一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

混合动力驱动装置的制作方法

2021-11-15 17:48:00 来源:中国专利 TAG:


1.本技术涉及在变速机构的变速控制中变更旋转电机和发动机中的至少一方的驱动力的混合动力驱动装置。


背景技术:

2.近年来,提出了一种混合动力驱动装置,其具有发动机和旋转电机(马达)作为驱动源,并且具有对该驱动源的旋转进行变速的变速机构(参照专利文献1)。在该专利文献1的混合动力驱动装置中,在利用变速机构进行变速时,通过马达的再生来吸收伴随变速而产生的惯性扭矩,当利用马达的再生无法完全吸收惯性扭矩时,通过发动机来执行扭矩降低。
3.现有技术文献
4.专利文献
5.专利文献1:日本特开2003

182405号公报


技术实现要素:

6.发明要解决的问题
7.但是,在上述混合动力驱动装置中,在通过马达无法完全吸收变速时的惯性扭矩,或者马达因电池的剩余电量等影响而无法使用等情况下,通过发动机进行扭矩降低或扭矩增加时,由于以使用马达为前提,因此,在实际上不能进行马达的扭矩控制之后向发动机发出指令,从而无法及时变更发动机扭矩,并且无法在变速中获得预定的扭矩变更,继而存在导致变速延迟或对变速感觉产生影响的问题。
8.因此,本发明的目的在于,提供一种混合动力驱动装置,即使在通过旋转电机无法变更变更量的驱动力时,也能够在运算出的驱动力的变更时机,变更作用于变速机构的驱动力。
9.用于解决问题的手段
10.本混合动力驱动装置,包括:
11.变速机构,具有与发动机驱动连接的输入构件和与车轮驱动连接的输出构件,执行用于变更所述输入构件和所述输出构件之间的变速比的变速控制;
12.旋转电机,与所述变速机构驱动连接;以及
13.控制部,在所述变速机构的变速控制中,运算变更作用于所述变速机构的驱动力的变更时机和变更量,在通过所述旋转电机能够变更所述变更量的驱动力时,控制所述旋转电机以使所述旋转电机的驱动力变更所述变更量,并且在通过所述旋转电机无法变更所述变更量的驱动力时,向所述发动机输出用于变更驱动力的发动机指令信号,
14.所述控制部在通过所述旋转电机无法变更所述变更量的驱动力时,在比通过所述旋转电机能够变更所述变更量的驱动力时变更所述旋转电机的驱动力的变更时机更早的变更前时机,向所述发动机输出所述发动机指令信号。
15.由此,通过旋转电机无法变更变更量的驱动力时,在比通过旋转电机能够变更变更量的驱动力时变更旋转电机的驱动力的变更时机更早的变更前时机,向发动机输出发动机指令信号,因此,通过发动机能够在运算出的驱动力的变更时机变更作用于变速机构的驱动力,从而能够降低变速的延迟、对变速感觉的影响。
附图说明
16.图1是示出本实施方式的混合动力驱动装置的框图。
17.图2是示出本实施方式的变速机构的示意图。
18.图3是本实施方式的变速机构的接合表。
19.图4是示出本实施方式的变速控制中的扭矩变更控制的流程图。
20.图5是示出在本实施方式的变速控制中由发动机执行扭矩降低时的时序图。
21.图6是示出在本实施方式的变速控制中由马达执行扭矩降低时的时序图。
具体实施方式
22.以下,利用图1至图6来说明本实施方式。首先,参照图1,对本实施方式的混合动力驱动装置1的概略结构进行说明。
23.[混合动力驱动装置的结构]
[0024]
如图1所示,混合动力驱动装置1优选用于例如fr(前置发动机后轮驱动)类型的车辆,输入轴1a与作为驱动源的发动机2驱动连接。另外,混合动力驱动装置1包括:作为驱动源的旋转电机(电动发电机)mg,在壳体6的内部具有定子3a和转子3b;变速机构5,设置在发动机2以及马达mg与车轮9之间的动力传递路径上;油压控制装置(v/b)40,对变速机构5进行油压控制;作为发动机切断离合器的离合器k0,配置在动力传递路径上的发动机2与电动发电机(以下,简称为马达)mg之间,能够切断发动机2;起步离合器(起步用摩擦接合构件、驱动传递离合器)wsc,配置于动力传递路径上的马达mg与变速机构5之间,能够连接或切断发动机2以及马达mg(即驱动源)与变速机构5之间的动力传递,尤其在车辆起步时接合;以及作为第一控制部的变速器控制部(以下,称为“tcu”)31。
[0025]
tcu31包括cpu32、临时存储数据的ram33以及存储处理程序的rom34,并且连接于总括性地执行搭载有混合动力驱动装置1的混合动力车辆的控制的作为第四控制部的混合动力控制部(以下,称为“hv

