或降低下颌骨,从而相应地闭合或张开嘴。激动肌和拮抗肌受到源自位于脑干(中桥)中的三叉神经的核的运动神经元的神经支配,并且由该神经的运动分支支持。
90.本文提供了一种用于表征具有头部和下颌骨的受试者的睡眠障碍的系统。该系统包括陀螺仪。陀螺仪被配置成用于测量受试者的下颌骨的旋转运动,如发明人所观察到的,该旋转运动是陀螺仪特别适合的活动。陀螺仪可以用于评估在睡眠期间脑干刺激下颌骨运动的活动,以保持上呼吸道(咽部)打开并且防止睡眠障碍性呼吸。下颌活动骨像杠杆一样转动,以(经由第二活动骨

舌骨)拉伸直接或间接附接在下颌骨弓上的咽部肌肉纤维(包括舌头)。
91.在某种程度上,陀螺仪运动是中枢性驱动的代表,这意味着脑桥中的三叉神经的核正在起作用以相对于同样位于脑干中的呼吸中心并且在负责睡眠组织(睡眠分段)的较高中心的影响下精细地移动下颌骨。因此,在感测单元中提供陀螺仪可以用于通过查看旋转下颌位移来评估各种与睡眠相关的活动,与睡眠相关的活动可以包括呼吸、睡眠阶段或
(例如,运动或运动事件的)其他事件。此外,由被布置成用于测量受试者的下颌骨的旋转运动的陀螺仪测量的值(诸如下颌陀螺仪信号的速率和振幅)除了直接地或间接地从测量值导出的度量之外,还可以用于获得源自三叉神经的核的中枢性驱动的评估。
92.发明人已经发现,其他感测单元不适合于如在本文提供的下颌运动的测量和评估。例如,像加速度计的惯性传感器仅允许有限地测量线性加速度,因此不适合测量旋转下颌位移。加速度计的测量可能受到身体或头部(诸如呼吸期间胸部或气管)的运动的影响,并且在数据源之间进行区分是困难的并且给系统添加了不必要的噪声和复杂性。因此,现有的用于分析睡眠干扰的系统没有充分考虑可能的身体与头部运动之间的联系。这对基于所测量的数据流的诊断具有负面影响。发明人已经发现,下颌骨的旋转携带了进行准确评估所需的信息,此外这种运动可以由陀螺仪准确地记录。
93.该系统还包括数据分析单元和数据链路。数据链路提供陀螺仪与数据分析单元之间的通信路径。优选地,例如,由于改善的受试者舒适性,数据链路是无线数据链路,尽管采用有线通信的数据链路当然也是可能的。
94.旋转运动数据经由数据链路从陀螺仪发送至数据分析单元。数据链路具有常规性质,并且包含用于无线地或有线地传输数据的布置。
95.数据分析单元包括存储器单元,例如,诸如硬盘驱动器、固态驱动器、存储卡等的数据存储设备。存储器单元被配置用于存储多个(n个)下颌骨运动特定模式(类别),其中n是大于1的整数。n个下颌骨运动类别中的至少一个表示睡眠障碍事件。优选地,n个下颌骨运动类别包括表示各种下颌运动的多个运动类别。每个第j(1≤j≤n)个下颌骨运动类别包括第j个旋转值集,并且每个第j个旋转值集表示与第j个类别相关联的下颌旋转的至少一个速率、速率变化、频率和/或振幅。
96.由陀螺仪测量或记录的旋转运动数据与下颌骨运动类别关联如下:
97.数据分析单元包括采样元件,该采样元件被配置成用于在采样周期期间对所测量的旋转运动数据进行采样。由此,获得采样的旋转运动数据。因此,可以提取包含在由陀螺仪记录的信号中的信息,以用于进一步分析。应当理解,在一些实施例中,数据分析单元可以被包括在诸如个人计算机或智能电话之类的通用计算设备中,但是提供专用硬件当然也是可能的。
98.数据分析单元被配置为从采样的旋转运动数据导出多个所测量的旋转值,并且用于将所测量的旋转值与n个下颌骨运动类别进行匹配。优选地,从采样的旋转运动数据导出所测量的旋转值包括以下过程中的一个或更多个:离散化、时间平均化、快速傅里叶变换等。另外,可以通过提供机器学习模型来使匹配完全或部分自动化,使得数据分析单元被配置为学习多个统计和/或物理度量,以便在频域和时域中捕获信号的特征并识别针对特定事件(诸如睡眠阶段、呼吸努力等)的旋转信号的模式。因此,机器学习模型的提供可以提供相关信息的自动解释和/或将特征数据与睡眠障碍事件相匹配。
99.因此,睡眠期间下颌运动的研究提供了关于呼吸控制状态的信息,以响应上呼吸道中空气流的流动的渗透性或阻力的变化,无论其是否涉及头部位置的一系列修改。
100.使用根据本发明的系统对下颌运动的性质的分析还可以检测在睡眠期间重复的非呼吸运动事件,诸如磨牙或咀嚼,或与世隔绝的诸如口面运动障碍。还可以清楚地识别婴儿中的吞咽和吮吸运动。另外,也可以在成人中检测到吞咽运动。这允许将觉醒与微觉醒区
分开。
101.在一些实施例中,一个或更多个下颌运动类别表示隔离的大下颌运动(imm)。imm与微觉醒或呼吸干扰诱发的觉醒相关联,使得可以从测量和分析中有效地推断微觉醒。
102.在一些实施例中,将所测量的旋转值与n个下颌骨运动类别进行匹配的过程利用人工智能方法,例如随机森林。
103.在一些实施例中,该系统还包括加速度计。加速度计适于测量(包括加速度变化的)加速度,该加速度表示受试者的头部和/或下颌骨的运动和/或位置。发明人已经发现,加速度计特别适合测量头部的运动和位置。向本系统添加加速度计允许进一步评估睡眠期间下颌骨的行为。特别地,发明人已经发现,加速度的测量可以用于解释陀螺仪的运动、振幅和/或速率的意外变化。因此,可以使用加速度计的测量来补充陀螺仪所执行的测量。
104.由加速度计经由数据链路将所测量或所记录的加速度数据发送到数据分析单元。在这些实施例中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个加速度值集。每个第j个加速度值集或度量表示与第j个类别相关联的至少一个下颌运动或头部运动。采样元件被配置用于在采样周期期间对所测量的加速度数据进行采样。在采样之后,所测量的加速度数据被称为采样的加速度数据。数据分析单元被配置为例如通过离散化和可选地时间平均化,从采样的加速度数据中导出多个所测量的加速度值。可以提取包含在由加速度计记录的信号中的信息,以用于进一步分析。数据分析单元还被配置为将所测量的加速度值与n个下颌骨运动类别进行匹配。这种匹配过程被理解为涉及自动地确定相当于与所测量的加速度值最接近的下颌骨运动类别。可以通过提供机器学习模型,使匹配完全或部分自动化,机器学习模型可以提供相关信息的自动解释和/或将特征数据与睡眠障碍事件进行匹配。
105.发明人已经发现,加速度计对头部的运动特别敏感。陀螺仪和加速度计一起允许有效地从下颌骨运动中辨别头部运动,这进而允许改进对睡眠障碍事件的检测。因此,在单个系统中提供陀螺仪和加速度计可以增加本系统的灵敏度和准确度,并且还可以用于评估无法从陀螺仪或加速度计单独提供的测量值中解释的新信息。例如,由中枢性激活刺激的头部位置的变化可能会影响下颌骨旋转运动,这可能被错误地解释为嘴张开或嘴闭合度的变化。因此,陀螺仪和加速度计的组合可以允许从下巴运动中辨别头部运动。鉴于由本组合提供的优越的和意外的功能,陀螺仪的存在不能被认为是其他感测设备(像例如第二加速度计)的替代物。
106.在一些实施例中,该系统还包括磁力计,磁力计适于测量磁场数据。磁场数据的变化表示所述受试者的头部和/或下颌骨的运动方向和/或位置。向本系统添加磁力计可以允许进一步评估睡眠期间下颌骨的行为。可以理解,在本系统中提供磁力计用于评估类似于罗盘的感测单元的定向。因此,磁力计不旨在用作如本领域的系统中所预期的用于测量距离的单元;尽管主要功能被理解为不限制本系统的范围。
107.数据链路还被配置成用于将所测量或所记录的磁场数据从磁力计发送至数据分析单元。每个第j(1≤j≤n)个下颌骨运动类别包括第j个磁场数据值集。每个第j个磁场数据值集表示与第j个类别相关联的下颌运动或头部运动的至少一个速率或速率变化。数据分析单元包括采样元件,采样元件被配置成用于在采样周期期间对所测量的磁场数据进行采样。由此获得采样的磁场数据。数据分析单元被配置为从采样的磁场数据中导出多个所测量的磁场值。数据分析单元还被配置成用于将所测量的磁场值与n个下颌骨运动类别进
行匹配。
108.在特定形式中,磁力计可以包括两个部分:一个部分安装在患者的前额上,并且一个部分安装在患者的下颌骨上。发明人已经发现,这是用于检测下颌运动的特别有效的配置。
109.在一些实施例中,源自磁力计、陀螺仪、加速度计和/或其他传感器的信号经由单个物理介质使用例如时分复用和/或使用不同频率的载波来传输。
110.在一些实施例中,陀螺仪、和/或加速度计、和/或磁力计、或其一部分被包括在感测单元中。感测单元可安装在受试者的下颌骨上。这是具有高度紧凑形状因子的实施例,它易于应用,并提供了改进的患者舒适度。加速度计和/或磁力计的提供被理解为不替代陀螺仪的功能,而是获得仅通过陀螺仪与一个或更多个附加感测设备(诸如加速度计和/或磁力计)的组合而成为可能的新解释。优选地,首先,采集信号的解释与来自陀螺仪的数据相关联,并且在第二步骤中补充有来自加速度计和/或磁力计的数据。例如,首先,来自陀螺仪的数据可以用于分析下颌骨的角速度以通过循环分析得到综合循环;然后,来自加速度计的数据可以用于提供产生循环的背景(例如,(皮层的和皮层下的)激活的起源、(呼吸障碍的动态的)内型(endotype)、(更多或更少紧张的或阶段性的)肌肉咀嚼活动的类型)。另外,可以根据数据的组合进行新的评估,数据不可能仅基于来自单个感测单元的数据。例如,事件类型的精确描述开启了对关于睡眠障碍事件或呼吸变化(例如,外周毛细血管氧饱和度spo2)的发生或复发进行预测的可能性。
111.优选地,感测单元具有至多5cm长、2cm厚和1cm高的尺寸。这减少了对受试者的正常睡眠的干扰。
112.在一些实施例中,n个下颌骨运动类别中的一个或更多个与预定频率范围相关联。换言之,在这些实施例中,n个下颌骨运动类别中的一个或更多个包括在预定频率范围内发生的下颌骨运动。优选地,n个下颌骨运动类别中的至少两个与预定频率范围相关联,预定频率范围包括第a个预定频率范围和第b个预定频率范围,并且第a个预定频率范围和第b个预定频率范围不重叠。
113.在一些实施例中,至少一个预定频率范围包括0.15hz至0.60hz之间的频率、或0.25hz至0.50hz之间的频率、或0.30hz至0.40hz之间的频率。这是表示受试者的呼吸的信号的频率范围。
114.在一些实施例中,系统还包括从包括血氧计和/或温度计和/或音频传感器和/或肌电图单元和/或脉冲光体积描记器的列表中选择的一个或更多个辅助部件。优选地,这些辅助部件经由数据链路可操作地连接至分析单元。
115.在一些实施例中,分析单元被配置成用于基于该陀螺仪数据、和/或加速度计数据、和/或磁力计数据来识别受试者的头部的运动。优选地,头部的运动包括旋转,例如围绕通过受试者的头部的中心的轴线的旋转。然后,优选地,n个下颌骨运动类别中的至少一个表示头部的位置的变化。这允许从下颌骨本身的运动中有效地辨别一般头部运动。在这些实施例中,系统优选地包括加速度计和陀螺仪两者。
116.在一些实施例中,分析单元适于将一个或更多个预处理步骤应用于陀螺仪数据、和/或加速度计数据、和/或磁力计数据。一个或更多个预处理步骤选自包括以下各项的列表:带通滤波器的应用、低通滤波器的应用、指数活动平均值、和/或陀螺仪数据和/或加速
度计数据和/或磁力计数据的频率的熵的计算。低通滤波的应用改善了微觉醒的检测。
117.在一些实施例中,分析单元可以包括解释模块,解释模块被配置成用于解释测量睡眠质量和睡眠呼吸干扰的延伸的特定参数。睡眠质量参数可以包括例如总睡眠时间(tst)、睡眠开始潜伏期(sol)、从睡眠开始第一次苏醒(waso)、苏醒指数、睡眠效率(se)、rem的比率、非rem睡眠、rem睡眠潜伏期和其他睡眠质量度量。与睡眠呼吸干扰相关的度量可以包括睡眠期间每小时发生的速率和呼吸努力的累积持续时间。分析单元可以被配置用于报告所解释的受试者特定参数。报告可以包括将输出提供到诸如计算机或智能电话等设备。报告还可以包括例如以睡眠图的形式提供受试者特定参数的视觉或文本报告。
118.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者苏醒,其中,n个下颌骨运动类别中的多个表示受试者睡着。在本方法中结合“睡着”和“苏醒”的分类确保了在受试者处于苏醒或睡着时进行的测量被相应地解释。可以使用解释模块来执行该解释。
119.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者处于n1睡眠状态;并且n个下颌骨运动类别中的至少一个表示受试者处于rem睡眠状态。可选地,n个下颌骨运动类别中的至少一个表示受试者处于n2睡眠状态,和/或n个下颌骨运动类别中的至少一个表示受试者处于n3睡眠状态。
120.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者处于n2睡眠状态。
121.在一些实施例中,n个下颌骨运动类别中的至少一个表示受试者处于n3睡眠状态。
122.在一些实施例中,n个下颌骨运动类别中的一个或更多个与睡眠阶段的检测相关联。可以进一步实现睡眠阶段的检测以建立受试者特定的睡眠模式。睡眠阶段检测优选地以不同的分辨率水平自动进行。
123.在优选实施例中,(通过增加复杂度水平来分类的)睡眠模式可以包括:
124.(1)2类别(即二进制)评分,用于检测受试者的苏醒或睡眠状态;
125.(2)3类别评分,用于将包括受试者的苏醒状态、非rem睡眠阶段或rem睡眠阶段的睡眠阶段进行分类;
126.(3)4类别评分,用于将包括受试者的苏醒状态、轻度睡眠(n1和n2)阶段、深度睡眠(n3)阶段或rem睡眠阶段的睡眠阶段进行分类;
127.(4)5类别评分,用于将包括受试者的苏醒状态、n1睡眠阶段、n2睡眠阶段、n3睡眠阶段和rem睡眠阶段的所有睡眠阶段进行分类。
128.在示例18和示例19中提供了用于实现3类别评分的自动睡眠阶段检测的示例性方法。
129.在一些实施例中,n个下颌骨运动类别中的至少一个表示皮层活动。
130.在一些实施例中,n个下颌骨运动类别中的至少一个表示皮层下活动。
131.在一些实施例中,n个下颌骨运动类别中的一个或更多个表示阻塞性呼吸暂停、阻塞性呼吸减弱、与觉醒相关的呼吸努力、中枢性呼吸暂停和/或中枢性呼吸减弱。
132.在一些实施例中,n个下颌骨运动类别中的一个表示磨牙,并且所测量的旋转运动数据表示至少1mm的下颌运动振幅,当运动是阶段性的时,在至少三个呼吸循环期间在0.5hz至5hz的范围内建立的频率下的下颌运动振幅,或以持续、紧张的方式超过1mm持续至少2秒的下颌运动振幅。
133.5%至10%的成年人经常抱怨睡眠期间的磨牙。该磨牙通常是间歇的、随时间变化
的,有时可能会在回弹之前消失几周,然后连续几个晚上在夜间反复施加。磨牙通常以牙齿的不一致且大声研磨的形式被睡眠者的伴侣识别。这可能导致受试者的面部或颞部疼痛以及牙釉质磨损的迹象。它的起源尚不清楚,但是阻塞性睡眠呼吸暂停的综合征已经被认为是一种可能的起因。
134.在一些实施例中,n个下颌骨运动类别中的一个或更多个表示环路增益、在呼吸暂停或呼吸减弱或一段时间努力期间调动下颌骨的肌肉增益、激活后的被动可塌缩(collapsibility)点和/或激活前的可觉醒点。
135.本文进一步提供了一种用于辅助表征具有下颌骨的受试者的睡眠障碍(例如睡眠障碍性呼吸(sdb))的方法。该方法包括以下步骤:
136.‑
通过数据分析单元并且经由数据链路,从位于受试者的下颌骨的陀螺仪接收旋转运动数据。
137.‑
借助于包括在数据分析单元中的存储器单元,存储n个下颌骨运动类别。应注意,n是大于1的整数,并且n个下颌骨运动类别中的至少一个表示睡眠障碍事件(例如,睡眠障碍性呼吸(sdb)事件)。每个第j个(1≤j≤n)下颌骨运动类别包括第j个旋转值集,并且每个第j个旋转值集表示与第j个类别相关联的下颌旋转的至少一个速率、速率变化、频率或振幅。
138.‑
借助于包括在数据分析单元中的采样元件,在采样周期期间对旋转运动数据进行采样。由此获得采样的旋转运动数据。
139.‑
借助于数据分析单元,从采样的旋转运动数据中导出多个所测量的旋转值;以及
140.‑
借助于数据分析单元,将所测量的旋转值与n个下颌骨运动类别进行匹配。
141.因此,可以有效地检测睡眠障碍,同时具有出色的患者舒适度。
142.在一些实施例中,该方法进一步包括以下步骤:
143.‑
借助于加速度计测量加速度。加速度表示受试者的头部和/或下颌骨的运动和/或位置;
144.‑
借助于数据链路将所测量的加速度数据从加速度计发送至数据分析单元;
145.‑
借助于采样元件在采样周期期间对所测量的加速度数据进行采样,从而获得采样的加速度数据;
146.‑
借助于数据分析单元,从采样的加速度数据中导出多个所测量的加速度值;
147.‑
借助于数据分析单元,将所测量的加速度值与n个下颌骨运动类别进行匹配。应注意,在这些实施例中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个加速度值集,每个第j个加速度值集表示与第j个类别相关联的至少一个下颌运动或头部运动。
148.加速度计和陀螺仪两者的使用允许从整个头部的运动中有效地辨别下颌骨运动。
149.在一些实施例中,该方法进一步包括以下步骤:
150.‑
借助于磁力计测量磁场数据,磁场数据的变化表示所述受试者的头部和/或下颌骨的运动和/或位置;
151.‑
借助于数据链路,将所测量的磁场数据从加速度计发送到数据分析单元;
152.‑
借助于包括在数据分析单元中的采样元件,在采样周期期间对所测量的磁场数据进行采样,从而获得采样的磁场数据;
153.‑
借助于数据分析单元从采样的磁场数据中导出多个所测量的磁场值;以及
154.‑
借助于数据分析单元,将所测量的磁场值与n个下颌骨运动类别进行匹配。应注意,在这些实施例中,每个第j(1≤j≤n)个下颌骨运动类别包括第j个磁场数据值集,每个第j个磁场数据值集表示与第j个类别相关联的下颌运动或头部运动的至少一个速率或速率变化。
155.在一些实施例中,该方法进一步包括以下步骤:借助于分析单元,基于陀螺仪数据、和/或基于加速度计数据、和/或磁力计数据来识别受试者的头部的运动。
156.在一些实施例中,n个下颌骨运动类别中的至少一个表示磨牙,并且所测量的旋转运动数据表示至少1mm的下颌运动振幅,当运动是阶段性的时,在至少三个呼吸循环期间在0.5hz至5hz的范围内建立的频率下的下颌运动振幅,或以持续、紧张的方式超过1mm持续至少2秒的下颌运动振幅。参数的该组合表示磨牙,使得可以有效地检测磨牙。在一些实施例中,这个频率范围是在1.0hz至4.5hz、或1.5hz至4.0hz、或2.0hz至3.5hz、或2.5hz至3.0hz之间。
157.在下文中,讨论将数据(例如,优选地采样的旋转、加速度数据和/或磁场数据)与n个下颌骨运动类别进行匹配的具体实施例。这些实施例涉及从上述数据中提取特征。特征包括所测量的旋转值,并且可选地包括所测量的加速度值和/或所测量的磁场值。一旦特征被提取,这些特征就会与一个或更多个下颌骨运动类别相匹配。优选地,与该特征进行匹配的下颌骨运动类别包括中枢性呼吸减弱、正常睡眠以及阻塞性呼吸减弱。优选地,借助于shap分数将特征与下颌骨运动类别进行匹配以说明和解释该匹配。
158.在一些实施例中,特征选自非穷举性列表,该列表包括:mm(即,使用陀螺仪、加速度计和/或磁力计测量的下颌运动、表示旋转、加速度和/或位置)振幅的中心趋势(平均值、中值和众数);mm分布(原始或包络信号):偏度、峰度、iqr、第25个百分位数、第75个百分位数和第90个百分位数;极值:最小值、最大值、mm振幅的第5个百分位数和第95个百分位数;变化趋势:来自广义加性模型的线性趋势和基于张量乘积的样条因子(s1、2、3、4)的系数,以评价时间函数中的mm;每个事件的持续时间。应理解的是,此类特征是指所测量的旋转值、所测量的加速度值和/或磁性值,无论是否被采样和/或离散化。优选地,对上述值进行采样和离散化。应理解的是,该列表呈现了示例性实施例,因此,示例性实施例被视为对本系统的非限制性。
159.在一些实施例中,特征的提取包括隔离事件。事件是可以归因于头部和/或下颌骨的单个运动的一系列下颌骨运动数据(优选地采样的旋转、加速度和/或磁性数据)。一种特定类型的事件是正常呼吸,例如预定时间量的正常呼吸。预定时间量可以是例如在2秒至20秒之间、或在5秒至15秒之间、或在5秒至30秒之间、或在5秒至10秒之间。时间范围大小可以被适配于预期应用;例如30秒可能适合识别睡眠阶段、10秒适合睡眠磨牙或微苏醒、20秒适合呼吸事件等。
160.在一些实施例中,特征的提取遵循以下过程,该过程包括步骤1至步骤4:
161.1.获得采样的下颌运动数据。下颌运动数据包括采样的旋转值、以及可选地采样的加速度值和/或采样的磁场值。优选地,采样速率为1.0hz至100.0hz,或2.0hz至50.0hz,或5.0hz至25.0hz,优选10.0hz。优选地,所获得的采样的下颌运动数据是在10.0分钟至12.0小时之间的时间段期间、或在20.0分钟至4.0小时之间的时间段期间、或在30.0分钟至2.0小时之间的时间段期间获得的。
162.2.标记下颌骨运动事件的时间戳。
163.3.对于每个时间戳ti,执行以下步骤:
164.3.a.检查ti是否为下颌骨运动事件的开始;
165.3.b.如果ti是下颌骨运动事件的开始,
166.‑
将ti分配给t_begin,并且随后搜索下颌骨运动事件的结束(t_end);以及
167.‑
索引t_begin和t_end;
168.4.对于每个下颌骨运动事件e,执行以下步骤:
169.4.a.计算事件持续时间dt=(t_end

