一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

光学成像镜头的制作方法

2021-11-10 08:45:00 来源:中国专利 TAG:


1.本实用新型涉及光学成像设备技术领域,具体而言,涉及一种光学成像镜头。


背景技术:

2.随着科技的不断发展,人们的安全意识也在不断提高,越来越多的地方会用到安防监控,对于相应的光学成像设备的要求也越来越高。由于安防监控领域所用到的光学成像镜头对于有限拍摄范围内拍到对象有着较高的要求,因此更多时候人们会选择使用视场角较大的广角镜头。广角镜头又称短镜头,基本特点是视角较大、视野较为宽阔,从某一视点观察到的景物范围要比人眼在同一视点所看到的大得多;景深长,可以表现出相当大的清晰范围,能强调画面的透视效果。由于在安防领域所采用的光学成像镜头需要满足各种应用场合,这样就决定了人们对于光学成像镜头的视场角、分辨率和环境适应能力等性能要求越来越严格。
3.也就是说,现有技术中的光学成像镜头存在光学性能差的问题。


技术实现要素:

4.本实用新型的主要目的在于提供一种光学成像镜头,以解决现有技术中的光学成像镜头存在光学性能差的问题。
5.为了实现上述目的,根据本实用新型的一个方面,提供了一种光学成像镜头,沿光轴由物侧至像侧依次包括:第一透镜;第二透镜;具有正光焦度的第三透镜,第三透镜的像侧面为凸面;具有正光焦度的第四透镜;第五透镜;第六透镜;具有负光焦度的第七透镜;光学成像镜头的最大视场角的一半semi

fov满足:70
°
<semi

fov<90
°
;第一透镜至第七透镜中折射率的最大值namx满足:namx>1.7;第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间满足:0.5<(t34 t45)/ct4<1.0;第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6之间满足:0<(r1 r6)/(r1

r6)<1.0。
6.进一步地,第一透镜的折射率n1、第三透镜的折射率n3和第五透镜的折射率n5之间满足:0.4<n3/(n1 n5)<0.7。
7.进一步地,第一透镜的色散系数v1、第二透镜的色散系数v2、第三透镜的色散系数v3和第五透镜的色散系数v5之间满足:0.3<(v2

v3)/(v1

v5)<0.7。
8.进一步地,第四透镜、第五透镜和第六透镜的组合焦距f456、第二透镜和第三透镜的组合焦距f23之间满足:0.3<f456/f23<1.3。
9.进一步地,第六透镜在光轴上的中心厚度ct6、第七透镜在光轴上的中心厚度ct7和光学成像镜头的有效焦距f之间满足:0.5<(ct6 ct7)/f<1.0。
10.进一步地,光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间满足:0.6<2
×
epd/(dt32 dt41)。
11.进一步地,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径的顶
点之间的轴上距离sag12和第一透镜的边缘厚度et1之间满足:0<sag12/et1<1.0。
12.进一步地,第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径的顶点之间的轴上距离sag52和第五透镜的边缘厚度et5之间满足:0<sag52/et5<0.5。
13.进一步地,第二透镜的边缘厚度et2、第七透镜的边缘厚度et7、第二透镜的像侧面的最大有效半径dt22、第七透镜的像侧面的最大有效半径dt72之间满足:0.5<et2/dt22 et7/dt72<1.5。
14.进一步地,第四透镜的物侧面的曲率半径r7、第四透镜的像侧面的曲率半径r8、第六透镜的物侧面的曲率半径r11和第六透镜的像侧面的曲率半径r12之间满足:0.2<(r7

r8)/(r11

r12)<0.7。
15.进一步地,第一透镜的像侧面的曲率半径r2、第五透镜的像侧面的曲率半径r10、第一透镜的有效焦距f1和第五透镜的有效焦距f5之间满足:

2.0<r2/f1 r10/f5<

1.0。
16.进一步地,第三透镜的有效焦距f3、第六透镜的有效焦距f6和第七透镜的有效焦距f7之间满足:0<f6/(f3

f7)<1.0。
17.进一步地,第一透镜具有负光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;第四透镜的物侧面为凸面,第四透镜的像侧面为凸面;第五透镜具有负光焦度,第五透镜的像侧面为凹面;第六透镜具有正光焦度,第六透镜的物侧面为凸面,第六透镜的像侧面为凸面;第七透镜的像侧面为凹面。
18.进一步地,光学成像镜头的工作波段λ大于等于400纳米且小于等于900纳米。
19.进一步地,第一透镜至第七透镜中至少一个透镜为非球面透镜。
20.根据本实用新型的另一方面,提供了一种光学成像镜头,沿光轴由物侧至像侧依次包括:第一透镜;第二透镜;具有正光焦度的第三透镜,第三透镜的像侧面为凸面;具有正光焦度的第四透镜;第五透镜;第六透镜;具有负光焦度的第七透镜;光学成像镜头的工作波段λ大于等于400纳米且小于等于900纳米;光学成像镜头的最大视场角的一半semi

fov满足:70
°
<semi

fov<90
°
;第一透镜至第七透镜中折射率的最大值namx满足:namx>1.7;第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间满足:0.5<(t34 t45)/ct4<1.0。
21.进一步地,第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6之间满足:0<(r1 r6)/(r1

r6)<1.0;第一透镜的折射率n1、第三透镜的折射率n3和第五透镜的折射率n5之间满足:0.4<n3/(n1 n5)<0.7。
22.进一步地,第一透镜的色散系数v1、第二透镜的色散系数v2、第三透镜的色散系数v3和第五透镜的色散系数v5之间满足:0.3<(v2

v3)/(v1

v5)<0.7。
23.进一步地,第四透镜、第五透镜和第六透镜的组合焦距f456、第二透镜和第三透镜的组合焦距f23之间满足:0.3<f456/f23<1.3。
24.进一步地,第六透镜在光轴上的中心厚度ct6、第七透镜在光轴上的中心厚度ct7和光学成像镜头的有效焦距f之间满足:0.5<(ct6 ct7)/f<1.0。
25.进一步地,光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间满足:0.6<2
×
epd/(dt32 dt41)。
26.进一步地,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径的顶点之间的轴上距离sag12和第一透镜的边缘厚度et1之间满足:0<sag12/et1<1.0。
27.进一步地,第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径的顶点之间的轴上距离sag52和第五透镜的边缘厚度et5之间满足:0<sag52/et5<0.5。
28.进一步地,第二透镜的边缘厚度et2、第七透镜的边缘厚度et7、第二透镜的像侧面的最大有效半径dt22、第七透镜的像侧面的最大有效半径dt72之间满足:0.5<et2/dt22 et7/dt72<1.5。
29.进一步地,第四透镜的物侧面的曲率半径r7、第四透镜的像侧面的曲率半径r8、第六透镜的物侧面的曲率半径r11和第六透镜的像侧面的曲率半径r12之间满足:0.2<(r7

r8)/(r11

r12)<0.7。
30.进一步地,第一透镜的像侧面的曲率半径r2、第五透镜的像侧面的曲率半径r10、第一透镜的有效焦距f1和第五透镜的有效焦距f5之间满足:

2.0<r2/f1 r10/f5<

1.0。
31.进一步地,第三透镜的有效焦距f3、第六透镜的有效焦距f6和第七透镜的有效焦距f7之间满足:0<f6/(f3

f7)<1.0。
32.进一步地,第一透镜具有负光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;第四透镜的物侧面为凸面,第四透镜的像侧面为凸面;第五透镜具有负光焦度,第五透镜的像侧面为凹面;第六透镜具有正光焦度,第六透镜的物侧面为凸面,第六透镜的像侧面为凸面;第七透镜的像侧面为凹面。
33.进一步地,第一透镜至第七透镜中至少一个透镜为非球面透镜。
34.应用本实用新型的技术方案,光学成像镜头沿光轴由物侧至像侧依次包括第一透镜、第二透镜、具有正光焦度的第三透镜、具有正光焦度的第四透镜、第五透镜、第六透镜和具有负光焦度的第七透镜,第三透镜的像侧面为凸面。光学成像镜头的最大视场角的一半semi