ecu”)60。另外,hv

ecu60连接于控制马达mg的驱动的作为第二控制部的马达控制部(以下,称为“mcu”)70和控制发动机2的驱动的作为第三控制部的发动机控制部(以下,称为“ecu”)80。
[0026]
tcu31构成为从输出端口输出向油压控制装置40的各电磁阀的控制信号、用于控制发动机2的控制信号(包括后述的发动机扭矩信号)、用于控制马达mg的控制信号(包括后述的马达扭矩信号)等各种信号。另外,从tcu31的输入端口输入来自省略图示的各种传感器等的检测信号、来自电池50的检测信号,例如输入马达mg的温度、电池50的剩余电量、电池50的温度等信息。
[0027]
另外,上述马达mg和离合器k0通过旋转轴1b与起步离合器wsc驱动连接,此外,起步离合器wsc与变速机构5的输入轴12驱动连接。此外,尽管省略了图示,但是通常在发动机2与离合器k0之间,设置有一边吸收发动机2的脉动一边传递其旋转的减震装置等。
[0028]
在后面详细叙述的变速机构(t/m)5,基于多个摩擦接合构件(离合器或制动器)的接合状态变更传递路径,例如,由能够实现前进6挡和后退挡的变速机构构成。另外,传动轴8与变速机构5的输出轴15驱动连接,输出到传动轴8的旋转经由差速装置等传递到左右的车轮。
[0029]
此外,作为变速机构5,例如,可以是实现前进3至5挡或前进7挡以上的有级变速机构,此外,还可以是带式无级变速器、环式无级变速器等无级变速机构,即,可以是任意的变速机构。
[0030]
在如上所述的混合动力驱动装置1中,离合器k0、马达mg、起步离合器wsc、变速机构5从发动机2侧朝向车轮9侧依次配置,在驱动发动机2和马达mg两者或者发动机2来使车辆行驶时,通过控制部(ecu)31来控制油压控制装置40,使离合器k0和起步离合器wsc接合,而在仅利用马达mg的驱动力来行驶的ev行驶时,使离合器k0分离,由此切断发动机2与车轮9之间的传递路径。
[0031]
[变速机构的详细情况]
[0032]
接着,利用图2和图3来对变速机构5进行说明。在变速机构5中,在作为输入构件的输入轴12(以及中间轴13)上,具有行星齿轮dp和行星齿轮单元pu。行星齿轮dp是所谓的双小齿轮式行星齿轮,具有太阳轮s1、行星架cr1以及齿圈r1,在该行星架cr1上具有与太阳轮s1啮合的小齿轮p1以及与齿圈r1啮合的小齿轮p2,并且它们彼此啮合。
[0033]
行星齿轮dp的太阳轮s1固定于壳体6,另外,行星架cr1与输入轴12连接,从而与该输入轴12一体旋转。而且,齿圈r1通过固定的太阳轮s1和输入旋转的行星架cr1,变为输入旋转被减速的减速旋转,并且与第一离合器c1以及第三离合器c3连接。
[0034]
行星齿轮单元pu是所谓的拉威挪型行星齿轮,具有作为四个旋转构件的太阳轮s2、太阳轮s3、行星架cr2(cr3)以及齿圈r3(r2),在该行星架cr2上,以相互啮合的方式具有与太阳轮s2以及齿圈r3啮合的长小齿轮p4和与该长小齿轮p4以及太阳轮s3啮合的短小齿轮p3。
[0035]
行星齿轮单元pu的太阳轮s2与第一制动器b1连接而相对于壳体6自由固定,并且与第三离合器c3连接,从而齿圈r1的减速旋转经由第三离合器c3自由输入。另外,太阳轮s3与第一离合器c1连接,从而齿圈r1的减速旋转自由输入。
[0036]
而且,行星架cr2与第二离合器c2连接,输入轴12的旋转经由中间轴13输入到第二离合器c2,从而输入旋转经由该第二离合器c2自由输入,另外,行星架cr2与第二制动器b2连接,从而旋转经由第二制动器b2自由固定。并且,齿圈r3连接于作为向车轮9输出旋转的输出构件的输出轴15。
[0037]
如以上那样构成的变速机构5通过控制部(ecu)31的电气控制信号,通过由油压控制装置40供排的油压控制,作为多个摩擦接合构件的第一离合器c1至第三离合器c3、第一制动器b1以及第二制动器b2通过以图3的接合表中所示的组合方式接合或分离,实现前进1挡(1st)至前进6挡(6th)以及后退挡(r)的变速比(齿轮比)。此外,第二制动器b2在前进1挡和后退挡接合,并且也在n挡接合。
[0038]
另外,tcu31基于节气门开度和车速等判断变速,通过控制油压控制装置40所具有的各电磁阀,切换(switch)两个摩擦接合构件,来执行变速控制。例如,在从前进2挡变速为前进3挡时,通过使第一制动器b1分离,并且使第三离合器c3接合来执行变速。
[0039]
在该变速中,首先,通过使作为分离侧的摩擦接合构件的第一制动器b1分离且使作为接合侧的摩擦接合构件的第三离合器c3打滑接合,成为变更扭矩传递的分担的扭矩相,之后,通过使第三离合器c3进一步接合,来进行实际使变速机构5的输入轴12旋转变化的变速,随着其旋转变化,成为产生使与输入轴12驱动连接的构件的惯性力发生变化的惯性扭矩的惯性相。当该惯性扭矩从输出轴15传递到车轮9时,产生因扭矩变动而引起的变速冲击,从而影响变速感觉。另外,例如,在踩踏油门的状态下升挡的所谓的连接动力升挡中,尽管驱动力从发动机2和马达mg输入到输入轴12,但是需要通过升挡来降低输入轴12的转速,如果在该状态下从发动机2和马达mg一直输出较大的驱动力,则输入轴12的转速的降低会变慢,从而可能会产生变速的延迟。因此,如下所述,利用马达mg和发动机2中的至少一方来执行以降低扭矩的方式进行变更的扭矩降低。
[0040]
此外,在以下的说明中,对执行扭矩降低的情况进行说明,例如,在不踩踏油门使车速降低而降挡的所谓的切断动力降挡中,执行以提高扭矩的方式进行变更的扭矩增加,以使输入轴12的转速随着降挡而上升。另外,例如,在踩踏油门的状态下降挡的所谓的连接动力降挡中,由于在输入轴12通过马达mg或发动机2的驱动力而转速上升使得变速比成为变速后的变速比的时机进行摩擦接合构件的接合,因此,不执行惯性相中的扭矩增加或扭矩降低,但是以降低(平缓)因摩擦接合构件的接合而引起的突然的扭矩变动的目的执行扭矩降低。对于上述扭矩降低、扭矩增加,可以应用下述的变速控制中的扭矩变更控制。
[0041]
[扭矩变更控制]
[0042]
接着,利用图4至图6来对变速控制中的马达mg和发动机2的扭矩变更控制进行说明。此外,扭矩变更控制是指,在变速机构5的变速控制中,针对tcu31基于油门开度等确定的发动机2所输出的驱动力和马达mg所输出的驱动力,tcu31通过扭矩降低或扭矩增加来变更输出扭矩的控制。
[0043]
在利用马达mg执行扭矩降低时,通过减小驱动力的输出或者增大再生力来执行,而在利用发动机2执行扭矩降低时,从点火时机的延迟、节气门开度信号的变更、气缸的停用、燃油切断等种类中选择性地执行一个。在利用马达mg执行扭矩增加时,通过增大驱动力的输出或者减小再生力来执行,而在利用发动机2执行扭矩增加时,从节气门开度信号的变更、燃料喷射量的增大等种类中选择性地执行一个。
[0044]
此外,如图1所示,在tcu31变更马达mg的输出扭矩时,运算马达mg的扭矩tmg,并且将马达扭矩信号tmgsig1作为第一旋转电机指令信号向hv