t_begin)
170.4.b.确定事件期间采样的下颌运动数据的统计分布。优选地,这涉及计算选自以下列表的一个或更多个特征,该列表包括:最小值、最大值、平均值、中值、众数、第5个百分位数、第25个百分位数、第75个百分位数、第90个百分位数、第95个百分位数、偏度、峰度、iqr;
171.另外地或可替代地,gam(广义加性模型)非线性模型用于通过时间t上的样条函数估计mm振幅和/或位置,然后提取样条函数的系数。
172.另外地或可替代地,拟合简单的线性模型,并且从(包括振幅和/或位置的)下颌运动中提取截距和斜率。
173.可选地,连结所有特征。
174.然后,下颌骨运动事件与下颌骨运动类别进行匹配。
175.在一些实施例中,使下颌骨运动事件与下颌骨运动类别进行匹配涉及使用探索性数据可视化、单向anova和具有bonferroni校正的成对student

t测试。优选地,在此过程期间,显著性水平设定为p=0.0001to 0.01,更优选地设定为p=0.001。
176.在一些实施例中,机器学习方法(例如,极端梯度提升、深度神经网络、卷积神经网络、随机森林)用于将所测量的下颌骨运动数据分类为下颌骨运动类别。
177.在一些实施例中,所采用的随机森林方法算法采用在20与5000之间、或在100与2000之间、或在200与1000之间、或500个决策树。在一些实施例中,在上述特征的随机子集上构建每个决策树。
178.在一些实施例中,模型开发(即,训练人工智能方法)涉及将所测量的下颌骨运动数据随机分割成两个子集,较大的集合用于模型开发,而较小的集合用于模型验证。在一些实施例中,较大的集合包括所测量的下颌骨运动数据的60%至80%、或70%。在一些实施例中,较小的集合包括下颌骨运动数据的20%至40%或30%。优选地,在开发模型之前在训练集上使用合成少数过采样技术(synthetic minority over