fov满足:70
°
<semi

fov<90
°
;第一透镜至第七透镜中折射率的最大值namx满足:namx>1.7;第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间满足:0.5<(t34 t45)/ct4<1.0;第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6之间满足:0<(r1 r6)/(r1

r6)<1.0。
35.通过合理规划第三透镜的面型,使得第三透镜能够调整光线出射角度,使得第三透镜的形状与第二透镜的形状相配合,有利于减小慧差。通过合理规划第四透镜的光焦度,可矫正前方透镜组产生的像差,尤其是场曲。通过合理规划第七透镜的光焦度,能够有效控制光学成像镜头的主光线角度。通过将光学成像镜头的最大视场角的一半semi

fov限制在70
°
到90
°
的范围内,使得光学成像镜头具有广角的特点,能够在突出中央主体和前景的同时,能够得到广泛的背景,可以在较小的环境里,拍到较多的景物。第一透镜至第七透镜中折射率的最大值namx大于1.7,这样设置有助于减小透镜的厚度,有利于控制系统总体长度,从而有利于实现光学成像镜头的小型化,同时也有利于优化成像质量。通过控制第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间的关系式在合理的范围内,有利于结构的合理分配,易于光学成像镜头平衡和矫正各项像差,从而实现较高的成像质量。通过合理限制第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6的关系式,能够有效限制透镜的形状,有利于扩大视场角,同时有利于光学成像镜头像差的平衡,以减小鬼像。
附图说明
36.构成本技术的一部分的说明书附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
37.图1示出了本实用新型的例子一的光学成像镜头的结构示意图;
38.图2和图3分别示出了图1中的光学成像镜头的象散曲线和畸变曲线;
39.图4示出了图1中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
40.图5示出了图1中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
41.图6示出了本实用新型的例子二的光学成像镜头的结构示意图;
42.图7和图8分别示出了图6中的光学成像镜头的象散曲线和畸变曲线;
43.图9示出了图6中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
44.图10示出了图6中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
45.图11示出了本实用新型的例子三的光学成像镜头的结构示意图;
46.图12和图13分别示出了图11中的光学成像镜头的象散曲线和畸变曲线;
47.图14示出了图11中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
48.图15示出了图11中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
49.图16示出了本实用新型的例子四的光学成像镜头的结构示意图;
50.图17和图18分别示出了图16中的光学成像镜头的象散曲线和畸变曲线;
51.图19示出了图16中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
52.图20示出了图16中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
53.图21示出了本实用新型的例子五的光学成像镜头的结构示意图;
54.图22和图23分别示出了图21中的光学成像镜头的象散曲线和畸变曲线;
55.图24示出了图21中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
56.图25示出了图21中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
57.图26示出了本实用新型的例子六的光学成像镜头的结构示意图;
58.图27和图28分别示出了图26中的光学成像镜头的象散曲线和畸变曲线;
59.图29示出了图26中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
60.图30示出了图26中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
61.图31示出了本实用新型的例子七的光学成像镜头的结构示意图;
62.图32和图33分别示出了图31中的光学成像镜头的象散曲线和畸变曲线;
63.图34示出了图31中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
64.图35示出了图31中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图;
65.图36示出了本实用新型的例子八的光学成像镜头的结构示意图;
66.图37和图38分别示出了图36中的光学成像镜头的象散曲线和畸变曲线;
67.图39示出了图36中光学成像镜头在470nm到650nm波段范围内的衍射离焦mtf图;
68.图40示出了图36中的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
69.其中,上述附图包括以下附图标记:
70.sto、光阑;e1、第一透镜;s1、第一透镜的物侧面;s2、第一透镜的像侧面;e2、第二透镜;s3、第二透镜的物侧面;s4、第二透镜的像侧面;e3、第三透镜;s5、第三透镜的物侧面;s6、第三透镜的像侧面;e4、第四透镜;s7、第四透镜的物侧面;s8、第四透镜的像侧面;e5、第五透镜;s9、第五透镜的物侧面;s10、第五透镜的像侧面;e6、第六透镜;s11、第六透镜的物侧面;s12、第六透镜的像侧面;e7、第七透镜;s13、第七透镜的物侧面;s14、第七透镜的像侧面;e8、滤光片;s15、滤光片的物侧面;s16、滤光片的像侧面;s17、成像面。
具体实施方式
71.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
72.需要指出的是,除非另有指明,本技术使用的所有技术和科学术语具有与本技术所属技术领域的普通技术人员通常理解的相同含义。
73.在本实用新型中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本实用新型。
74.为了解决现有技术中的光学成像镜头存在光学性能差的问题,本实用新型提供了一种光学成像镜头。
75.实施例一
76.如图1至图40所示,光学成像镜头沿光轴由物侧至像侧依次包括第一透镜e1、第二透镜e2、具有正光焦度的第三透镜e3、具有正光焦度的第四透镜e4、第五透镜e5、第六透镜e6和具有负光焦度的第七透镜e7,第三透镜的像侧面s6为凸面。光学成像镜头的最大视场角的一半semi