ecu输出,hv

ecu60接收到上述信号后,将马达扭矩信号tmgsig2作为第二旋转电机指令信号向mcu70输出,mcu70将马达命令信号mgcd作为对马达mg的旋转电机驱动信号输出,由此驱动控制马达mg。此外,详细而言,马达命令信号输出到执行pwm控制的驱动电路(未图示),通过驱动电路进行输出与马达命令信号相对应的马达扭矩的脉冲调制,来控制逆变器电路(未图示),并且利用电池50的电力向马达mg施加电流。
[0045]
另外,在tcu31变更发动机2的输出扭矩时,运算发动机2的扭矩te,并且将发动机扭矩信号tesig1作为第一发动机指令信号向hv

ecu输出,hv

ecu60接收到上述信号后,将发动机扭矩信号tesig2作为第二发动机指令信号向ecu80输出,ecu80将发动机命令信号egcd作为对发动机2的发动机驱动信号输出,由此驱动控制发动机2。此外,详细而言,发动机命令信号是发动机2的喷射器或火花塞的控制信号,尤其在执行扭矩降低时,进行点火时
机的延迟、节气门开度信号的变更、气缸的停用、燃油切断。
[0046]
另外,以下说明的马达扭矩的变更时机(马达扭矩变更时机)主要是指,tcu31输出马达扭矩信号tmgsig1的时机(当持续输出信号时变更信号的内容并输出该变更的时机),但由于是电气控制,因此时间上大致相同,输出马达扭矩信号tmgsig2的时机(输出信号的内容的变更的时机)、作为输出马达命令信号mgcd的输出时机的时机(输出信号的内容的变更的时机)大致同义。
[0047]
另外,同样地,以下说明的输出发动机扭矩信号的变更前时机(发动机扭矩变更时机)主要是指,tcu31输出发动机扭矩信号tesig1的时机(当持续输出信号时变更信号的内容并输出该变更的时机),但由于是电气控制,因此时间上大致相同,输出发动机扭矩信号tesig2的时机(输出信号的内容的变更的时机)、作为输出发动机命令信号egcd的输出前时机的时机(输出信号的内容的变更的时机)大致同义。
[0048]
如图4所示,在tcu31中,当开始变速控制中的扭矩变更控制时,首先,tcu31根据节气门开度和车速等,参照未图示的变速图,判定是否进行了变速判断(s1),并且直到做出变速判断为止进行待机(s1中的“否”)。
[0049]
在tcu31进行了变速判断时(s1中的“是”),首先,根据做出变速判断的变速状态、即,是否是踩踏了油门的连接动力、是否是未踩踏油门的切断动力、是否是升挡、是否是降挡等变速种类、输入轴12的转速、发动机2的输出扭矩(驱动力)、马达mg的输出扭矩(驱动力),运算作为向输入轴12输入的输入扭矩的变更量(以下,称为“输入扭矩变更量”)的扭矩降低量或扭矩增加量,并且运算开始执行这些量的扭矩变更的变更时机(s2)。此外,具体而言,在连接动力升挡中,扭矩降低量是相当于根据基于变速前后的变速比和当前的输入轴12的转速的输入轴12的转速的变化量产生的惯性扭矩的量,在切断动力降挡中,扭矩增加量是相当于产生基于变速前后的变速比和当前的输入轴12的转速的输入轴12的转速的变化的惯性扭矩的量。
[0050]
接着,tcu31获取与马达mg相关的环境状态(以下,称为“马达状态”)(s3),具体而言,获取当前的马达mg的输出(再生)状态、电池50(参照图1)的剩余电量、电池50的温度、马达mg的温度、未图示的逆变器电路的温度等。即,当马达mg的输出(再生)状态处于或接近马达mg的性能极限的状态时,无法再输出(再生),因此无法进行马达mg的输出(再生)。另外,若电池50的剩余电量为充满电状态,则无法再充电,因此无法进行马达mg的再生,而若电池50的剩余电量处于较少的状态,则无法通过马达mg输出驱动力。另外,若电池50的温度处于比规定的温度低的低温状态,则无法正常地进行电力的供给或充电,因此,马达mg的驱动力输出或再生受到限制。另外,若马达mg的温度或逆变器电路的温度处于比规定的温度高的高温状态,则从保护马达mg或逆变器电路的观点出发,对马达mg的驱动力输出或再生产生限制。并且,tcu31基于这样获取的马达状态,运算马达mg可以变更的扭矩的量(以下,“马达扭矩可变更量”)(s4)。即,马达扭矩可变更量根据马达状态随时变化。
[0051]
接着,tcu31判定在步骤s4中运算的马达扭矩可变更量是否小于在步骤s2中运算的输入扭矩变更量(s5),即,判定利用马达mg是否可以执行运算出的扭矩降低量或扭矩增加量。在马达扭矩可变更量在输入扭矩变更量以上时(s5中的“否”),即,通过马达mg可以进行扭矩降低量或扭矩增加量的扭矩变更,则判定是否是在上述步骤s2中运算出的输入扭矩的变更时机,即是否是马达mg的扭矩(以下,称为“马达扭矩”)的变更时机(s6)。此外,由于
马达mg的扭矩变更是电气性的,因此几乎没有延迟,即,输入扭矩的变更时机和马达扭矩的变更时机大致同义。
[0052]
在步骤s6中,若还未到马达扭矩的变更时机(s6中的“否”),则返回上述步骤s2,重新进行输入扭矩变更量和变更时机的运算、马达状态的获取、马达扭矩可变更量的运算。由此,例如在做出变速判断后,当驾驶员改变油门的踩踏量(油门开度)时,输入扭矩变更量和变更时机可能会发生变化,但是通过如上所述那样返回到步骤s2,并重新运算输入扭矩变更量和变更时机,能够应对油门的踩踏量的变化。另外,通过在做出变速判断后,重新进行马达状态的获取、马达扭矩可变更量的运算,能够应对在实际到达马达扭矩变更时机之前马达状态发生变化的情况。然后,例如,在到达变速中的成为惯性相的时机即马达扭矩的变更时机时(s6中的“是”),tcu31向hv