sampling technique,smote)。
179.在一些实施例中,模型开发涉及借助于lundberg的夏普利加性解释(shapley additive explanation,shap)方法来评价多个特征对分类的贡献。因此,shap方法允许解释由所采用的机器学习模型做出的预测;它允许模型是可解释的。
180.本公开的某些方面可以可替代地或附加地表述如下:
181.在一些实施例中,系统包括感测单元和用于处理与可能在受试者的睡眠期间发生的干扰相关的数据的设备。处理设备包括识别单元,该识别单元适于在第一测量信号流和第二测量信号流中识别第一信号和第二信号,该第一信号的频率位于第一预定频率范围内,在该第二信号中表征头部的和/或下颌骨的运动的至少一个固有特征的值位于由多个
值组成的第二预定范围内;所述第一预定频率范围和所述第二预定范围分别由表征所述受试者的睡眠状态的所述受试者的头部和下颌骨的运动的频率的值和值组成;所述识别单元适于在观察到已经在第一流和第二流中识别的第一信号和第二信号存在第一预定时间段之后产生触发信号;所述识别单元还适于在其已经产生触发信号之后在第一测量信号流和第二测量信号流中识别第三信号,在第三信号中所述至少一个固有特征的频率和/或值表示所述受试者的下颌骨的运动和/或头部的位置的变化;所述识别单元连接至分析单元,分析单元适于在触发信号的控制下被激活;所述分析单元还适于将第三信号与表征与睡眠干扰相关的频率和/或值的概况(profile)进行比较并产生该比较的结果。本发明是基于以下概念:在受试者的睡眠期间,该受试者的呼吸运动受该受试者的大脑的神经中枢控制,神经中枢控制与其附接的头部和下颌骨的肌肉,然后头部和下颌骨的肌肉将定位该受试者的头部和下颌骨。加速度计以及陀螺仪将各自提供测量信号的相应时间流,测量信号表征头部和下颌骨的运动。使用识别单元使得有可能在这些测量信号流中识别表征该受试者的睡眠状态的那些测量信号,因此当受试者实际上睡着时激活分析单元以分析影响受试者的任何睡眠干扰。
182.因此已经发现,下颌骨的运动不仅由胸部的运动确定,而且直接由大脑的神经中枢确定,大脑的神经中枢控制附接到其上的肌肉并且将定位下颌骨。大脑的神经中枢还控制头部的位置。
183.事实上,必然处于呼吸频率的气管牵曳可能导致头部运动,且正是出于此原因,由加速度计和由陀螺仪两者进行的测量是优选的。事实上,陀螺仪在大脑的直接控制下对由其自身肌肉致动的下颌骨的旋转的运动比加速度计更敏感,加速度计将示出气管牵曳可能产生的头部的运动。在呼吸运动之外,在中枢性激活时,将测量到具有大振幅的隔离信号。然而,由气管牵曳施加的运动是由组织的弹性所阻尼的运动,因此可以被动地传递运动,该组织将下颌骨连接到头部的其余部分上。因此,这是脊柱驱动的相对难以察觉的反射,也就是说产生气管牵曳的隔膜,而下颌骨的拮抗肌/激动肌,特别是通过直接来自大脑的三叉神经的驱动分支(即,三叉驱动)的作用,赋予直接运动。陀螺仪能够良好地测量由下颌骨的肌肉产生的下颌骨的旋转运动,并且因此下颌骨的旋转运动是大脑在下颌骨上的直接作用的结果。因此,组合来自加速度计和来自陀螺仪的信号能够改进对下颌运动的起源和性质的检测,并且因此改进对人是否正在睡觉的确定。
184.优选地,感测单元包括磁力计,该磁力计适于测量所述受试者的头部和/或下颌骨的运动,设备或单元包括用于接收来自磁力计的测量信号的第三时间流的第三输入,所述分析单元适于将来自磁力计的测量信号与第三信号进行结合(integrate)。使用磁力计使得可以确定头部和下颌骨的绝对位置。
185.优选地,感测单元包括血氧计和/或温度计和/或音频传感器和/或肌电图单元和/或脉冲光体积描记器;所述识别设备或单元包括第四输入和/或第五输入和/或第六输入和/或第七输入和/或第八输入,以用于分别接收来自血氧计、温度计、音频传感器、肌电图单元、脉冲光体积描记器的测量信号的第四时间流和/或第五时间流和/或第六时间流和/或第七时间流和/或第八时间流;所述分析单元适于将分别来自血氧计、温度计、音频传感器、肌电图单元、脉冲光体积描记器的测量信号与第三信号进行结合。然后,识别设备或单元适于将来自血氧计和/或来自温度计和/或来自音频传感器和/或来自肌电图单元和/或
脉冲光体积描记器的测量信号与第三信号相关联。来自血氧计和/或温度计和/或音频传感器和/或肌电图单元的这些测量信号使得能够考虑更多的测量信号,并且因此能够更可靠地分析睡眠干扰。
186.优选地,由频率组成的第一预定范围位于0.15hz与0.60hz之间(包括0.15hz和0.60hz),识别单元适于在受试者的至少两个呼吸循环的时间段内识别第一信号,第二预定范围由作为下颌骨旋转运动振幅值的值组成。该值例如是(即,基于正常呼吸的)1/10毫米量级的振幅。在0.15hz与0.60hz之间(包括0.15hz和0.60hz)的频率范围表征受试者的头部可以说是准不动的情况,因此反映了受试者正在睡觉或正在入睡的情况。
187.优选地,分析单元适于在第三信号中识别在第一流和第二流中表征头部围绕延伸穿过受试者的头部的至少一条轴线的旋转的那些信号。在睡眠期间,头部的旋转将通常伴随觉醒、微觉醒或皮层和/或皮层下激活,并且表明睡眠干扰。
188.本文进一步提供了一种用于从优选地借助于陀螺仪记录的下颌骨旋转运动数据中自动检测睡眠阶段的方法。该方法可以是根据如本文所述的一个或更多个实施例的基于机器学习的方法。该方法优选地包括以下步骤:
189.‑
提供来自至少1个受试者的采样的旋转运动数据;采样的数据可以通过如本文所述的一种或更多种采样和处理方法来提供;
190.‑
将所提供的数据馈送至机器学习分类器以生成预测分数;
191.‑
基于所生成的分数确定睡眠阶段。
192.应理解的是,本说明书中描述的其他方法的优选实施例也是自动睡眠或睡眠阶段检测方法的优选实施例。来自该方法的数据可以用作其他方法或设备的输入,该方法或设备本质上可以是治疗性的。
193.在一些实施例中,(通过增加复杂度水平来分类)睡眠阶段可以包括以下类别:
194.(1)2类别(即二进制)评分,用于检测受试者的苏醒或睡眠状态;
195.(2)3类别评分,用于将包括受试者的苏醒状态、非rem睡眠阶段或rem睡眠阶段的睡眠阶段进行分类;
196.(3)4类别评分,用于将包括受试者的苏醒状态、轻度睡眠(n1和n2)阶段、深度睡眠(n3)阶段或rem睡眠阶段的睡眠阶段进行分类;
197.(4)5类别评分,用于将包括受试者的苏醒状态、n1睡眠阶段、n2睡眠阶段、n3睡眠阶段和rem睡眠阶段的所有睡眠阶段进行分类。
198.在示例18和示例19中讨论了用于实现3类别评分的自动睡眠阶段检测的示例性方法。
199.除了检测与睡眠相关的障碍之外,本文所描述的系统和方法还可以用于以下示例性应用:健康受试者、老年人或患有异常睡眠模式的受试者的睡眠阶段检测和/或睡眠质量监测。(无论是临床上的还是心理上的)睡眠障碍的检测都可以允许定制治疗或满足受试者的需要。此外,研究睡眠行为对慢性疾病中的临床结果的影响可能允许获得关于所述疾病以及关于治疗功效的新见解。
200.此外,本文描述的系统还可以与其他系统或方法组合使用。这些系统可以可选地本质上是治疗性的,诸如呼吸装置(cpap、bipap、自适应支持通气)、下颌前移矫形器、以及口腔设备、无论是经皮的还是植入的用于刺激神经和/或肌肉的设备、用于在睡眠期间矫正
身体和/或头部的姿势和/或位置的设备。在一些实施例中,警报可以耦接到系统,或者系统可以连接到具有警报功能的设备或者提供具有警报功能的设备。
201.另外地或可替代地,本发明可以通过以下编号的实施例来描述。在这些编号的实施例中,除非上下文另有明确表示,否则术语“组合”等同于术语“系统”。
202.实施例1。包括感测单元和用于处理数据的设备(例如,处理单元)的组合,该数据与可能在受试者的睡眠期间发生的干扰相关,感测单元包括加速度计以及陀螺仪,该加速度计适于测量受试者的头部和/或下颌骨的运动,该陀螺仪适于测量该受试者的下颌骨的运动;所述感测单元适于基于所实现的测量产生测量信号,该设备包括第一输入和第二输入,该第一输入和第二输入用于分别接收来自加速度计的测量信号的第一时间流、来自陀螺仪的测量信号的第二时间流,其特征在于,该设备包括识别单元,该识别单元适于在第一测量信号流和第二测量信号流中识别第一信号和第二信号,该第一信号的频率位于第一预定频率范围内,在该第二信号中表征头部的和/或下颌骨的运动的至少一个固有特征的值位于由多个值组成的第二预定范围内;所述第一预定频率范围和所述第二预定范围分别由表征所述受试者的睡眠状态的所述受试者的头部和下颌骨的运动的频率的值和值组成;所述识别单元适于在观察到已经在第一流和第二流中识别的第一信号和第二信号存在第一预定时间段之后产生触发信号;所述识别单元还适于在其已经产生触发信号之后在第一测量信号流和第二测量信号流中识别第三信号,在第三信号中所述至少一个固有特征的频率和/或值表示所述受试者的下颌骨的运动和/或头部的位置变化;所述识别单元连接至分析单元,分析单元适于在触发信号的控制下被激活;所述分析单元还适于将第三信号与表征与睡眠干扰相关的频率和/或值的概况进行比较并产生该比较的结果。
203.实施例2。根据实施例1的组合,其特征在于,感测单元包括适于测量所述受试者的头部和/或下颌骨的运动的磁力计,所述设备或单元包括用于接收来自磁力计的测量信号的第三时间流的第三输入,所述分析单元适于将来自磁力计的测量信号与第三信号进行结合。
204.实施例3。根据实施例1或2的组合,其特征在于,感测单元包括血氧计和/或温度计和/或音频传感器和/或肌电图单元和/或脉冲光体积描记器;所述识别设备或单元包括第四输入和/或第五输入和/或第六输入和/或第七输入和/或第八输入,以用于分别接收来自血氧计、温度计、音频传感器、肌电图单元、脉冲光体积描记器的测量信号的第四时间流和/或第五时间流和/或第六时间流和/或第七时间流和/或第八时间流;所述分析单元适于将分别来自血氧计、温度计、音频传感器、肌电图单元、脉冲光体积描记器的测量信号整合到第三信号中。
205.实施例4。根据实施例1至3中任一项的组合,其特征在于,由频率组成的第一预定范围位于0.15hz与0.60hz之间,识别单元适于在受试者的至少两个呼吸循环的时间段内识别第一信号。
206.实施例5。根据实施例1至4中任一项的组合,其特征在于,由值组成的第二预定范围包括表示头部的位置变化的至少一个头部运动振幅值。
207.实施例6。根据实施例1至5中任一项的组合,其特征在于,分析单元适于在第三信号中识别在第一流和/或第二流中表征头部围绕延伸穿过受试者的头部的至少一条轴线的旋转的那些信号。
208.实施例7。根据实施例1至6中任一项的组合,其特征在于,识别单元适于在第一信号流和第二信号流中识别表征受试者的下颌骨的运动和头部的位置的变化,所述分析单元适于从运动信号流中移除至少一个特征以用于识别表征所述运动的信息。
209.实施例8。根据实施例1至7中任一项的组合,其特征在于,处理设备适于通过将带通滤波器和/或低通滤波器和/或指数活动平均值和/或信号的频率的熵的计算应用于第一流和/或第二流,来将预处理应用于第一流和/或第二流。
210.实施例9。根据实施例7或从属于实施例7时的实施例8的组合,其特征在于,分析单元适于验证在第二时间段期间、特别是30秒的时间段内,用于识别表征所述运动的信息的所述至少一个特征是否具有表征睡眠状态的值或苏醒状态的值,如果用于识别表征所述运动并且从所接收的第一流和第二流的分析信号中移除的信息的所述至少一个特征具有描述睡眠状态的值或苏醒状态的值,所述分析单元适于产生表示睡眠状态或苏醒状态的第一数据项。
211.实施例10。根据实施例7、9或从属于实施例7时的实施例8中任一项的组合,其特征在于,分析单元适于验证在第二时间段期间、特别是30秒的时间段内,用于识别表征所述运动并且从第一接收流和第二接收流的分析信号中移除的信息的所述频率和/或至少一个特征是否具有表征n1睡眠状态的值或rem睡眠状态的值,如果用于识别表征所述运动并且从第一接收流和第二接收流的分析信号中移除的信息的所述频率和/或至少一个特征具有表示n1睡眠状态的值或rem睡眠状态的值,所述分析单元适于产生表示n1睡眠状态的第二数据项、表示rem睡眠状态第三数据项。
212.实施例11。根据实施例7、9或10的组合,其特征在于,分析单元适于验证在第二时间段期间、特别是在30秒的时间段内,用于识别表征所述运动并且从第一接收流和第二接收流的分析信号中移除的信息的所述至少一个特征是否具有表征n2睡眠状态的值或n3睡眠状态的值,如果用于识别表征所述运动并且从第一接收流和第二接收流的分析信号中移除的信息的所述至少一个特征具有表示n2睡眠状态的值或n3睡眠状态的值,所述分析单元适于产生表示n2睡眠状态的第四数据项、表示n3睡眠状态的第五数据项。
213.实施例12。根据实施例1至11中任一项的组合,其特征在于,所述分析单元适于验证在第三时间段期间、特别是在3秒与15秒之间的时间段内,第一接收流和第二接收流的分析信号的至少一个固有特征是否具有表征皮层活动或皮层下活动的水平,如果第一接收流和第二接收流的分析信号的所述至少一个固有特征具有表示皮层活动或皮层下活动的水平,所述分析单元适于产生表示皮层活动或皮层下活动的第六数据项。
214.实施例13。根据实施例1至12中任一项的组合,其特征在于,所述分析单元适于验证分析信号的至少一个固有特征是否具有表征阻塞性呼吸暂停、阻塞性呼吸减弱、与觉醒相关的呼吸努力、中枢性呼吸暂停、中枢性呼吸减弱的水平,如果第一流和第二流的分析信号的所述至少一个固有特征具有描述阻塞性呼吸暂停、阻塞性呼吸减弱、与觉醒相关的呼吸努力、中枢性呼吸暂停或中枢性呼吸减弱的水平,所述分析单元还适于产生第七数据项、第八数据项、第九数据项,第七数据项、第八数据项、第九数据项表示阻塞性呼吸暂停、呼吸减弱、与觉醒相关的呼吸努力、中枢性呼吸暂停或中枢性呼吸减弱。
215.实施方式14。根据实施例1至13中任一项的组合,其特征在于,识别单元适于在第一流和第二流中识别频率值和/或至少一个固有特征的值,至少一个固有特征示出了在睡
眠状态期间未观测到的可变性,并且在观测到这样的可变性时产生中和信号并将该中和信号提供给分析单元以将该可变性中和。
216.实施例15。根据实施例1至14中任一项的组合,其特征在于,分析单元适于验证第一流和第二流的分析信号的至少一个固有特征是否已经增大超过至少1mm,当运动是阶段性的时,在至少三个呼吸循环期间在0.5hz至5hz的范围内建立的频率下,或以持续、紧张的方式超过1mm持续至少2秒,并且在这种验证期间产生表示磨牙的第十数据项。
217.实施例16。根据实施例1至15中任一项的组合,其特征在于,分析单元适于捕获第一流和第二流中的一个或更多个值,一个或更多个值允许访问环路增益的计算、在呼吸暂停或呼吸减弱或一段时间努力期间调动下颌骨的肌肉增益的计算、来自激活后的被动可塌缩点和/或来自激活前的可觉醒点。
218.示例
219.示例1
220.在第一示例中,参见图1。图1示出了根据本发明的系统。该系统包括感测单元1和用于处理数据的设备10,设备10优选为处理单元,该数据与可能在受试者的睡眠期间发生的干扰相关。感测单元包括加速度计2,加速度计2适于测量受试者的头部和/或下颌骨的运动、优选地在三维上的运动。感测单元还包括陀螺仪3,陀螺仪3适于测量受试者的下颌骨的旋转运动、优选地在三维上的旋转运动。根据一个优选实施例,感测单元1还包括(特别是罗盘形式的)磁力计4和/或血氧计5和/或温度计6和/或音频传感器7和/或肌电图单元8和/或脉冲光体积描记器9。诸如排汗传感器或鼻压传感器之类的其他传感器也可以形成感测单元的一部分。脉冲光体积描记器通过传输或通过反射起作用,并允许访问脉冲的频率的计算和动脉张力的变化的计算。
221.感测单元优选地具有小尺寸,例如至多5cm长、2cm厚和1cm高,以便不干扰受试者的正常睡眠。感测单元优选地具有非常小的总体尺寸、重量轻且灵活,能够具有良好的人体工程学。由感测单元产生的信号非常适合于使用人工智能进行解码。通过感测单元获得的测量的诊断能力与完整的多导睡眠图记录的诊断能力相当。下颌骨的运动可以优先发生在轴线上,例如在前后轴线上,而受试者的头部转向右侧。同样地可以测量其他轴线上的运动。出于卫生的原因,感测单元优选地旨在仅被使用一次,但是它当然可以被修复和重新使用。
222.头部的位置优选地是基于由加速度计2沿着三个轴线测量的值来确定的。当加速度计测量相对于地面重力的加速度的值时,优选地随时间对这些测量值进行结合以便获得头部的位置,如果在将感测单元应用于人的头部期间没有初始化阶段,那么头部的位置将是相对位置。例如,可以根据欧拉角的俯仰角、横滚角和偏航角的值来表示位置,或者再次通过15
°
的份额来表示位置。头部的位置也可以用以下术语表示:站立、躺下、左、右、在后面。
223.下表示出了各种角度值以及由此推导出的头部位置:
224.俯仰横滚偏航位置80
°0°
10
°
直立10
°
10
°
70
°
头朝左侧、躺下20
°0°
15
°
头朝后面、躺下
225.将添加磁力计4以感测头部的定向,特别是当运动垂直于重力向量发生时。将加速度计和磁力计测量的值结合起来使得能够计算运动距离,并且因此获得头部的位置的绝对值。
226.关于头部的运动,借助于来自加速度计2的测量、优选地在三个轴线上测量的下颌骨的运动。还借助于陀螺仪3测量下颌骨的运动。
227.头部和下颌骨的运动以及所产生的位置变化是不同种类的。对于下颌骨而言,运动是例如以呼吸频率旋转的运动。然而,在磨牙或咀嚼的情况下或在口腔运动障碍的情况下,在睡眠期间可能会发生侧向运动,并且在那里,下颌骨髁在颞下颌关节的关节盂中经受旋转,但这些轴线与在呼吸运动的情况下是不相同的轴线。
228.对于头部,运动的结果是随机的,即在激活之后,无法预测头部将在运动结束时占据的位置。运动的振幅和位置的变化的振幅具有不同的值。因此,如果头部的运动的振幅高,则不会研究陀螺仪所测量的下颌骨的位置的变化,因为如果情况是这样,则受试者会被唤醒并且将不会获得关于受试者的睡眠干扰的信息。当陀螺仪捕获的下颌骨的运动的小振幅起源于呼吸运动时,观察到陀螺仪捕获的下颌骨的运动的小振幅。偏航角的变化与头部相关并且表示头部从左向右旋转。俯仰角的变化除了使用了其他参数提供关于下颌骨的运动的信息之外,还与头部的屈曲或伸展相关。捕获信号的这些值将借助于分析单元进行分析,如下文所述。
229.呼吸运动和非呼吸运动一样都可以引起下颌运动。因此,当人睡觉时头部的运动可能引起下颌运动。下颌运动可由气管牵曳或由人的大脑产生。气管牵曳是胸部在人的头部上施加的牵引力。该牵引处于人的呼吸频率。因此,如果头部以呼吸频率运动,则附接到头部的下颌骨将以呼吸频率跟随由头部施加的运动。这是跟随头部的运动的被动运动。在头部不运动的情况下,下颌运动可以同样地由大脑直接且主动地控制。当大脑控制下颌运动时,直接刺激下颌骨的肌肉。因此,能够在由大脑控制的下颌运动与由气管牵曳控制的下颌运动之间进行清楚的区分是有用的。
230.在激活大脑时(例如,在呼吸努力的时间段结束时、在咳嗽或吐痰期间、或在睡眠中再次讲话时)的隔离的下颌运动(imm)与由受试者的呼吸引起的呼吸下颌运动(rmm)之间进行区分。还存在由磨牙或咀嚼引起的下颌运动。rmm型下颌运动由受试者的大脑直接控制并且不引起头部的运动。rmm型运动也可以由气管牵曳产生,然后将与头部在呼吸频率下的运动组合。当rmm型运动停止、标准化或开始时,借助于由加速度计实现的测量来观察头部是否在该场合下运动是有用的。磨牙型运动通常在导致头部运动并且加速度计表示的激活之后发生,因为它确实捕获了与陀螺仪清楚地示出的下颌骨的相对精细的旋转运动形成对比的大振幅的运动。
231.根据本发明的用于处理与睡眠干扰相关的数据的设备10包括第一输入11