fov满足:70
°
<semi

fov<90
°
;第一透镜至第七透镜中折射率的最大值namx满足:namx>1.7;第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间满足:0.5<(t34 t45)/ct4<1.0;第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6之间满足:0<(r1 r6)/(r1

r6)<1.0。
77.优选地,75.0
°
≤semi

fov≤75.6
°

78.优选地,1.7<namx<1.9。
79.优选地,0.3≤(r1 r6)/(r1

r6)<0.8。
80.通过合理规划第三透镜e3的面型,使得第三透镜e3能够调整光线出射角度,使得第三透镜e3的形状与第二透镜e2的形状相配合,有利于减小慧差。通过合理规划第四透镜e4的光焦度,可矫正前方透镜组产生的像差,尤其是场曲。通过合理规划第七透镜e7的光焦度,能够有效控制光学成像镜头的主光线角度。通过将光学成像镜头的最大视场角的一半semi

fov限制在70
°
到90
°
的范围内,使得光学成像镜头具有广角的特点,能够在突出中央
主体和前景的同时,能够得到广泛的背景,可以在较小的环境里,拍到较多的景物。第一透镜至第七透镜中折射率的最大值namx大于1.7,这样设置有助于减小透镜的厚度,有利于控制系统总体长度,从而有利于实现光学成像镜头的小型化,同时也有利于优化成像质量。通过控制第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间的关系式在合理的范围内,有利于结构的合理分配,易于光学成像镜头平衡和矫正各项像差,从而实现较高的成像质量。通过合理限制第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6的关系式,能够有效限制透镜的形状,有利于扩大视场角,同时有利于光学成像镜头像差的平衡,以减小鬼像。
81.另外,本技术的光学成像镜头为一种可见和红外波段共焦的高性能广角镜头,可以满足日夜两用的安防监控设备的需求。
82.在本实施例中,第一透镜的折射率n1、第三透镜的折射率n3和第五透镜的折射率n5之间满足:0.4<n3/(n1 n5)<0.7。优选地,0.5≤n3/(n1 n5)<0.6。这样设置能够有效矫正光学系统过大的轴向色差,且能保证第一透镜e1具有较小的口径,有利于光学成像镜头的小型化。
83.在本实施例中,第一透镜的色散系数v1、第二透镜的色散系数v2、第三透镜的色散系数v3和第五透镜的色散系数v5之间满足:0.3<(v2