ecu60输出马达扭矩信号tmgsig1,以使马达扭矩变更上述运算出的输入扭矩变更量,来执行使马达mg进行扭矩降低或扭矩增加的马达扭矩变更控制(s7)。
[0053]
然后,直到tcu31判断出变速结束为止进行待机(s8中的“否”),例如,判定变速比变为了变速后的变速比(或者判定所设定的变速时间超时),若判断出变速结束(s8中的“是”),则逐渐恢复通过马达扭矩控制执行的扭矩变更量,即,执行使扭矩降低或扭矩增加以规定的梯度平稳变化(sweep)并结束的输入扭矩恢复控制(s9),由此马达mg的变速控制中的扭矩变更控制结束。
[0054]
另一方面,在步骤s5中,若tcu31判定马达扭矩可变更量不小于输入扭矩变更量(s5中的“是”),即判断利用马达mg不能进行(无法执行)所运算出的扭矩降低量或扭矩增加量的扭矩变更,则首先运算通过发动机2进行扭矩变更的变更量(以下,称为“发动机扭矩变更量”)(s10)。该发动机扭矩变更量是通过从上述输入扭矩变更量减去上述马达扭矩可变更量而运算的,即,进行一边优先马达mg的扭矩变更一边执行发动机2的扭矩变更的运算。此外,根据马达状态,当无法进行马达mg的扭矩变更时,仅进行发动机2的扭矩变更,因此,在该情况下,以使发动机扭矩变更量变为与输入扭矩变更量相同的方式进行运算。
[0055]
接着,tcu31运算在输入扭矩变更时机之前变更发动机2的扭矩的变更前时机(以下,称为“发动机扭矩变更时机”)(s11)。即,tcu31例如基于通过与发动机2的控制部或者车辆的控制部通信而获得的发动机2的状态,确定在执行发动机2的扭矩降低或扭矩增加时的种类,并根据该种类,运算出从向发动机2输出扭矩变更的信号开始到发动机扭矩实际变更为止所需的时间,并且运算比惯性相的开始时机(即,与通过马达mg进行扭矩变更时的马达扭矩变更时机同义)早所述所需的时间的量的变更前时机即发动机扭矩变更时机。
[0056]
此外,如上所述,执行扭矩降低时的种类有点火时机的延迟、节气门开度信号的变更、气缸的停用、燃油切断等种类,并且还取决于发动机2的机型,例如,点火时机的延迟与其他种类相比,上述所需的时间较短(所谓的响应快),而燃油切断、节气门开度信号的变更、气缸的停用的上述所需的时间较长。另外,执行扭矩增加时的种类有节气门开度信号的变更、燃料喷射量的增大,并且还取决于发动机2的机型,例如,燃料喷射量的增大与其他种类相比,上述所需的时间较短,而节气门开度信号的变更的上述所需的时间较长。
[0057]
接着,判定是否是上述步骤s11中运算的发动机扭矩变更时机(s12),若还不是发动机扭矩变更时机(s12中的“否”),则返回到上述步骤s2,重新进行输入扭矩变更量和变更时机的运算、马达状态的获取、马达扭矩可变更量的运算、发动机扭矩变更量的运算、发动
机扭矩变更时机的运算。由此,在做出变速判断后,到实际到达发动机扭矩变更时机为止,随时运算马达扭矩可变更量是否小于输入扭矩变更量,能够应对马达状态发生变化的情况。然后,在到达发动机扭矩变更时机时(s12中的“是”),tcu31向hv