1,第一输入11

1用于接收来自加速度计2的测量信号的第一时间流f1,即所测量的加速度数据。设备10包括第二输入11

2,第二输入11

2用于接收来自陀螺仪3的测量信号的第二时间流f2,即所测量的旋转运动数据。设备10还可以包括第三输入11

3,第三输入11

3用于接收来自磁力计4的测量信号的第三时间流f3,即磁场数据。当感测单元还包括血氧计时,所述识别设备将包括第四输入,第四输入适于接收来自血氧计的测量信号的第四时间流f4,即血氧计数据。当感测单元还包括温度计时,所述识别设备将包括第五输入,第五输入适于接收来
自温度计的测量信号的第五时间流f5,即温度计数据。当感测单元还包括音频传感器时,所述识别设备将包括第六输入,第六输入适于接收来自音频传感器的测量信号的第六时间流f6,即音频数据。当感测单元还包括肌电图单元时,所述识别设备还将包括第七输入,第七输入适于接收来自肌电图单元的测量信号的第七时间流f7,即肌电图数据。当感测单元还包括脉冲光体积描记器时,所述识别设备还将包括第八输入,第八输入适于接收来自脉冲光体积描记器的测量信号的第八时间流f8,即光体积描记术数据。换言之,来自各种传感器的测量数据经由数据链路被从传感器发送到分析单元。
232.各种输入在物理上不一定是不同的,因为各种流可以是时分复用的和/或每个流由不同频率的载波承载。因此,可以通过单个数据链路发送各种输入流。
233.设备包括数据分析单元,数据分析单元包括识别单元12,识别单元12适于在第一测量信号流f1和第二测量信号流f2中识别第一信号和第二信号,第一信号的频率位于由频率组成的第一预定范围内,第二信号的值位于由值组成的第二预定范围内,所述由频率组成的第一预定范围和由值组成的所述第二预定范围由分别由表征所述受试者的睡眠状态的所述受试者的头部和下颌骨的运动的频率和值组成。当感测单元包括磁力计4时,识别单元12还将适于在第三测量信号流f3中识别第三信号,第三信号的值位于所述受试者的头部的定向的值的第三预定范围内,诸如可以在睡眠期间观察到的。识别单元适于在观测到已经在第一流和第二流中识别的第一信号和第二信号存在第一预定时间段期间之后产生触发信号。识别单元还适于在其已经产生触发信号之后在第一测量信号流和第二测量信号流中识别第三信号,第三信号的频率和/或值表征受试者的下颌骨的运动和/或头部的位置变化。识别单元与分析单元13连接,分析单元13适于在触发信号的控制下被激活。分析单元还适于将第三信号与表征与睡眠干扰相关的频率和/或值的概况进行比较并产生该比较的结果。
234.具体地,识别单元可以被包括在数据分析单元中,该数据分析单元还包括存储器单元。存储器单元被配置用于存储n个下颌骨运动类别,其中,n是大于1的整数,其中,n个下颌骨运动类别中的至少一个表示睡眠障碍性呼吸事件。每个第j(1≤j≤n)个下颌骨运动类别包括第j个旋转值集,每个第j个旋转值集表示与第j个类别相关联的下颌旋转的至少一个速率、速率变化、频率和/或振幅。此外,每个第j个下颌骨运动类别可选地包括第j个加速度值集和/或第j个磁场数据值集。数据分析单元包括采样元件,采样元件被配置成用于在采样周期期间对所测量的旋转运动数据以及可选地所测量的加速度数据和/或所测量的磁场数据进行采样,从而获得采样的旋转运动数据以及可选地采样的加速度数据和/或采样的磁场数据。数据分析单元被配置为从采样的旋转运动数据中导出多个所测量的旋转值;以及可选地从采样的加速度数据和/或采样的磁场数据中导出多个所测量的加速度值和/或所测量的磁场值。数据分析单元还被配置成用于将所测量的旋转值与n个下颌骨运动类别进行匹配。可选地,数据分析单元还被配置成用于将所测量的加速度值和/或磁场值与n个下颌骨运动类别进行匹配。因此,有效地检测到睡眠障碍性呼吸事件。
235.关于数据链路:设备和感测单元优选地彼此无线地通信,但是不言而喻,电缆连接同样是可能的。设备优选地是位于数据处理中心的计算机的一部分。例如借助于电话通信网络实现无线通信,并且感测单元例如装配有能够使其与电话通信的蓝牙系统。因此,由感测单元产生的测量信号的流将被传输至设备。
236.本发明是基于以下事实:已经观察到下颌骨的运动不仅取决于胸部的运动,如文献所指出的,而且还取决于来自大脑的神经中枢的直接控制,大脑控制附着于下颌骨的肌肉,其作用是定位下颌骨。已经观察到,头部的位置、尤其是在睡眠期间头部的位置的变化,可以停止所有下颌运动或者以完全独立于胸部运动的方式开始该运动。也就是说,只有当头部的位置允许下颌运动并且没有固定下颌运动时,下颌运动才可以在胸部运动的存在下跟随。因此,头部的运动可以作用于下颌运动或使下颌运动瘫痪,从这个意义上说,它只不过是标志微觉醒或觉醒的大脑激活的附带现象,并且可能对下颌运动产生其他影响。
237.头部的运动实际上会通过在睡眠情况下当上呼吸道更加可收缩时施加挤压力,或者通过激活/停用上呼吸道的肌肉运动单元来影响上呼吸道的渗透性。在睡眠期间头部的这些运动改变了上呼吸道的渗透性,必须及时了解并叠加在下颌骨的运动上。因此,可以正确地分析下颌骨的这些运动,然后根据从由睡眠受试者产生的空气流开始的呼吸控制变化来解释。换言之,无论是否在微觉醒或觉醒的情况下,考虑在睡眠期间头部的位置和头部的位置的变化,来感测和分析下颌运动将考虑大脑控制,以便通过激活/去激活附接到大脑上的肌肉来定位或重新定位下颌骨。在大脑激活之外,在呼吸频率下头部的位置的运动将由气管牵曳产生,而在相同频率下的下颌运动由神经中枢直接确定。
238.通过以杠杆的方式致动下颌骨形成的活动骨,大脑控制寻求通过激活舌头肌肉和附接到舌头上的咽部的肌肉来强化上呼吸道,以阻止呼吸暂停。为此,大脑控制依赖于在睡眠期间以呼吸频率升高或降低、张开嘴或闭合嘴的肌肉。大脑控制还可以对(也在呼吸频率下的)推动下颌骨向前的肌肉起作用,或甚至以组合的方式起作用,这些组合的肌肉组涉及在不同方向上的运动。
239.在睡眠期间头部的位置的变化通常伴随着觉醒或微觉醒,觉醒或微觉醒还可以例如由放置在头皮上的电极来记录并且记录大脑的皮层的活动。当在下颌行为修改的情况下无论如何存在头部的运动时,头皮电极有时记录不到激活。其原因是激活已经保持在大脑干中皮层下并且有时完全自主。头部的这些运动完全独立于胸部运动来执行。
240.因为头部的位置不再与身体的位置对齐,或者因为头部的位置的变化是在神经中枢的控制下自发或非自发翻转的附带现象,所以根据头部的位置分析垂直平面中和水平平面中的下颌运动,可以通过创建颈部扭曲,来提供关于呼吸努力的水平、特别是其振幅的信息,在气流穿过上呼吸道的流动的阻力发生变化的情况下采用由大脑的神经中枢执行那种控制。当来自神经中枢的控制增加时,呼吸事件被认为是努力的增加,而当神经中枢的控制减少时,呼吸事件被认为是中枢的。使生物能够离开呼吸暂停的大脑控制必须激活在垂直平面中向上并且在水平平面中向前的下颌杠杆,理想地头部与身体轴向对齐,以便防止上呼吸道的任何压迫。这种(微)觉醒本身是由隔离的大下颌运动(imm)来识别的,并且无论是呼吸的还是非呼吸的(微)觉醒持续时间被测量并且与随后的下颌运动明显不同。
241.示例2
242.在进一步的示例中,参见图2a和图2b。
243.在大脑控制的状态下,在睡眠期间,对来自感测单元的测量数据流实现的分析的结果提供信息,并且由来自加速度计的信号表示的头部的位置的变化通常是其状态变化的标记。图2a 图2b示出了躺在床上的人的头部的位置变化期间的流。这种运动决不能叠加于苏醒中的下颌骨的运动上以及因此也不能叠加于在如由除了为睡眠医学保留的运动之外
的本领域的从业者所研究的咀嚼、发声或吞咽期间有意识的状态下的下颌骨的运动。后者涉及在不处于睡眠状态的有意识的受试者中在牙科、口腔学、颌面外科学、正畸剂、正畸医学、语言矫正法等中研究的咀嚼、发声和吞咽问题。
244.图2a从左到右首先示出了头部从第一位置到第二位置的变化,在第一位置中头部转向左侧,在第二位置中头部转向右侧。之后看到变化到第三位置,在该第三位置中头部再次转向左侧。由加速度计产生的第一流f1与实现测量的三维的三个轴(fx、fy、fz)相关。由陀螺仪产生的第二流f2也涉及这三个轴。在头部转动的时刻,可以清楚地看出这两个流具有高振幅的峰值。还可以看出,当头部处于第一位置时,流f1和f2、特别是在流f1的垂直方向y上具有更大的可变振幅,该可变振幅表示增加的大脑控制状态、由参考标记1表示,并且在控制强度方面是可变的。此外,这在示出胸部的运动的流ft中也看到。因此,分析单元可以从流中推断出该人正在表现出增加的和可变的呼吸努力。
245.当头部的旋转已经发生并且头部处于第二位置时,可以看出流f1的振幅与流f2的振幅一样已经显著地降低。流f1的水平降低,这表明嘴已经张开,如参考标记2所示。还可以看出空气流f5降低,这可能导致氧气流的损失(参考标记3)。在流f2中还可以看出振幅已经降低,这表明大脑控制振幅的损失,如参考标记4所示。所有这些都表明努力的振幅已经降低并且呼吸受到影响(参见空气流f5),这还会引起大脑激活并产生引起头部的位置的新变化的命令,头部转向左侧。在此之后,在流f2中可以看出振幅已经变得更大并且流f5已经增加。因此,将发现大脑控制倾向于使呼吸正常化。
246.图2b示出了甚至头部的位置的小变化是由大脑控制引起的。图2b示出了头部向右发生轻微旋转的变化。如箭头1所示,流f1首先示出了大脑控制状态已经增加并且已经产生了呼吸努力。可以看出,当头部改变位置时,加速度计(f1)示出了表示大脑激活的振幅和频率的增加,由参考标记2表示。在流f8(eeg)和f7(emg)中,可以清楚地看出大脑激活30秒的时间段,在此处放大(参考标记2)。然后可以看出,流f1(参考标记3)的水平示出了振幅减小的大脑控制状态并且下颌骨已经被抬高(嘴已经闭合)。
247.根据本发明的系统所采用的技术出乎意料地且不可预测地提供关于睡眠期间下颌运动的性质的信息、其中枢起源、必须加强咽部以保持受试者的通气和由此的供氧的神经中枢的控制,而在睡眠期间,其头端必须理想地保持与身体对齐、特别是与躯干对齐。因此,下颌运动必须根据头部的位置以及其变化来解释,否则将不会理解下颌运动在睡眠期间停止或开始或改变振幅的原因。
248.示例3
249.在第三示例中,参见图3a和图3b。
250.本文提供的技术适用于检测磨牙。磨牙的已知诊断利用了咬肌和前颞肌以及在实验室中的多导睡眠图检查期间可能的前颞肌的肌电图,此外该检查必须包括音频