v3)/(v1

v5)<0.7。优选地,0.3<(v2

v3)/(v1

v5)≤0.6。这样设置有利于校正系统色差,减小色散。
84.在本实施例中,第四透镜、第五透镜和第六透镜的组合焦距f456、第二透镜和第三透镜的组合焦距f23之间满足:0.3<f456/f23<1.3。优选地,0.6<f456/f23≤0.9。这样设置能够将宽的视场角汇聚进光学成像镜头,并降低光学成像镜头的公差敏感性。
85.在本实施例中,第六透镜在光轴上的中心厚度ct6、第七透镜在光轴上的中心厚度ct7和光学成像镜头的有效焦距f之间满足:0.5<(ct6 ct7)/f<1.0。通过控制此条件式在合理的范围内,使得透镜在结构上易于装配,有利于减小鬼像影响。
86.在本实施例中,光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间满足:0.6<2
×
epd/(dt32 dt41)。优选地,0.7<2
×
epd/(dt32 dt41)<1.0。通过控制光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间的关系式在合理的范围内,有利于提高光学成像镜头的分辨能力,提高进光量,以满足高像质要求。
87.在本实施例中,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径的顶点之间的轴上距离sag12和第一透镜的边缘厚度et1之间满足:0<sag12/et1<1.0。优选地,0.4<sag12/et1<0.8。这样设置有利于提升相对照度。
88.在本实施例中,第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径的顶点之间的轴上距离sag52和第五透镜的边缘厚度et5之间满足:0<sag52/et5<0.5。优选地,0.2<sag52/et5<0.5。满足此条件式有助于光线在光学成像镜头中进行快速过渡,以保证光线传输的稳定性。
89.在本实施例中,第二透镜的边缘厚度et2、第七透镜的边缘厚度et7、第二透镜的像侧面的最大有效半径dt22、第七透镜的像侧面的最大有效半径dt72之间满足:0.5<et2/dt22 et7/dt72<1.5。优选地,0.8<et2/dt22 et7/dt72<1.5。满足此条件式有利于光学成像
镜头的结构的合理分配,提高可加工性。
90.在本实施例中,第四透镜的物侧面的曲率半径r7、第四透镜的像侧面的曲率半径r8、第六透镜的物侧面的曲率半径r11和第六透镜的像侧面的曲率半径r12之间满足:0.2<(r7

r8)/(r11

r12)<0.7。优选地,0.3<(r7

r8)/(r11

r12)<0.6。满足此条件式能够有效限制第四透镜e4和第六透镜e6的形状,提升制造良率,可降低透镜单元在组立过程中产生的倾斜、偏芯等公差敏感度的问题。
91.在本实施例中,第一透镜的像侧面的曲率半径r2、第五透镜的像侧面的曲率半径r10、第一透镜的有效焦距f1和第五透镜的有效焦距f5之间满足:

2.0<r2/f1 r10/f5<

1.0。优选地,

1.5<r2/f1 r10/f5<

1.2。这样设置有利于限制第一透镜e1和第五透镜e5的形状,以保证第一透镜e1和第五透镜e5的结构合理性。
92.在本实施例中,第三透镜的有效焦距f3、第六透镜的有效焦距f6和第七透镜的有效焦距f7之间满足:0<f6/(f3

f7)<1.0。优选地,0.3≤f6/(f3

f7)<0.6。满足此条件式有利于光焦度的合理分配,同时有利于光学成像镜头的像差平衡。
93.在本实施例中,第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面;第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面;第五透镜e5具有负光焦度,第五透镜的像侧面s10为凹面;第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面;第七透镜的像侧面s14为凹面。这样设置可以实现透镜的正负光焦度分离,有利于校正匹兹凡像面弯曲,以提升成像质量。
94.在本实施例中,光学成像镜头的工作波段λ大于等于400纳米且小于等于900纳米。这样设置使得光学成像镜头能够满足日夜两用的需求,以提高通用性。
95.在本实施例中,第一透镜e1至第七透镜e7中至少一个透镜为非球面透镜。优选地,第一透镜e1和第三透镜e3为非球面透镜。非球面透镜的特点是由透镜的中心到透镜的边缘,曲率是连续变化的。与由透镜中心到透镜边缘有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升光学成像镜头的成像质量,同时可以提高温度稳定性。
96.实施例二
97.光学成像镜头沿光轴由物侧至像侧依次包括第一透镜e1、第二透镜e2、具有正光焦度的第三透镜e3、具有正光焦度的第四透镜e4、第五透镜e5、第六透镜e6和具有负光焦度的第七透镜e7,第三透镜的像侧面s6为凸面。光学成像镜头的工作波段λ大于等于400纳米且小于等于900纳米;光学成像镜头的最大视场角的一半semi