ecu60输出发动机扭矩信号tesig1(s13)。
[0058]
另外,在向hv

ecu60输出发动机扭矩信号tesig1之后,tcu31判定在上述步骤s10中运算发动机扭矩变更量时是否存在马达扭矩的变更量(s14),即,判定是仅通过发动机2的扭矩变更来进行扭矩降低或扭矩增加,还是通过发动机2和马达mg的扭矩变更来进行。在没有马达扭矩的变更量时(s14中的“否”),即,仅通过发动机2来进行扭矩变更时,变速结束为止一直待机(s8中的“否”),若判断出变速结束(s8中的“是”),则逐渐地恢复通过基于发动机扭矩信号tesig1的发动机2的扭矩变更执行的扭矩变更量,即,执行使扭矩降低或扭矩增加以规定的梯度平稳变化并结束的输入扭矩恢复控制(s9),由此,发动机2的变速控制中的扭矩变更控制结束。
[0059]
另一方面,在上述步骤s14中,在判定出存在马达的扭矩变更量时(s14中的“是”),即,通过发动机2和马达mg来进行扭矩变更时,到达马达扭矩的变更时机为止进行待机(s15中的“否”),若到达马达扭矩的变更时机(s15中的“是”),则执行马达扭矩变更控制(s16),在该马达扭矩变更控制中,通过向hv

ecu60输出马达扭矩信号tmgsig1,以由上述发动机扭矩变更量和马达扭矩的变更量变为上述输入扭矩变更量,来与发动机2合作进行马达mg的扭矩降低或扭矩增加。并且,变速结束为止一直待机(s8中的“否”),若判断出变速结束(s8中的“是”),则使发动机2的扭矩变更量和马达mg的扭矩变更量逐渐恢复,即,执行使扭矩降低或扭矩增加以规定的梯度平稳变化并结束的输入扭矩恢复控制(s9),由此,发动机2和马达mg的变速控制中的扭矩变更控制结束。
[0060]
[马达的扭矩降低的行驶例]
[0061]
接着,作为扭矩变更控制的一例,利用图6来说明在从前进2挡向前进3挡的连接动力升挡变速的变速控制中由马达mg执行扭矩降低的情况。
[0062]
当变速机构5处于前进2挡时,第一离合器c1和第一制动器b1接合,而第三离合器c3分离,因此,第一制动器b1的接合压p
b1
处于供给的状态,而第三离合器c3的接合压p
c3
处于未供给的状态。另外,向hv

ecu60的马达扭矩信号tmgsig1以变为用于输出与油门开度相对应的驱动力的马达扭矩的方式输出。
[0063]
随着车辆的车速提高,输入轴12的转速nin上升,在时刻t21,tcu31根据车速和节气门开度,判断向前进3挡的升挡变速(s1中的“是”)。然后,在上述变速控制中的扭矩变更控制中,基于输入轴12的转速nin,运算惯性相中的惯性扭矩,并运算作为扭矩降低量的输入扭矩变更量detr和变更时机(时刻t25)(s2)。另外,获取马达状态(s3),并且还运算马达扭矩可变更量(s4)。在该行驶例中,由于马达扭矩可变更量大于输入扭矩变更量(s5中的“否”),因此,到达马达扭矩的变更时机为止进行待机(s6中的“否”)。
[0064]
另一方面,在时刻t22开始变速控制,第一制动器b1的接合压pb1降低,第三离合器c3的接合压p
c3
因快速充油指令以使油压伺服器消隙(backlash elimination)而上升,在时刻t23,快速充油指令结束,从而第三离合器c3的接合压p
c3
暂时下降。之后,第一制动器b1的接合压p
b1
进一步降低,并且第三离合器c3的接合压p
c3
上升,从而第一制动器b1分离,并且第三离合器c3打滑接合,从而成为第一制动器b1所分担的扭矩传递转移到第三离合器c3的
分担的扭矩相。然后,在时刻t25,第三离合器c3的接合压p
c3
逐渐上升,从而第三离合器c3的打滑接合中的打滑量减少,由此,变速机构5的变速比发生变化的惯性相开始。
[0065]
然后,tcu31判定为是马达扭矩变更时机(s6),执行马达扭矩变更控制(s7),以通过马达扭矩信号tmgsig1逐渐平稳降低马达扭矩而变成实现上述运算出的输入扭矩变更量detr的目标输入扭矩tintrg。
[0066]
之后,进行实际的变速,当利用未图示的输入轴转速传感器等检测到输入轴12的转速nin变为基于前进3挡的变速比的变速后的目标转速nintrg时,在时刻t26,判断为变速结束(s8中的“是”),第三离合器c3的接合压p
c3
上升至完全接合压,从前进2挡向前进3挡的升挡变速完成。然后,执行输入扭矩恢复控制(s9),在该输入扭矩恢复控制中,使目标输入扭矩tintrg逐渐地平稳上升(sweep up),与之相应地,马达扭矩信号tmgsig1也逐渐地平稳上升,由此,变速控制中的扭矩变更控制结束。
[0067]
[发动机的扭矩降低的行驶例]
[0068]
接着,作为扭矩变更控制的一例,利用图5来说明在从前进2挡向前进3挡的连接动力升挡变速的变速控制中,马达mg因马达状态(例如,电池50处于充满电状态即无法再生的状态)而无法使用,通过发动机2执行扭矩降低的情况。
[0069]
同样地,当变速机构5处于前进2挡时,第一离合器c1和第一制动器b1接合,而第三离合器c3分离,因此,第一制动器b1的接合压p
b1
处于供给的状态,而第三离合器c3的接合压p
c3
处于未供给的状态。另外,向hv