视频记录。由于睡眠记录的需求与睡眠实验室的记录能力不成比例,因此这种检查是昂贵的、费力的并且有些难以达到。该记录是在一晚上实现的,并且其费力的性质通常阻止其被重复。此外,为了跟踪磨牙,必须能够在多个晚上进行记录,因为磨牙可能不是每晚都系统地再现并且保持间歇。因此,有必要在相关受试者的家里、在现实生活条件下并且在不干扰睡眠的自然进度的情况下对其进行实施。必须快速给出结果以优化对磨牙的控制和验证治疗效果。
251.目前,没有在家里检测到磨牙,因为没有实现这一目的的技术方案。所提出的诸如
咬肌或前颞肌的表面肌电图的解决方案不能确保对痛苦的诊断。事实上,在晚上期间或因为肌肉上的脂肪介质防止其肌电图(emg)活动的捕获,所以仅对咬肌或前颞肌的肌电图活动的记录会受到寄生运动的影响。视频记录使实验室能够验证下颌骨的运动和所产生的与磨牙相对应的肌电图活动。
252.本发明所提出的技术方案包括借助于感测单元记录下颌运动、优选地在空间中下颌骨的运动的三个主轴上记录下颌运动,然后借助于分析单元执行对该信号的算法分析。该分析使得能够识别下颌运动,该下颌运动是特异性地且排他性地在磨牙开始期间发展的以及通过检测rmma(节律性肌肉咬肌活动)而建立的下颌运动,也就是说在咬肌的表面肌电描记术期间有阶段性但有时仅有紧张性的活动。由感测单元产生的信号流在三个轴上分析,这还使得能够捕获可能在牙齿的磨削期间被施加横向运动,并且有助于釉质的磨损。下颌运动(称为磨牙)是激动肌和拮抗肌的共同作用的结果,激动肌和拮抗肌不仅涉及(诸如前颞肌的)下颌骨的抬高组,而且还涉及内侧和外侧的舌下肌和翼状肌。
253.图3a 图3b示出了在磨牙访问期间由捕获单元捕获的流。所记录的肌肉的emg活动(见流f7d和f7g)已经被验证为有助于下颌运动。咬肌和/或前颞肌肌电图活动的典型特征反映在下颌运动中,下颌运动也是磨牙的诊断。后者以调制信号的形式叠加在生成它们的(持续的)紧张或(有节律的)阶段性磨牙的肌电突发上。可以计算循环或突发的持续时间。
254.在磨牙发作之前的努力时段(由箭头1表示),可以容易地通过下颌运动分析以及伴随皮层或仅自主的皮层下激活的短暂觉醒(由箭头2表示)来识别。(无论是皮层,例如排他地反映在eeg上的皮层波频率的变化中,如由流f8表示,还是皮层下并且不在eeg上可见的)激活通过先前下颌运动很好地被标记,并且在文献中描述了其通常先于磨牙的发作。应注意的是,咬肌阶段和/或紧张性活动峰值与下颌运动的极端位置是同时的,清楚地验证了肌肉募集与下颌活动骨的运动之间的关系。在图3a中,可以看出在流f1中的一段时间的努力,由箭头1表示,随后是激活,由箭头2表示,进而随后是由磨牙引起的下颌骨的运动,由箭头3表示。图3b是由图3a中的箭头k右上表示的10秒时段的放大视图。图3b示出了右咬肌(f7d)和左咬肌(f7g)的emg中的活动与磨牙下颌运动之间的同步性。
255.从这里可以看出,右咬肌(f7d)的流f7(emg)的恢复活动与左咬肌(f7g)的恢复活动以及由磨牙引起的下颌运动的恢复活动同步。图中清楚地示出了,在f1z和f2x上清楚地示出了一段时间努力后,异常振幅的下颌骨的位置的呼吸频率发生了变化。在标记皮层激活的运动、对应于磨牙的发作的四次高频(1hz)旋转运动之后,在f1z中伴随有头部运动和陀螺仪f2x上的大运动。此后,一段时间的努力再次出现。
256.经由头部的运动和下颌骨的运动的固有特征(也就是说,尤其是信号流的频率特征和形态特征)分析的头部的运动和下颌骨的运动可以根据其产生机制来区分并且按时间顺序排序。这些特征可以通过分析例如测量信号的振幅、面积或斜率来观察。这些特征例如是:
257.·
与呼吸努力相关的运动,然后
258.·
与暂时性皮层或皮层下激活相关的运动,然后
259.·
与可以清楚地区分磨牙或咀嚼运动相关的运动,例如像在磨牙循环期间的突发次数、两次突发之间的循环长度、或突发的持续时间。
260.下颌运动是由用于升高和降低下颌骨的肌肉的激动/拮抗作用产生的。后者由三
叉神经驱动分支的大脑神经中枢的核心直接控制。在此,下颌运动可以通过下颌骨在相对于平面的运动期间、例如在其相对于水平面的垂直运动期间所呈现的角度的变化来感测。
261.即使胸部运动继续,下颌运动可能仅在头部的位置发生变化的情况下开始或停止。头部位置的变化总是与皮层或皮层下的微觉醒同时发生,因此会干扰大脑神经中枢的控制。即使不再有腹部的胸部的运动,也就是说,即使在由脊神经控制的吸气期间作用于胸部和腹部的扩张的隔膜肌肉不再起作用或已经停止,下颌运动也可能在睡眠期间以呼吸速率继续。然后,下颌运动可以在另一平面(例如水平面)中以前到后或后到前的运动的形式来施加,即在除了头尾牵引的平面之外的平面中,由此将影响气管牵曳。
262.可以在由加速度计提供的第一流中,同样在由陀螺仪提供的第二流中,看出在下颌位置的呼吸频率处向上的,即在与由气管牵曳产生的牵引力将施加的方向相反的方向上的紧张相位运动。该向上运动和向前运动分别由前颞肌和咬肌以及翼状肌的收缩产生,特别是由上肌群产生。
263.当呼吸努力开始时并且当下颌运动的振幅将由于中枢呼吸控制的增加而增加时,施加在下颌运动上的方向也可能位于除了垂直平面之外的平面中,该垂直平面是牵曳的平面。这是由于比其他肌肉群更多募集的某些肌肉群的作用,例如比舌下肌群更多募集的翼状肌群。呼吸频率下的运动可能在将由惯性单元捕获的更水平方向上发生。惯性单元包括加速度计和陀螺仪。事实上,如果仅在垂直平面中监测努力,那么努力周期可能逃避信号分析。运动也可能主要在一个方向(垂直或水平)上而不是在另一个方向上发生。
264.呼吸运动的形状、特别是其加速度斜率会随着所募集的肌肉群而变化。在垂直运动期间,当咬肌处于活动时,吸气期间的运动方向向上(与当拮抗肌降低肌肉活动占主导地位时观察到的方向相反),并导致运动减少,这种情况会生成运动波形的变化。
265.由感测单元提供的流的这种分析能够验证以下事实:当降低肌肉的活动占主导时,吸气期间下颌骨的运动是向下的,并且当提升肌肉的活动占主导时下颌骨的运动是向上的。此信息是经由对所捕获的速度和加速度的变化的分析获得的。这使得有可能评估受试者发展的响应的水平和性质,以阻止正在展开的呼吸事件,以及评估以稳定上呼吸道为任务的抬高下颌骨的肌肉的更多或更少的募集。
266.示例4
267.在第四示例中,参见图4。
268.观察到的流是指描述事件期间下颌骨的行为的四个特征的识别。这些特征将使得能够理解受试者在特定睡眠阶段和头部的特定位置中如何构建呼吸事件以及大脑将如何响应试图解放自己。除了对事件的进展的描述之外,还可以识别关于其在短期和长期两者中再犯风险的信息。例如,当相对于干扰的响应的振幅的值(称为环路增益)高时,即对干扰的响应高时,这些特征具有预测值。图4示出了环路增益。在该图中,箭头1标记了流f1上的可塌缩点,也就是说不再进行大脑控制的解决方案,使得下颌骨在局部解剖约束(例如像由受试者的肥胖症所确定的其体重)的作用下被动地下降。箭头2示出了下颌骨的运动,此外在流2中也同时看到了下颌骨的运动。在箭头2的开始处,下颌骨的运动的峰峰值振幅是低的。然后,其后,当嘴将要张开时,下颌骨将要降低,这可以在降低的流1的水平处看到,峰峰值振幅将要增加。然后,流1的水平将达到表示为3的水平,该水平对应于可觉醒点,该可觉醒点进而将跟随有由箭头4表示的大得多的振幅峰值。这种大振幅的运动使得能够测量环
路增益,该环路增益伴随着如由流f1和f2中的峰值所示的闭合嘴以及尽管嘴在此同时已经再次闭合,流1然后将到达的最高值。环路增益表示对干扰的响应。它被计算为由箭头4和箭头3表示的显著点与分子之间的差以及箭头3和箭头1与分母之间的差的比率。
269.存在以短呼吸暂停的自持方式、特别是以中枢形式看到事件重复的高风险。评估上呼吸道的肌肉、特别是阶段性增益,使得能够预测事件的持续时间。低肌肉增益表示该事件风险持续比增益高时更长的时间。作为恰好在终止该事件的激活之前的下颌位置的最低点的可觉醒点还使得能够预测该事件的持续时间。如果位置没有降低太多,则存在事件重复的风险,有时循环重复。解剖学限制的影响(例如与体重和上呼吸道中脂肪组织的局部累积相关的那些)可特别地通过基于由加速度计测量的值计算下颌骨的位置(可坍塌点),还可以当中心仍被后者电击时的微觉醒或觉醒之后立即下颌下垂时确定。
270.示例5
271.在第五示例中,参见图5和图6。
272.由感测单元产生的测量信号的流可以包括影响测量信号的噪声,并且当由设备接收到时预处理流可以被证明是有用的。该预处理的原理仅仅是产生增强的信号。本领域技术人员进行的分析已经使得有可能知道,在具有增强的大脑控制状态的时间段期间,下颌骨的位置以及因此下颌骨的速度和下颌骨的加速度以与呼吸频率相同量级的频率周期性地变化大约相同的值,也就是说在0.15hz与0.60hz之间。有可能通过仅保留呼吸频带的较低频率(例如通过对来自加速度计和陀螺仪的测量信号进行低通滤波)来隔离与微觉醒相关的信号。图5示出,通过应用该预处理,代表激活的微觉醒相对于具有增强的大脑控制状态的时间段是突发的。在每次微觉醒的情况下,信号中可以看到清晰的峰值。例如,通过应用数字信号处理领域中公知的六阶巴特沃斯滤波器,使得应用该预处理成为可能。
273.相反,可以通过借助于与呼吸频带相对应的带通滤波器对所捕获的信号中的一个进行滤波来设定具有增强的大脑控制状态的留出时段。在图6中示出了将这种滤波器应用于来自陀螺仪的信号的结果。由此可见,在努力期间,信号的值较高。
274.用于识别测量信号流中的信息的特征例如是:
275.‑
头部和下颌骨的位置(例如,横滚角、俯仰角、偏航角);
276.‑
下颌骨和头部沿着每个轴线的加速度;
277.‑
下颌骨和头部沿着每个轴线的旋转速度;
278.‑
下颌骨和头部围绕一个或更多个轴线的旋转速度的范数(在空间中,如果向量u具有坐标(x,y,z),则其范数被写成:(x2 y2 z2)
0.5
);
279.‑
下颌骨和头部沿着一个或更多个轴线的加速度的范数;
280.‑
在10或30秒内测量的或由两次激活定义的值的中值;
281.‑
在10或30秒内测量的或由两次激活定义的值的平均值;
282.‑
在10或30秒内测量的或由两次激活定义的值的最大值;
283.‑
在10或30秒内测量的或由两次激活定义的值的最小值;
284.‑
在10或30秒内测量的或由两次激活定义的值的标准偏差;
285.‑
所测量的值的指数运动平均值(具有5、60、120和180秒的半衰期);
286.‑
所测量的值的跨所有频率、跨呼吸频带(0.15hz