fov满足:70
°
<semi

fov<90
°
;第一透镜至第七透镜中折射率的最大值namx满足:namx>1.7;第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间满足:0.5<(t34 t45)/ct4<1.0。
98.优选地,75.0
°
≤semi

fov≤75.6
°

99.优选地,1.7<namx<1.9。
100.通过合理规划第三透镜e3的面型,使得第三透镜e3能够调整光线出射角度,使得第三透镜e3的形状与第二透镜e2的形状相配合,有利于减小慧差。通过合理规划第四透镜e4的光焦度,可矫正前方透镜组产生的像差,尤其是场曲。通过合理规划第七透镜e7的光焦
度,能够有效控制光学成像镜头的主光线角度。通过将光学成像镜头的最大视场角的一半semi

fov限制在70
°
到90
°
的范围内,使得光学成像镜头具有广角的特点,能够在突出中央主体和前景的同时,能够得到广泛的背景,可以在较小的环境里,拍到较多的景物。第一透镜至第七透镜中折射率的最大值namx大于1.7,这样设置有助于减小透镜的厚度,有利于控制系统总体长度,从而有利于实现光学成像镜头的小型化,同时也有利于优化成像质量。通过控制第三透镜和第四透镜在光轴上的空气间隔t34、第四透镜和第五透镜在光轴上的空气间隔t45和第四透镜在光轴上的中心厚度ct4之间的关系式在合理的范围内,有利于结构的合理分配,易于光学成像镜头平衡和矫正各项像差,从而实现较高的成像质量。通过将光学成像镜头的工作波段λ限制在400纳米到900纳米的范围内,使得光学成像镜头能够满足日夜两用的需求,以提高通用性。
101.另外,本技术的光学成像镜头为一种可见和红外波段共焦的高性能广角镜头,可以满足日夜两用的安防监控设备的需求。
102.在本实施例中,第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6之间满足:0<(r1 r6)/(r1

r6)<1.0。优选地,0.3≤(r1 r6)/(r1

r6)<0.8。通过合理限制第一透镜的物侧面的曲率半径r1和第三透镜的像侧面的曲率半径r6的关系式,能够有效限制透镜的形状,有利于扩大视场角,同时有利于光学成像镜头像差的平衡,以减小鬼像。
103.在本实施例中,第一透镜的折射率n1、第三透镜的折射率n3和第五透镜的折射率n5之间满足:0.4<n3/(n1 n5)<0.7。优选地,0.5≤n3/(n1 n5)<0.6。这样设置能够有效矫正光学系统过大的轴向色差,且能保证第一透镜e1具有较小的口径,有利于光学成像镜头的小型化。
104.在本实施例中,第一透镜的色散系数v1、第二透镜的色散系数v2、第三透镜的色散系数v3和第五透镜的色散系数v5之间满足:0.3<(v2