ecu60的马达扭矩信号tmgsig1以变为用于输出与油门开度相对应的驱动力的马达扭矩的方式输出。
[0070]
车辆的车速提高,并且输入轴12的转速nin上升,在时刻t11,tcu31根据车速和节气门开度,判断为向前进3挡的升挡变速(s1中的“是”)。然后同样地,在上述变速控制中的扭矩变更控制中,基于输入轴12的转速nin,运算惯性相中的惯性扭矩,并运算作为扭矩降低量的输入扭矩变更量detr和变更时机(时刻t15)(s2)。另外,获取马达状态(s3),并且还运算马达扭矩可变更量(s4)。在该行驶例中,马达扭矩可变更量为0,马达扭矩可变更量小于输入扭矩变更量(s5中的“是”),因此,运算发动机扭矩变更量(s10),进而运算发动机扭矩变更时机(s11),到达发动机扭矩变更时机为止进行待机(s12中的“否”)。
[0071]
另一方面,在时刻t12,开始变速控制,第一制动器b1的接合压p
b1
降低,第三离合器c3的接合压p
c3
通过快速充油指令而上升,在时刻t13,快速充油指令结束,由此第三离合器c3的接合压p
c3
暂时下降。之后,第一制动器b1的接合压p
b1
进一步降低,并且第三离合器c3的接合压p
c3
上升,由此第一制动器b1分离,并且第三离合器c3打滑接合,从而成为第一制动器b1所分担的扭矩传递转移到第三离合器c3的分担的扭矩相。
[0072]
在该扭矩相之间的时刻t14,若到达比作为惯性相的开始时机的时刻t15提前发动机扭矩的变更所需的时间ta的量的发动机扭矩变更时机(s12中的“是”),则tcu31向发动机2输出指令(s13),以例如通过发动机扭矩信号tesig1,利用点火时机的延迟使发动机扭矩变更量变为输入扭矩变更量detr。另一方面,在时刻t15,第三离合器c3的接合压p
c3
逐渐上升,从而第三离合器c3的打滑接合中的打滑量减少,由此变速机构5的变速比发生变化的惯性相开始。
[0073]
另外,在时刻t15,如上所述,已经指示发动机扭矩信号tesig1,因此发动机2的扭矩实际开始平稳下降(sweep down),并且使时机与实现上述运算出的输入扭矩变更量detr
的目标输入扭矩tintrg一致地执行发动机2的扭矩降低。此外,在该行驶例中,由于没有马达扭矩变更量(s14中的“否”),因此输出发动机扭矩信号tesig1以使发动机2的扭矩降低持续到变速结束为止,但是与惯性相的结束即变速结束一致地向发动机2指示发动机扭矩信号tesig1的平稳上升,以开始结束发动机2的扭矩降低。
[0074]
之后,进行实际的变速,当利用未图示的输入轴转速传感器等检测到输入轴12的转速nin达到基于前进3挡的变速比的变速后的目标转速nintrg时,在时刻t16,判断为变速结束(s8中的“是”),第三离合器c3的接合压p
c3
上升至完全接合压,从前进2挡向前进3挡的升挡变速完成。然后,执行输入扭矩恢复控制(s9),使目标输入扭矩tintrg逐渐地平稳上升,但是发动机扭矩信号tesig1在其之前以平稳上升的方式输出,由此发动机2的输出扭矩实际上也逐渐地平稳上升,由此,变速控制中的扭矩变更控制结束。
[0075]
这样,通过在比输入扭矩变更时机(即通过马达mg进行扭矩变更时的马达扭矩变更时机)提前发动机2变更扭矩所需的时间ta的量的发动机扭矩变更时机,向hv