0.60hz)、跨低频带(0hz

0.10hz)的傅里叶变换和积分;
287.‑
所测量的值的能量最大频率或第二能量最大频率的傅里叶变换和识别;
288.‑
所测量的值的90秒窗口上的香农熵;
289.‑
下颌骨的和头部的以及其他特征的旋转速度和加速度信号的时间偏移,以便考虑过去和未来。
290.同样有可能将以上方法彼此组合。
291.当在测量信号的流中已经识别特征时,分析单元可以继续分析它们。为此,它将例如使用人工智能调用随机森林类型算法。将以此方式从多导睡眠描记术结果已知的整个系列信号片段中提取的特征与预期结果并行地注入到算法中,以便产生将使得能够对新片段进行模式识别类型分类的模型。
292.信号模式是信号序列的特定状态,其可以经由参数在物理上或数学上可见。模式识别是用于借助于自动学习算法基于已经采集的信息或从信号中提取的统计参数来识别(分类)信号中的特定模式的过程。
293.深度学习是自动机器学习技术,该技术涉及由人类大脑的结构(被称为人工神经网络)启发的模型。这些网络由能够提取数据中的信息和产生结果的多层神经元组成。该技术对于非结构化类型的数据(例如,图像、序列或生物信号)非常有效。
294.自动学习(或统计学习)是人工智能领域,其目的是应用统计建模方法,统计建模方法给予机器(计算机)从数据学习信息的能力,以便改进其在解决任务中的性能,而无需为它们中的每一个明确编程。
295.人工智能(ai)是旨在使机器能够模拟智能活动的技术集。
296.例如,这些模型的开发可以如下进行:
297.1)200位受试者配备有感测单元,同时他们在睡眠领域中经历参考临床检查:多导睡眠描记术。
298.2)然后,从这些受试者中的40个捕获的信号用于训练每个随机森林模型。来自感测单元的信号和在预处理步骤之后获得的特征的子集与随机森林算法中的睡眠检查的参考结果一起被注入,并且基于该输入数据生成分类模型。
299.3)然后使用剩余的受试者以便验证模型:来自对应于这些受试者的感测单元的信号被注入到在前一步骤中生成的模型中,进而生成结果,并且将那些结果与通过多导睡眠描记术获得的结果进行比较。当借助于模型和通过多导睡眠描记术获得的结果之间的一致性被认为足够时,模型被认为是有效的。否则,开发从该部分的步骤2重新开始。
300.为了能够可靠地识别在受试者的睡眠期间发生的干扰,优选地能够观察到受试者实际上已经进入睡眠阶段。当已经检测到受试者实际上处于睡眠阶段时,那么还将有可能建立受试者的睡眠阶段以便能够正确地解释存在于测量信号流中的信号。在进入睡眠时,下颌骨将假设在例如0.15hz与0.60hz之间的呼吸频率。为了能够确认稳定的睡眠状态,该呼吸频率必须存在几十秒钟的一段时间。
301.示例6
302.在第六示例中,讨论了受试者的各种睡眠阶段。具体地,表1(包括在下面的示例之后)示出了受试者的各种睡眠阶段以及它们与下颌骨的运动和受试者的头部的位置和运动的关系。苏醒状态的本质上的特征是,在该状态下下颌骨不可预测地运动,而在受试者中,在没有睡眠干扰的情况下,睡眠状态的特征在于下颌骨以呼吸频率进行旋转运动。为了分
别检测苏醒状态、睡眠状态,分析单元将优选地使用30秒的分析窗口和使用带通滤波器和/或指数运动平均值对第一流和第二流进行预处理来运行。为了提取表征苏醒状态或睡眠状态的概况,将例如考虑标准化平均值的水平。该水平实际上在苏醒状态下比在睡眠状态下更高。
303.在睡眠中还区别的是n1、n2、n3和rem(rapid eye movement,快速眼动)阶段。在n1睡眠阶段期间,可以看出,在成年人中在呼吸频率下的下颌骨的运动的变化,其中峰峰值的振幅变化持续通常限于几分钟的一段时间。头部的位置通常保持稳定,但是下颌骨的位置保持不可预测或者可能周期性地改变。为了使用处理设备检测n1睡眠阶段,优选地使用30秒的分析窗口以便确保运动的连续性。可以使用通过计算信号的频率的熵来对第一流和第二流进行预处理。标准化平均值的水平将在第一方法中被考虑为表征该n1睡眠阶段的概况,但是可以使用其他方法来提高分析准确度。在n1阶段中,标准化平均值的水平将高于在n2或n3阶段中的水平。
304.分析单元适于验证在第二时间段、特别地在30秒的时间段期间,所接收的第一流和第二流的振幅和频率的所述标准化平均值和方差是否具有表征n1睡眠状态的水平。如果所接收的第一流和第二流的振幅和频率的所述标准化平均值和方差具有表征睡眠状态n1的水平,分析单元适于产生表示n1睡眠状态的第二数据项。
305.在n2和n3睡眠阶段期间,大脑控制振幅和/或频率的变化从n2到n3越来越低。因此,在正常的受试者中,在这些阶段几乎不存在下颌骨或头部的运动。为了借助于处理设备检测n2或n3睡眠阶段,将优选地使用30秒的分析窗口以便确保运动的连续性。还优选使用借助于低通滤波器或带通滤波器的预处理。在第一种方法中,标准化平均值的水平将被考虑作为用于表征n2睡眠阶段的概况。在n2或n3阶段,标准化平均值的水平将越来越低。标准化中值的水平还可以用于识别n2或n3阶段或其他统计测量技术。
306.分析单元适于验证在第二时间段、特别地在30秒的时间段期间所接收的第一流和第二流的所述标准化平均值和/或标准化中值是否具有分别表征n2睡眠状态或n3睡眠状态的水平。如果例如所接收的第一流和第二流的所述标准化平均值和/或标准化中值具有分别表征n2睡眠状态或n3睡眠状态的水平,则分析单元适于产生分别表示n2睡眠状态的第四数据项或表示n3睡眠状态的第五数据项。
307.在人类中,rem阶段的特征在于下颌骨的不可预测的运动。为了借助于处理设备检测这种阶段,将优选地使用30秒的分析窗口以便确保运动的连续性。在成人中,不可预测的频率和/或振幅的这种类型的运动通常在rem中比在n1阶段中持续更长时间。在n1阶段期间的这种运动的周期通常限于几分钟。在大脑激活期间下颌骨位置的运动方向通常是负的,因为嘴是张开的。在rem阶段中,可以看到在呼吸频率下的下颌骨的运动的变化,其中峰峰值的振幅的变化不是周期性的。在rem阶段期间,头部的位置通常保持不变。以与n1期间类似的方式进行检测,目的是观察下颌骨的运动的呼吸不稳定性。rem阶段通常在没有eeg可以捕获的皮层激活并且没有头部运动的情况下进入。因此,加速度计将测量不到任何东西,而陀螺仪将观察下颌骨的旋转的变化。这示出了具有来自陀螺仪的信号和来自加速度计的信号两者以便正确地观察进入rem阶段的重要性。从rem阶段的退出通常与大脑激活密切相关,该大脑激活将由加速度计和陀螺仪观察到,这将观察隔离的下颌运动(imm)以及在适用的情况下头部的运动。作为第一种方法,可以考虑标准化平均值的水平。例如,还将寻找振
幅和频率的变化。在睡眠的前15分钟期间检测rem使得能够诊断发作性睡病。
308.示例7
309.在第七示例中,参见图14。
310.整个睡眠的对比分析,例如下颌骨的运动的振幅和/或频率的值的变化和/或信号的其他统计特征,单独地或分组到例如随机森林类型的分类器所针对的阵列中,应用于实践统计推断,能够区分不同的阶段。为此,图14示出了用于区分阶段的下颌运动频率的分布的频谱图。在该图14中,纵轴表示振幅密度,横轴表示频率。每个睡眠阶段的这些特定特征还可以通过机器深度学习来识别。这种算法和/或统计方法还可以用于表征呼吸事件和非呼吸运动事件。
311.下表给出了各种睡眠阶段之间的下颌骨旋转信号的振幅水平的方差的示例。在这个表中,“间隔”是指在第2.5个百分位数处的上层与在第97.5个百分位数处的下层之间的间隔。“振幅”是指最大值与最小值之间的差。“方差”是对所考虑的值的扩展的测量。测量是基于对于每个阶段在30秒的时间段内获取的1000个样本。
312.阶段方差(mm2)间隔(mm)振幅(mm)n10.016到0.0640.378到0.9450.470到1.070n20.018到0.0520.465到0.7950.560到0.990n30.081到0.1430.899到1.2451.020到1.330rem0.004到0.0980.250到1.3700.320到1.580
313.分析单元适于验证在第二时间段、特别地在30秒的时间段期间,所接收的第一流和第二流的振幅和频率的所述标准化平均值和方差是否具有表征rem睡眠状态的水平,如果所接收的第一流和第二流的振幅和频率的所述标准化平均值和方差具有表征rem睡眠状态的水平,所述分析单元适于产生表示rem睡眠状态的第三数据项。
314.识别单元适于在第一流和第二流中识别表征受试者的下颌骨的旋转和/或头部运动的运动信号。分析单元适于例如通过将这些运动信号应用到带通滤波器和指数运动平均值或对信号的频率的熵的测量,来分析这些信号。通过将该带通滤波器应用于例如呼吸频率,并且将例如具有半衰期等于5、60、120或180秒的该指数运动平均值应用于所供应的第一信号流和第二信号流并且具有30秒的第一观察时间段,分析单元将能够观察信号是否不稳定。如果是这种情况,将观察到觉醒情况。另一方面,如果信号是稳定的,则可以观察到睡眠情况。
315.分析单元适于将在位于30秒与15分钟之间、特别地为3分钟的第一流和第二流的第二时间段上的所述指数运动平均值应用作为表征睡眠状态的概况。对于一些分析,第二时间段甚至可以是30分钟。分析单元适于验证在所述第二时间段期间所述指数运动平均值是否具有基本上恒定的值,并且如果所述值基本上恒定或不恒定,则产生表示睡眠状态或苏醒状态的第一数据项。
316.识别单元适于在第一流和第二流中识别表征受试者的下颌骨和头部的旋转的运动信号。分析单元适于在这些运动信号的频率上计算熵。通过将具有例如90秒的分析窗口的该熵函数应用于所供应的第一信号流和第二信号流并且具有30秒的观察时间段,然后分析单元可以观察标准化平均值的水平。如果该水平是高的,将根据该水平的值观察到n1或rem睡眠情况。
317.识别单元适于在第一流和第二流中识别表征受试者的下颌骨的旋转和/或头部的运动的运动信号。分析单元适于将带通滤波器或低通滤波器应用于这些运动信号。通过将例如在呼吸频率下的带通滤波器或(例如低于0.10hz的)低通滤波器应用于所供应的第一信号流和第二信号流并且具有30秒的观察时间段,分析单元将能够观察标准化平均值和/或中值的水平。根据水平,将观察到n2或n3睡眠情况。
318.微觉醒形式的大脑激活具有3秒到15秒之间(包括3秒和15秒)的持续时间,并且可以是皮层或皮层下类型。导致觉醒的大脑激活持续超过15秒。在rem睡眠中的皮层大脑激活可以通过重复下颌骨的降低的特征来进行。在皮层激活的情况下,激活皮质延髓反射并且观察到下颌骨的大振幅或甚至大持续时间的多个突然运动。该反射放大了运动。在皮层下激活的情况下,这个反射未被激活,并且然后有可能在相对于下颌骨被激活的呼吸频率的频率不连续性的情况下观察到较小振幅的仅一个突然运动。与激活皮质延髓反射时相比,这种运动可以具有低得多的振幅和更短的持续时间。因此,该运动通常不太显著,并且可以通过检测可能仅在非常短的距离上施加的头部的伴随运动来辅助识别该运动。
319.示例8
320.在另一示例中,参考表2。表2示出了皮层和皮层下大脑激活特征。皮层激活的结果将在位于3秒与15秒之间的持续时间内突然关闭或打开大振幅的下颌骨。如果这种皮层激活发生在睡眠期间,它通常将伴随受试者的头部的位置的变化。分析单元将使用第一数据流和第二数据流来分析在10秒的窗口上的运动的振幅和持续时间。
321.皮层下激活的特征在于下颌骨的运动的变化频率及其形状的不连续性。下颌骨通常保持稳定。分析单元将使用第一数据流和第二数据流来分析在10秒的窗口上的运动的振幅和持续时间。该分析可以同样地在连续变量上进行。
322.因此,该分析单元将验证在第三时间段、特别地是位于3秒与15秒之间的时间段期间,所接收的第一流和第二流的信号的振幅是否具有表征皮层活动或皮层下活动的水平。如果所接收的第一流和第二流的所述振幅具有表征皮层活动或皮层下活动的水平,则分析单元适于产生表示皮层活动或皮层下活动的第六数据项。
323.为了检测呼吸事件或非呼吸运动事件的存在,分析单元将分析下颌骨的位置的演变、峰峰值下颌运动的振幅,表示大脑控制振幅和下颌运动的频率的变化的下颌运动的峰峰值振幅的变化。如果观察到低振幅,也就是说与在平静呼吸运动期间观察到的振幅相对应的振幅,并且在存在稳定的中心度(在嘴的连续且稳定的张开程度周围发生下颌运动)的情况下,没有考虑睡眠干扰的事件。
324.如果观察到高呼吸控制振幅(例如,对应于超过0.3mm的运动的振幅),也就是说,振幅变化大于在平静运动期间观察到的振幅变化,则推断出可能表示睡眠干扰的增加的运动或呼吸努力。
325.如果观察到大的呼吸控制振幅减小,也就是说振幅低至例如大约0.1mm或零,具有稳定或不稳定的控制中心度,持续至少10秒或例如两个呼吸循环,则推断出中枢型呼吸事件。
326.在事件期间测量上呼吸道的肌肉反应的增益使得能够确定其阻塞性特征,即显著的呼吸努力,如相对于没有呼吸努力或具有减少的呼吸努力,最终低于被认为是正常的水平的其中枢特征。这种分析使得能够将呼吸暂停和呼吸减弱表征为阻塞性或中枢性的。对
于每个睡眠阶段,呼吸努力的正常水平是在睡眠期间的正常呼吸时期期间预先确定的。
327.头部的位置的变化可以修改,具有或不具有睡眠阶段的变化的事件的配置或在睡眠与唤醒之间的转换的配置。通过测量事件期间在呼吸频率下在阶段性下颌运动期间的峰峰值振幅变化来计算事件期间的肌肉反应的增益。在事件的阶段性运动期间,已经可以根据单个呼吸循环计算事件周期的开始和结束之间的峰峰值振幅差的测量,峰峰值振幅差供应增益值。变化可以是最小的、1/10毫米的量级、或甚至更小,但可以达到3厘米。这种变化可以伴随下颌骨的绝对位置的变化,这意味着当施加其阶段性移动时嘴或多或少地张开。考虑到在睡眠期间的头部的位置,变化可以在水平和垂直之间的任何方向上发生。
328.示例9
329.在第九示例中,参考表3。表3示出了用于检测呼吸事件和非呼吸运动事件的大脑控制的典型行为。可以看出,为了检测阻塞性呼吸暂停

呼吸减弱,分析单元将例如使用第一测量信号流和第二测量信号流上的中值和/或平均值。至少两个呼吸循环或10秒的观察时间将是优选的,以便使分析更可靠。阻塞性呼吸暂停

呼吸减弱的特征在于在可以循环或非循环重复的呼吸速率下的大的大脑控制振幅。它在大脑激活期间将以大的下颌运动结束。具体地,将分析在所考虑的流中的下颌运动的振幅值的分布。
330.为了检测与觉醒相关的呼吸努力(rera),分析单元将以与先前段中描述的相同的方式进行。为了检测中枢呼吸暂停

呼吸减弱,观察的持续时间也将是至少两个呼吸循环或10秒。
331.示例10
332.在第十示例中,参见图4和图7。
333.将通过使用例如中值、平均值、最大值或在例如30秒的观察时间内下颌骨的旋转及其加速度的其他统计值来检测磨牙的情况。
334.在具有或不具有头部的位置变化的大脑激活之后的大脑控制可能:
335.·
稳定且具有低振幅;
336.·
以高或“上升”的中心度增加;嘴闭合并且如果后者是阻塞性的则校正该事件;
337.·
以低或“下降”的中心度增加;嘴张开并且事件是强加的、阻塞性的;
338.·
以低或“下降”的中心度降低;事件是强加的、中心的;
339.·
当募集翼状外侧肌肉时,以高或“上升”的中心度增加。
340.如果头部的位置没有变化但是呼吸控制水平变化,那么下颌骨的位置和其中的变化继续提供关于呼吸控制水平的信息。图7示出了表示皮层大脑激活的信号,绘制了如由加速度计和陀螺仪测量的下颌骨的运动。在该图7中从左到右的方向上,首先看到几个表示下颌骨以规则频率移动的振荡。下颌骨的这种运动是由具有一定程度的努力的呼吸引起。所涉及的受试者必须努力使空气通过上呼吸道,这可以在来自陀螺仪的信号的振幅中看到。具体地,参考标号1表示由皮层激活引起的微觉醒。然后看到表示从大脑激活跟随的较大振幅的运动的强振荡。然后可以看到,信号的水平已经增加,表明嘴已经闭合并且下颌骨已经上升了十分之几毫米。如果下颌骨升高并且仍然检测到其运动的呼吸频率具有大于正常值的振幅,则可以推断存在如在此观察到的持续阻塞性事件。如果运动变为低振幅,则可以陈述呼吸控制不再上升超过正常,并且呼吸努力已经被标准化。参考标号2表示由皮层下激活引起的微觉醒,其产生比皮层激活更低振幅的信号。
341.在分析单元处理信号之后获得的结果集可以例如以下列方式呈现:
342.·
睡眠图:记录期间睡眠阶段和唤醒/睡眠过渡时刻的演变;
343.·
记录的开始和结束时间、在床上和/或躺下花费的时间;
344.·
总睡眠时间;各种功效指数;
345.·
睡眠的碎片化,例如微觉醒和觉醒(激活)的数量和指数,唤醒/
346.睡眠过渡变化的数量和指数;
347.·
呼吸和非呼吸运动事件的数量和指数;
348.·
例如,在以大脑控制振幅的循环、周期、渐增

渐减方差重复中枢呼吸事件的情况下,如果周期的持续时间被测量为大于40秒,则可能怀疑周期呼吸的类型正在演变,可能在心功能不全的背景下;
349.·
循环性质的事件也可以是阻塞类型的事件,或者(例如,当环路增益高和/或可觉醒强时)阻塞类型的事件也可以以循环方式重复;
350.·
关于呼吸努力隔离的重复的皮层下激活表明其与肢体运动的关联。
351.头部的位置会影响睡眠期间发生的呼吸和非呼吸运动事件的频率和本质。在睡眠期间的头部的位置变化总是与来自大脑的激动同时发生。在后者的期间,头部将找到新的位置,并且在这种变化的情况下通过多次重复运动而已经以大振幅运动的下颌骨将找到此后将再次经受呼吸驱动的新的位置,该呼吸驱动的振幅将是中枢控制水平的量度。因此存在事件的关联,如图7中所示。因此,中枢性激活、头部的位置的可能修改和伴随其的下颌骨的位置的可能修改和伴随下颌骨的呼吸运动的振幅的修改的主动呼吸控制被整合在大脑中。检查活动与大脑激活之间的关系。如果对照活动水平改变,例如经由下颌骨的呼吸运动的改变的峰峰值振幅,这首先是脑干中枢激活和控制状态改变的结果。此外,呼吸活动在下颌骨的旋转运动期间由陀螺仪捕获,而中枢性激活在头部的线性运动期间由加速度计捕获。
352.无论事件是呼吸事件还是非呼吸运动事件,头部的位置的变化和伴随其的大脑激活通过修改控制水平并且因此修改事件的类型来确定该事件发生的风险。头部的位置的变化必然伴随着大脑激活,并且可以修改呼吸道中的空气流体的流动状况,特别是通过修改上呼吸道口径肌滞留状态条件,此外由头部假定的新的定向可以会使那些呼吸道暴露于机械挤压力。
353.在皮层或皮层下激活期间的下颌运动和重新定位可以在事件期间描述如下:
354.(1)下颌骨是被动的,或在没有肌肉系统的紧张和/或阶段性支持的情况下激活消退时下颌骨下降,而中枢运动控制被侧旁持续几个呼吸循环的持续时间。在嘴闭合之后并且在嘴被动张开的情况下,不再支持其位置的放松,也就是说不再支持下颌骨,因为被认为支持下颌骨的肌肉系统的张力分量的损失超过可变距离但是具有标记的斜率(>1/10mm/s);在嘴的闭合与跟随的斜率变化之前记录的最低点之间的这个距离的测量是当跟随激活时咽部的被动坍塌的标记,存在神经中枢失去控制;这种情况可以持续相当于几个(最多五个)呼吸循环的时间。
355.这种松弛可以不发生,嘴保持闭合或实际上闭合,因为控制下颌骨的位置的肌肉系统的中枢控制(紧张性成分的持续性)没有损失。
356.(2)然后下颌骨以阶段性和/或紧张性形式示出肌肉反应增益,该肌肉反应增益将
在该事件期间在新的激活被触发之前将其以呼吸控制频率重新定位。由此得出控制下颌骨的位置和运动的肌肉活动的恢复。肌肉的这种恢复的活动可以通过斜率的变化来表现,该斜率的变化描述具有或不具有呼吸运动(也就是说具有或不具有阶段分量)的其新位置,即其中至少一个峰峰值振幅可测量超出测量的背景噪声(>0.05mm)。后一种运动表示呼吸运动的恢复,也就是说呼吸频率的偏移,并且因此根据评估规则,呼吸努力将使得可以将阻塞性事件限定为中枢或混合的。该中心度的运动使得有可能指定嘴的张开程度是否稳定、增大或减小,而该呼吸运动的峰峰值振幅反映当前努力程度。
357.(3)中心度或振幅点达到最低,并且从该中心度或振幅点将执行闭合嘴的运动,由激活确定的第一运动类似于可觉醒阈值。例如在rem中或当嘴尚未张开时这种运动有时是向下的,因为呼吸努力首先是由翼外侧肌以及将嘴保持在向前且高位置的咬肌的活动所施加的,这种运动对激活有见证。后者可以是皮层或皮层下或具有皮层下和然后是皮层序列,或者当下颌骨在该事件期间没有张开太多时,似乎由于翼外侧肌的活动,然后它可以在激活期间突然张开,而最经常地,当在该事件期间嘴已经张开时,该激活突然将其关闭。
358.(4)如图4所示,遵循在激活期间距离该可觉醒点的最大距离处的下颌骨位置点。将它们分开的距离是激活期间下颌运动的振幅的量度。在从开始恢复该努力直到可觉醒点起经由呼吸运动的振幅变化进行激活之前,测量该值并且将其与该事件期间所部署的呼吸努力水平进行比较。这些值的比率是下颌环路增益程度的度量。
359.示例11
360.在第十一示例中,参见图8。图8示出了在受试者患有阻塞性呼吸暂停的情况下的(由加速度计测量的)第一测量信号流f1和(由陀螺仪测量的)第二测量信号流f2的示例。在该图中,f5n表示鼻流,f5th表示口鼻热流。在此将观察到,在从t1至t2的时间段期间并且在由参考标号1表示的呼吸暂停之后,该信号是不稳定的。在这个时间段开始时,看到由陀螺仪供应的信号具有比在事件结束时更低的振幅。在该事件期间增强了中枢控制,因为有必要对抗引起呼吸暂停或呼吸减弱的障碍。在同一时间段t1

t2期间,可以看到加速度计(参考标号2)和陀螺仪(参考标号3)表示呼吸努力,随后是脑激活(参考标号4)。
361.信号的分析示出了,在t1与t2之间存在阻塞性呼吸暂停的情况下,在加速度计(f1)上观察到下颌骨在呼吸频率下的运动并且振幅从峰峰值振幅增加,同时由于下颌骨的位置从一个呼吸循环到另一个呼吸循环(a)越来越多地下降而导致嘴张开。同时(c),可以看出增加振幅的旋转、呼吸运动的角速度表示努力本身增大。注意在字母b的高度处,激活对用加速度计测量的下颌骨的运动的影响,该激活引起下颌骨的向上运动并且具有嘴闭合的结果。在这种情况下,下颌骨将呈现新的位置。在陀螺仪上的字母d的水平处,可以看出这种闭合嘴的运动不是纯粹旋转的。在字母b和字母d的高度处的信号状态的变化与在大脑激活(微觉醒)的情况下恢复通气是同时的。
362.示例12
363.在第十二示例中,参见图9。图9示出在受试者患有由箭头1表示的阻塞性呼吸减弱的情况下的第一测量信号流f1和第二测量信号流f2的示例。箭头0表示觉醒状态。这个相同的图9还示出了由音频传感器捕获的表示打鼾的存在的第六流f6,连同由下巴肌电图感测的第七流f7和由脑电图感测的第八流f8。看到在几秒的时间段内存在更大振幅的一系列下颌运动(r),这每次表示皮层或皮层下激活。这些运动伴随着流f6、f7和f8中的峰值变化。事
实上,肌电图和脑电图信号清楚地示出了在这种情况下存在脑激活。阻塞性呼吸减弱由箭头2和3表示,箭头2表示努力和嘴的张开,并且箭头3表示努力和下颌骨的旋转。这种呼吸减弱之后是微觉醒形式的激活,由箭头4表示。微觉醒之间的呼吸下颌运动的高的值反映了此外通过打鼾来增强的高呼吸努力。因此,在来自加速度计的流f1中以及在来自陀螺仪的流f2中可见,在打鼾过程中,随着嘴巴的张开存在下颌骨的旋转。因此图9示出了大脑活动可以由加速度计和陀螺仪记录,该加速度计和陀螺仪在努力期间以与大脑激活期间一样多的呼吸频率测量下颌运动,但是在这种情况下以通常不再是呼吸频率的频率测量下颌运动。仍在此图9中,数字0表示受试者的觉醒状态。
364.示例13
365.在第13示例中,参见图10。图10示出了在受试者患有混合呼吸暂停的情况下第一测量信号流f1和第二测量信号流f2的示例。如在图8中,在该图10中可以看到,下颌骨的角速度以对应于呼吸频率的频率增加。数字1表示缺乏呼吸流,该呼吸流与由数字2表示的缺乏控制和努力相关,随后是由数字3表示的恢复大脑控制和努力。
366.示例14
367.在第14示例中,参见图11。图11示出了在受试者患有中枢性呼吸暂停的情况下的第一测量信号流f1和第二测量信号流f2的示例。峰值f示出了在呼吸恢复时头部和下颌骨的运动。还看到,在峰值f之间,可以说不存在下颌骨的运动。数字1表示缺乏呼吸流,该呼吸流与由数字2所表示的缺乏努力以及由数字3所表示的努力的激活和恢复相关。
368.示例15
369.在第15示例中,参见图12和图13。图12示出了在受试者患有大脑起源的所有控制的暂时消失的情况下的第一测量信号流f1和第二测量信号流f2的示例,这是中枢性呼吸减弱的特征。这种消失的特征在于嘴被动地张开,因为它不再被肌肉束缚。因此在流f1和f2中可见,在峰值之间,该信号不表示任何活动。另一方面,在峰值的时刻,观察到下颌骨的运动的高振幅。朝向峰值的末端,看到了对应于非呼吸频率的运动,该非呼吸频率是大脑激活的结果,该大脑激活然后将导致微觉醒。数字1表示呼吸减弱的时间段,其中流动的减少在来自热敏电阻器的流f5th上是清楚可见的。数字2和数字3表示流f1和f2中在中枢性呼吸减弱期间下颌运动的消失。图13示出了在受试者经历将在大脑激活中终止的延长的呼吸努力的情况下的第一测量信号流f1和第二测量信号流f2的示例。可以看出,来自加速度计f1的信号在由h表示的位置处表示头部和下颌骨的大的运动。此后,流f2保持几乎恒定,而在来自加速计的f1中的水平下降,这表明在任何情况下都有下颌骨的运动,该下颌骨缓慢下降。然后跟随高峰值i,该高峰值i是在终止努力周期的激活期间头部的位置变化的结果。数字1表示由打鼾标记的这个长的努力周期。可以看到,如数字2所表示的,努力随着时间而增加。如数字3所示,这种努力终止于大脑激活,该大脑激活导致头部和下颌骨的运动,如由字母i表示。
370.分析单元在其存储器中保存这些各种信号的模型,这些各种信号的模型是使用如上文所述的人工智能的处理的结果。分析单元将使用那些结果来处理这些流,以产生关于那些结果的分析的报告。
371.发现加速度计特别适合于测量头部的运动,而发现测量旋转运动的陀螺仪特别适合于测量下颌骨的旋转运动。因此,导致下颌骨的旋转而没有头部改变位置的大脑激活可
由陀螺仪检测。另一方面,imm类型的运动、特别是如果头部在这种情况下运动将被加速度计检测到。将由陀螺仪检测rmm类型的运动,该陀螺仪对rmm类型的运动高度敏感。
372.示例16
373.在进一步的示例中,参考用于在本文中所提供的方法和设备中使用的特征提取、数据处理和数据描述的示例性过程。在图15中示意性地示出了这样的过程。
374.具体地,特征提取、数据处理和描述是以r统计编程语言(8)完成的,而机器学习实验是使用sci

kit学习和以python语言的shap包进行的。
375.从每个事件的下颌运动原始信号或正常呼吸的每10秒提取23个不同的特征。这些特征包括:mm振幅的中心趋势(平均值、中值和众数);mm分布(原始或包络信号):偏度、峰度、iqr、第25个百分位数、第75个百分位数和第90个百分位数;极值:最小值、最大值、mm振幅的第5个百分位数和第95个百分位数;变化趋势:来自广义加性模型的,评价时间函数中的mm的线性趋势和基于张量乘积的样条因子(s1、2、3、4)的系数;每个事件的持续时间。
376.各种特征对模型的分类为中枢性呼吸减弱、正常睡眠和阻塞性呼吸减弱的影响可以借助于shap分数来描述。shap分数测量跨与其他特征的所有可能的联合的平均边际贡献以对3个目标标签进行分类。shap分数越高,特征可以提供越重要的贡献。lundberg的夏普利加性解释(shap)方法在合作游戏理论中统一了夏普利分数(1953)(lloyd s shapley.“avalue for n

person games(n人游戏的价值)”.在:contributions to the theory of games 2.28(1953),307

317.)以及本地解释方法(marco tulio ribeiro,sameer singh,carlos guestrin.“why should i trust you?explaining the predictions of any classifier(为什么要相信你?解释任何分类器的预测)”.在:proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.acm.2016,1135