ecu60输出发动机扭矩信号tesig1,能够在作为惯性相的开始时机的输入扭矩变更时机,变更作用于变速机构5的发动机扭矩,从而能够降低变速的延迟、对变速感觉的影响。
[0076]
[本实施方式的总结]
[0077]
本发明的混合动力驱动装置(1),包括:
[0078]
变速机构(5),具有与发动机(2)驱动连接的输入构件(12)和与车轮(9)驱动连接的输出构件(15),执行用于变更所述输入构件(12)和所述输出构件(15)之间的变速比的变速控制;
[0079]
旋转电机(mg),与所述变速机构(5)驱动连接;以及
[0080]
控制部(31),在所述变速机构(5)的变速控制中,运算变更作用于所述变速机构(5)的驱动力的变更时机和变更量,在通过所述旋转电机(mg)能够变更所述变更量(detr)的驱动力时,控制所述旋转电机(mg)以使所述旋转电机(mg)的驱动力变更所述变更量(detr),并且在通过所述旋转电机(mg)无法变更所述变更量(detr)的驱动力时,向所述发动机(2)输出用于变更驱动力的发动机指令信号(tesig1),
[0081]
所述控制部(31)在通过所述旋转电机(mg)无法变更所述变更量(detr)的驱动力时,在比通过所述旋转电机(mg)能够变更所述变更量(detr)的驱动力时变更所述旋转电机(mg)的驱动力的变更时机(t15)更早的变更前时机(t14),向所述发动机(2)输出所述发动机指令信号(tesig1)。
[0082]
由此,在通过马达mg无法变更输入扭矩变更量的马达扭矩时,在比通过马达mg能够变更输入扭矩变更量时变更马达mg的驱动力的输入扭矩变更时机更早的发动机扭矩变更时机,向发动机2输出发动机扭矩信号tesig1,因此,通过发动机2能够在运算出的输入扭矩变更时机变更作用于变速机构5的输入扭矩,从而能够降低变速的延迟、对变速感觉的影响。
[0083]
另外,在本发明的混合动力驱动装置(1)中,
[0084]
所述控制部(31)在通过所述旋转电机(mg)能够变更所述变更量(detr)的驱动力时,在所述变更时机(t15)向所述旋转电机(mg)输出用于变更驱动力的旋转电机指令信号(tmgsig1),以使所述旋转电机(mg)的驱动力变更所述变更量(detr),
[0085]
在通过所述旋转电机(mg)无法变更所述变更量(detr)的驱动力时,在比输出所述
旋转电机指令信号(tmgsig1)的所述变更时机(t15)更早的所述变更前时机(t14),向所述发动机(2)输出所述发动机指令信号(tesig1)。
[0086]
由此,在通过马达mg无法变更输入扭矩变更量的马达扭矩时,在比通过马达mg能够变更输入扭矩变更量时输出马达扭矩信号tmgsig1的输入扭矩变更时机更早的发动机扭矩变更时机,向发动机2输出发动机扭矩信号tesig1,因此,通过发动机2能够在运算的输入扭矩变更时机变更作用于变速机构5的输入扭矩,从而能够降低变速的延迟、对变速感觉的影响。
[0087]
另外,在本混合动力驱动装置(1)中,
[0088]
所述控制部是第一控制部(31),
[0089]
所述旋转电机指令信号是第一旋转电机指令信号(tmgsig1),
[0090]
所述发动机指令信号是第一发动机指令信号(tesig1),
[0091]
所述第一控制部(31)能够向第四控制部(60)输出所述第一旋转电机指令信号(tmgsig1)和所述第一发动机指令信号(tesig1),所述第四控制部(60)向输出用于控制所述旋转电机(mg)的驱动的旋转电机驱动信号(mgcd)的第二控制部(70)输出第二旋转电机指令信号(tmgsig2),并且向输出用于控制所述发动机(2)的驱动的发动机驱动信号(egcd)的第三控制部(80)输出第二发动机指令信号(tesig2),
[0092]
在通过所述旋转电机(mg)无法变更所述变更量(detr)的驱动力时,在比通过所述旋转电机(mg)能够变更所述变更量(detr)的驱动力时从所述第二控制部(70)向所述旋转电机(mg)输出用于变更驱动力的旋转电机驱动信号(mgcd)的输出时机更早的输出前时机,从所述第三控制部(80)向所述发动机(2)输出用于变更驱动力的发动机驱动信号(egcd)。
[0093]
由此,在通过马达mg无法变更输入扭矩变更量的马达扭矩时,在比通过马达mg能够变更输入扭矩变更量时从马达控制部70输出马达命令信号mgcd的马达命令输出时机更早的发动机命令输出时机,向发动机2输出发动机命令信号egcd,因此,通过发动机2能够在运算出的输入扭矩变更时机变更作用于变速机构5的输入扭矩,从而能够降低变速的延迟、对变速感觉的影响。
[0094]
另外,在本混合动力驱动装置(1)中,所述变更前时机(t14)比在通过所述旋转电机(mg)能够变更所述变更量(detr)的驱动力时变更所述旋转电机(mg)的驱动力的变更时机(t14),提前所述发动机(2)变更驱动力所需的时间(ta)的量。
[0095]
由此,通过发动机2能够在运算出的输入扭矩变更时机变更作用于变速机构5的输入扭矩。
[0096]
另外,在本混合动力驱动装置(1)中,所述控制部(31)在所述变速机构(5)的变速控制中,随时运算通过所述旋转电机(mg)是否能够变更所述变更量(detr)的驱动力,在所述变更前时机(t14),判定通过所述旋转电机(mg)无法变更所述变更量(detr)的驱动力。
[0097]
由此,随时运算通过马达mg是否能够进行输入扭矩变更量detr的扭矩变更,即运算马达扭矩可变更量且随时运算是否小于输入扭矩变更量,因此,能够在发动机扭矩变更时机,判断出通过马达mg无法变更输入扭矩变更量detr,即能够在比输入扭矩变更时机更早的发动机扭矩变更时机,向发动机2输出发动机扭矩信号的变更。
[0098]
另外,在本混合动力驱动装置(1)中,所述控制部判断所述发动机进行驱动力变更时的种类,并根据所述种类,使所述变更前时机(t14)不同。
[0099]
由此,通过根据发动机2进行扭矩变更时的种类来使发动机扭矩变更时机不同,无论发动机2的扭矩变更怎样进行,也能够使发动机扭矩的实际的变更与输入扭矩变更时机一致。
[0100]
并且,在本混合动力驱动装置(1)中,
[0101]
所述变速机构(5)具有齿轮机构(dp、pu)和变更所述齿轮机构(dp、pu)的传递路径的多个摩擦接合构件(c1、c2、c3、b1、b2),通过切换多个所述摩擦接合构件(c1、c2、c3、b1、b2)中的至少两个,来执行所述变速控制,
[0102]
所述变更时机(t15)是所述变速控制中的产生旋转变化的惯性相的开始时,
[0103]
所述变更前时机(t14)在所述惯性相的开始之前。
[0104]
由此,通过发动机2的扭矩变更,可以没有延迟地吸收在变速机构5的变速控制中产生的惯性扭矩。
[0105]
[其他实施方式的可能性]
[0106]
此外,在以上说明的本实施方式中,以利用变速机构5来对发动机2和马达mg的驱动旋转进行变速的所谓的并联式混合动力驱动装置1作为混合动力驱动装置的一例进行了说明,但不限于此,只要是将发动机的驱动旋转作为输入旋转进行变速的变速机构和通过马达能够进行作用于变速机构的扭矩的扭矩变更的混合动力驱动装置,则可以是任意的混合动力驱动装置。例如,可以是马达与变速机构的输出轴驱动连接的结构,尤其可以是具有两个以上马达的结构,即,对发动机和马达的输出旋转进行变速,并且利用其它马达进行变速机构的输出轴的扭矩变更的结构。
[0107]
另外,在本实施方式中,说明了tcu31在变更发动机2、马达mg的输出扭矩时,运算发动机扭矩和马达扭矩,生成并输出发动机扭矩信号tesig1、马达扭矩信号tmgsig1,但不限于此,例如,tcu31可以指示hv