1144.)以提供最好的解决方案来解释任何黑匣子模型。shap理论将输入特征视为合作游戏中的“玩家”,其中“支出”对目标标签(即,中枢性或阻塞性呼吸减弱)进行正确预测。shap算法使每个特征值以随机顺序与其他特征结合以形成合并,然后根据它们对总预测的贡献为每个特征值分配支出(shap分数)。shap分数是从对当新特征参与时联合获得的预测中的变化进行平均而得到的结果。实质上,特征值的shap分数是该特征值对于特定预测跨所有可能的联合的平均边际贡献。
377.具体地,特征提取如下:
378.1.以(例如,采样速率=10hz或25hz)加载原始mm数据的序列。该序列例如在30分钟和8小时之间具有显著的持续时间;
379.2.标记阻塞性和中枢性呼吸减弱事件的时间戳;
380.3.对于每个时间戳ti,执行以下步骤:
381.3.a.检查ti是否为阻塞性或中枢性呼吸减弱事件的开始。
382.3.b.如果ti是阻塞性或中枢性呼吸减弱事件的开始,
383.‑
将ti分配给(t_begin),并且随后搜索该结束(t_end);以及
384.‑
通过索引t_begin和t_end将原始数据序列提取到命名为“事件e”的临时持有者;
385.4.对于每个事件e,执行以下步骤:
386.4.a.计算事件持续时间dt=(t_end

t_begin)
387.4.b.确定在事件期间测量的参数的分布;
388.‑
最小值、最大值、平均值、中值、众数、第5个百分位数、第25个百分位数、第75个百分位数、第90个百分位数、第95个百分位数、偏度、峰度、iqr;
389.‑
拟合gam非线性模型以通过在时间t上的样条函数估计mm振幅和/或位置,然后提取样条函数的系数;
390.‑
拟合简单线性模型,提取截距和线性斜率;
391.‑
通过将所测量的数据与下颌骨运动类别进行匹配而连接所有特征 标签。
392.在特征提取之后,将提取的特征和对应的目标标签集成到表格数据集中。
393.在那之后,进行探索数据可视化、单向anova和具有bonferroni校正的成对student

t测试以将下颌运动特征分类在3个组中:正常呼吸、阻塞性呼吸减弱和中枢性呼吸减弱。对于零假设测试,将显著性水平设定为高度严格的标准(p=0.001)(10)。
394.为了模型开发的目的,将数据随机分成2个子集:用于模型开发的大集(70%)和用于模型验证的小集(30%)。因为原始训练集在中枢性(少数类别)与阻塞性呼吸减弱(多数类别)之间不平衡,所以应用了模型开发之前训练集上的合成少数过采样技术(smote,the synthetic minority over

sampling technique,其本身是众所周知的)。
395.构建多类别分类规则以使用23个输入特征对3个组进行分类。这由随机森林算法组成,该算法组合500个不同的决策树(每个决策树是在5个特征的随机子集上构建的)。
396.然后对随机森林模型的内容进行分析,以评估每个特征的重要性以及对分类做出的贡献的可能联合(它们之间的潜在组合,以区分阻塞性呼吸减弱与中枢性呼吸减弱)。为了评估每个特征对预测的贡献,采用lundberg的shapley additive explanation(shap)方法,该方法本身在本领域中是熟知的。
397.这些方法尤其允许检测阻塞性呼吸减弱和中枢性呼吸减弱。
398.示例17
399.在进一步的示例中,参见图16和图17。这些图示出了对借助于磁传感器捕获的下颌运动数据的分析。数据分析类似于除了磁传感器之外还借助于加速度计和/或陀螺仪捕获的下颌运动数据的数据分析。
400.图16示出了源自磁力计测量的18个最重要的mm信号特征,通过它们对模型的预测的全局影响进行排序。这些条表示每个特征的平均shap分数,通过3个目标标签分层,中枢性呼吸减弱(深灰色)、正常呼吸减弱(浅灰色)和阻塞性呼吸减弱(灰色)。shap分数测量跨与其他特征的所有可能的联合的平均边际贡献以对3个目标标签进行分类。shap分数越高,所述特征可以提供的贡献越重要。
401.图17示出了基于所提取的特征并且基于shap分数的事件的解释。具体地,图17示出了shap分数量表和目标标签的概率。图17包括两个一般区域:区域a)和区域b。区域a)包括支持目标标签的预测的所提取的特征,以及区域b)包括指向远离所述目标标签的所提取的特征。
402.示例18
403.在进一步的示例中,参见图18,该图18示出了用于根据借助于陀螺仪和加速度计捕获的下颌运动数据确定睡眠阶段的示例性方法。下面讨论的步骤对应于图18中的参考标号。
404.具体地,步骤如下:
405.(1)使用本发明的包括陀螺仪和加速度计的系统在受试者睡眠期间记录下颌运动。所采集的数据包包括由所述三轴加速度计和陀螺仪传感器采集的6通道原始信号。原始数据还可以包括来自适合于确定睡眠分期的其他设备的记录,诸如用于睡眠分期的eeg、eog和emg信号、由三轴加速度计和陀螺仪传感器采集的6通道mm信号。
406.(2)原始数据将穿过预处理和特征生成模块,在此之后,原始数据被连续地分割成30s长度的时期。预处理包括从睡眠分数序列和用传感器和psg采集的时间数列中产生以0.1hz和0.034hz(30s的滑动窗口)采样的时间数列。该预处理发生在两个步骤中:数列或序列被分割,然后特征提取函数被应用于每个窗口。
407.可以使用手工制作的特征提取作为用于机器学习实验的输入数据。例如,特征生成模块使用以每个30秒时期为中心的滑动窗口,从mm活动信号的6个通道中提取1728个特征的集。所提取的特征包括:低频带(0

0.1hz)、高频带(>0.3hz)或呼吸频带(0.2

0.3hz)的信号能量;具有若干半衰期周期的指数运动平均值;若干频带中的能量的熵;应用于以上特征的统计特征:中心性(平均值、中值)趋势、极值(最小、最大)、四分位数、标准偏差、以及所有上述特征的正常标准化值。
408.(3)所提取的特征集将被馈送到机器学习分类器,从而根据特定分类任务来生成每个目标标签的软预测分数(即,概率)和二进制输出。在三级复杂程度下接近自动化睡眠分段任务。任务目标是基本3个睡眠阶段:唤醒、非rem(包括n1、n2、n3)和rem。
409.用交叉验证来对特征选择和超参数进行调整,其中,输入数据在参与者的水平处被随机拆分成数据包。仅使用最相关的特征和优化的超参数值在整个训练集上训练最终模型。由于目标标签之间的不平衡比例,训练数据在每个训练会话之前通过合成少数过采样技术(smote)来平衡。
410.机器学习算法:采用极梯度提升(extreme gradient boosting,xgb)分类器作为所有三个分类任务的核心算法。在训练过程期间通过最小化正则化目标函数来优化xgb分类器,正则化目标函数组合了(基于预测输出与目标输出之间的差的)凸损失函数和用于模型复杂性的惩罚项。
411.模型训练:学习目标被设置为多类别分类,旨在根据特定任务对3个目标标签进行分类。该训练暗示了dropout

multiple additive regression trees(dart)增强器和直方图优化的近似贪婪树构建算法。将对数损失选择为评估度量(从而优化3个目标类别之间的平衡准确度)。为了防止过度拟合,学习速率(eta或步长收缩)参数被设置为0.01,这将收缩特征权重,以使得增强过程更保守。
412.模型的输出暗示了soft

max函数来为每个目标标签生成概率分数,然后通过对这3个概率分数应用argmax函数来实现最终决策(向每个30s区段仅分配一个标签)。
413.(4)根据模型的预测与未看见验证数据集上的参考psg评分之间的逐个时期的一致性,采用最满足的解决方案来实现。进行进一步的定量评估以验证所选择的算法是否可以提供诸如tst、睡眠效率、rem比率等睡眠质量分数的可靠估计。模型选择基于以下标准:
414.逐类别一致性评估:标准化的混淆矩阵允许针对特定的多类别分类任务来评估模型的逐类别性能。行是从手动psg评分导出的真值,并且列表示自动算法评分的结果。混淆矩阵的对角线单元表示逐类别真阳性率。
415.精确度(或阳性预测值)测量模型的正确识别阳性病例的能力,定义为真阳性/(真
阳性 假阳性);召回率(也称为灵敏度、命中率或真阳性率)表示模型的效用,定义为所有目标实例之间的正确分类的分数:召回率=真阳性预测/所有阳性实例;
416.f1分数是组合度量,被定义为每类别召回率和精确度的谐波平均值:
417.2*(精确度*召回率)/(精确度 召回率)
418.f1分数具有直观含义,其表示模型的精确度(其正确地分类了多少个时期),以及模型的鲁棒性(误分类率低)。由于现实生活中的数据呈现出睡眠阶段之间的不平衡比例并且所有标签是同样重要的,所以采用在所有类别上得到同样高的f1分数的分类器。
419.全局逐时期一致性评估度量:平衡的准确度(bac)测量目标类别中的真阳性率和真阴性率的平均值。cohen的kappa系数测量模型的分类和真实观察(手动psg评分)之间的一致强度。它可以解释为6个水平的一致性强度:低于0:差,0

2:轻微,0.2

0.4:一般,0.41

0.6:中等,0.61

0.8:基本上,0.81

1:几乎完美。
420.(5)来自所选(3类别任务)模型的预测数据将通过解释模块。第一子模块(睡眠分数计算)将把预测的睡眠阶段的序列转换成定量分数。
421.这些定量分数的定义呈现于下表中:
422.[0423][0424]
(6)睡眠图创建:定制的函数将离散编码的标签的序列(例如:2=唤醒,1=rem睡眠,0=非rem睡眠)转换成睡眠图。此图表呈现了表示离散睡眠阶段值作为时间的函数的阶梯线,其模拟了从手动psg评分中获得的传统睡眠图。
[0425]
示例19
[0426]
示例19呈现了示例18的实验延续。具体地,对96位参与者的组执行示例18中呈现的方法,96位参与者被随机分配到训练子集(n=68,70%)和验证子集(n=28,30%)中。两个子集代表年龄范围为18至53岁的健康成人的群体。
[0427]
在受试者睡眠期间使用包括陀螺仪和加速度计的本发明的系统来记录下颌运动。所采集的数据包包括由所述三轴加速度计和陀螺仪传感器采集的6通道原始信号。使用原始模型来开发自动化睡眠分期模型。另外,使用适合于确定睡眠分期的设备(如eeg、eog和emg)记录参考数据。后一数据用于确定所应用模型的准确性。
[0428]
代替使用深度学习模型,遵循传统框架,这意味着手工制作的特征提取和结构化数据驱动算法。与像卷积神经网络的黑盒模型相比,手工制作的特征提取允许更好地控制和理解输入数据。采用xgboost用于分类任务。这种算法提供了优于包括计算和资源的高效率的经典方法(lda、svm、rf)的若干优点,允许非常快的训练和执行速度。
[0429]
受试者子集:来自96位参与者的组的多导睡眠描记术(psg)概况表示两个子集组中的正常睡眠活动,其中,中值睡眠效率为89.4%和87.3%。在每个集内,数据结构还呈现3个睡眠阶段之间成比例的不平衡:除了在大多数情况下规律的唤醒标签之外,在两组中,非rem睡眠比rem睡眠占主导(训练集92.3对7.7,并且验证集79.9对20.1),建议在模型开发期间需要数据平衡技术,并且在模型验证期间应当仔细解释性能度量。
[0430]
3类别评分:本模型旨在对唤醒(无睡眠)、非rem和rem睡眠进行分类。该模型导致3个类别之间的良好平衡的准确度(对于唤醒、非rem和rem睡眠分别为82.9%、74.9%和82.5%)。该模型还具有基本一致的强度(kappa=0.71)。它在检测唤醒时期表现最佳,f1分数为0.86。通过在模型中分布唤醒、非rem和rem实例来指导,发现识别唤醒比区分非rem和rem更容易,因为唤醒实例被很好地聚类并且与其他实例清楚地分离,而大多数rem标签被更多地分散并且混合到其他非rem或唤醒点中。该模式表明可以考虑诸如随机森林、xgboost或深度神经网络的非线性算法,用于成功分离3个类别。
[0431]
睡眠质量指数的一致性分析:3类别任务睡眠分期算法可以自动地将每个30秒时
期分类为唤醒、非rem或rem。然后通过第二算法转换输出以提供睡眠质量指数的估计。那些指标可以分为3个主要类别:a)基于时间的指数,其测量睡眠(tst)中或特定睡眠阶段(诸如唤醒性、rem或非rem)期间的累积时间(以分钟计);b)基于比率的指数,其被估计为特定睡眠阶段(rem、非rem)占所有睡眠中的时期的百分比;c)基于潜伏期的指数,其测量记录开始与睡眠开始(睡眠潜伏期)之间或睡眠开始与第一rem时期(rem潜伏期)之间的流逝时间。
[0432]
根据示例18中呈现的表确定自动睡眠分期算法的定量分数。psg概况的标准评分与自动睡眠分期算法的定量评分之间的差异呈现于下表中:
[0433][0434][0435]
数据表示,与参考方法(手动psg评分)相比,基于3类别的评分算法允许以可接受
的准确度(仅

7.15分钟的中值差,97.5%ci:

20.34到 4.38)测量总睡眠时间。一致性对于确定睡眠效率也是良好的(中值差:

1.29%;

3.03到 0.01)。
[0436]
结论:探索了使用包括陀螺仪和加速度计的本发明的系统在受试者睡眠期间记录的下颌运动的可行性。结果证明,相比于仅包括加速度计的现有技术的系统,基于由被配置成用于测量旋转运动的陀螺仪测量的数据的自动睡眠分期检测在所有三个分辨率水平(针对3类别评分)下提供了更好的性能。
[0437]
[0438]
[0439]
[0440]
[0441]
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献