ecu60,以变更发动机2和马达mg的合计扭矩,并且由hv

ecu60运算发动机扭矩和马达扭矩,从而生成并输出发动机扭矩信号或马达扭矩信号。
[0108]
另外,在本实施方式中,说明了比通过马达mg进行驱动力的变更的情况提前发动机2变更扭矩所需的时间ta的量,向发动机2输出发动机扭矩信号tesig,但不限于此,只要能够比通过马达mg进行驱动力的变更的情况稍早输出发动机扭矩信号tesig1,就可以稍微降低变速的延迟、对变速感觉的影响。
[0109]
另外,在本实施方式中,说明了可以由马达和发动机合作来进行扭矩降低和扭矩增加,但是也可以在仅利用马达无法进行扭矩降低和扭矩增加时,通过切换到仅利用发动机来执行扭矩降低和扭矩增加。
[0110]
另外,在本实施方式中,说明了基于马达状态随时运算马达扭矩可变更量,但不限于此,也可以在变速开始时(变速判断时),先确定是通过马达来执行扭矩变更,还是通过发动机来执行扭矩变更,或者还是通过马达和发动机的合作来执行扭矩变更,然后在变速控制中执行。
[0111]
另外,在本实施方式中,说明了在做出变速判断之后基于马达状态运算马达扭矩可变更量,但是就混合动力车辆而言,还可以在通常行驶中随时监视电池的状态、马达的状态,运算发动机和马达的驱动力的分配,因此可以基于这些信息,与变速开始无关地运算马达扭矩可变更量。
[0112]
另外,在本实施方式中,说明了变速机构5是有级变速机构,在摩擦接合构件的切
换变速中的惯性相,进行扭矩降低和扭矩增加,但不限于此,即使是无级变速机构,也可以进行扭矩变更以吸收因变速而产生的惯性扭矩,而且不限于惯性扭矩,可以为了抑制变速冲击或发动机突然加速而进行扭矩降低和扭矩增加。
[0113]
工业上的可利用性
[0114]
本混合动力驱动装置可应用于搭载在车辆的混合动力驱动装置,尤其适用于,即使在通过旋转电机无法变更变更量的驱动力的情况下,也要求防止变速延迟或要求防止变速感觉受到影响的装置。
[0115]
附图标记的说明
[0116]
1:混合动力驱动装置
[0117]
2:发动机
[0118]
5:变速机构
[0119]
9:车轮
[0120]
12:输入构件(输入轴)
[0121]
15:输出构件(输出轴)
[0122]
31:控制部、第一控制部(tcu)
[0123]
60:第四控制部(hv

ecu)
[0124]
70:第二控制部(mcu)
[0125]
80:第三控制部(ecu)
[0126]
mg:旋转电机(马达)
[0127]
ta:所需的时间
[0128]
t14:变更前时机
[0129]
t15:变更时机
[0130]
detr:变更量(输入扭矩变更量)
[0131]
dp:齿轮机构(行星齿轮)
[0132]
pu:齿轮机构(行星齿轮单元)
[0133]
c1:摩擦接合构件(第一离合器)
[0134]
c2:摩擦接合构件(第二离合器)
[0135]
c3:摩擦接合构件(第三离合器)
[0136]
b1:摩擦接合构件(第一制动器)
[0137]
b2:摩擦接合构件(第二制动器)
[0138]
egcd:发动机驱动信号(发动机命令信号)
[0139]
mgcd:旋转电机驱动信号(马达命令信号)
[0140]
tesig1:发动机指令信号、第一发动机指令信号(发动机扭矩信号)
[0141]
tesig2:第二发动机指令信号(发动机扭矩信号)
[0142]
tmgsig1:旋转电机指令信号、第一旋转电机指令信号(马达扭矩信号)
[0143]
tmgsig2:第二旋转电机指令信号(马达扭矩信号)
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献