v3)/(v1

v5)<0.7。优选地,0.3<(v2

v3)/(v1

v5)≤0.6。这样设置有利于校正系统色差,减小色散。
105.在本实施例中,第四透镜、第五透镜和第六透镜的组合焦距f456、第二透镜和第三透镜的组合焦距f23之间满足:0.3<f456/f23<1.3。优选地,0.6<f456/f23≤0.9。这样设置能够将宽的视场角汇聚进光学成像镜头,并降低光学成像镜头的公差敏感性。
106.在本实施例中,第六透镜在光轴上的中心厚度ct6、第七透镜在光轴上的中心厚度ct7和光学成像镜头的有效焦距f之间满足:0.5<(ct6 ct7)/f<1.0。通过控制此条件式在合理的范围内,使得透镜在结构上易于装配,有利于减小鬼像影响。
107.在本实施例中,光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间满足:0.6<2
×
epd/(dt32 dt41)。优选地,0.7<2
×
epd/(dt32 dt41)<1.0。通过控制光学成像镜头的入瞳直径epd、第三透镜的像侧面的最大有效半径dt32和第四透镜的物侧面的最大有效半径dt41之间的关系式在合理的范围内,有利于提高光学成像镜头的分辨能力,提高进光量,以满足高像质要求。
108.在本实施例中,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径的顶点之间的轴上距离sag12和第一透镜的边缘厚度et1之间满足:0<sag12/et1<1.0。优选地,0.4<sag12/et1<0.8。这样设置有利于提升相对照度。
109.在本实施例中,第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径的顶点之间的轴上距离sag52和第五透镜的边缘厚度et5之间满足:0<sag52/et5<0.5。优选
地,0.2<sag52/et5<0.5。满足此条件式有助于光线在光学成像镜头中进行快速过渡,以保证光线传输的稳定性。
110.在本实施例中,第二透镜的边缘厚度et2、第七透镜的边缘厚度et7、第二透镜的像侧面的最大有效半径dt22、第七透镜的像侧面的最大有效半径dt72之间满足:0.5<et2/dt22 et7/dt72<1.5。优选地,0.8<et2/dt22 et7/dt72<1.5。满足此条件式有利于光学成像镜头的结构的合理分配,提高可加工性。
111.在本实施例中,第四透镜的物侧面的曲率半径r7、第四透镜的像侧面的曲率半径r8、第六透镜的物侧面的曲率半径r11和第六透镜的像侧面的曲率半径r12之间满足:0.2<(r7

r8)/(r11

r12)<0.7。优选地,0.3<(r7

r8)/(r11

r12)<0.6。满足此条件式能够有效限制第四透镜e4和第六透镜e6的形状,提升制造良率,可降低透镜单元在组立过程中产生的倾斜、偏芯等公差敏感度的问题。
112.在本实施例中,第一透镜的像侧面的曲率半径r2、第五透镜的像侧面的曲率半径r10、第一透镜的有效焦距f1和第五透镜的有效焦距f5之间满足:

2.0<r2/f1 r10/f5<

1.0。优选地,

1.5<r2/f1 r10/f5<

1.2。这样设置有利于限制第一透镜e1和第五透镜e5的形状,以保证第一透镜e1和第五透镜e5的结构合理性。
113.在本实施例中,第三透镜的有效焦距f3、第六透镜的有效焦距f6和第七透镜的有效焦距f7之间满足:0<f6/(f3

f7)<1.0。优选地,0.3≤f6/(f3

f7)<0.6。满足此条件式有利于光焦度的合理分配,同时有利于光学成像镜头的像差平衡。
114.在本实施例中,第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面;第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面;第五透镜e5具有负光焦度,第五透镜的像侧面s10为凹面;第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面;第七透镜的像侧面s14为凹面。这样设置可以实现透镜的正负光焦度分离,有利于校正匹兹凡像面弯曲,以提升成像质量。
115.在本实施例中,第一透镜e1至第七透镜e7中至少一个透镜为非球面透镜。优选地,第一透镜e1和第三透镜e3为非球面透镜。非球面透镜的特点是由透镜的中心到透镜的边缘,曲率是连续变化的。与由透镜中心到透镜边缘有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升光学成像镜头的成像质量,同时可以提高温度稳定性。
116.上述光学成像镜头还可包括至少一个光阑sto,以提升光学成像镜头的成像质量。可选地,光阑sto可设置在第三透镜e3与第四透镜e4之间。可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片e8和/或用于保护位于成像面上的感光元件的保护玻璃。
117.在本技术中的光学成像镜头可采用多片透镜,例如上述的七片。通过合理分配各透镜的光焦度、面形、各透镜的中心厚度以及各透镜之间的轴上距离等,可有效增大光学成像镜头的孔径、降低光学成像镜头的敏感度并提高光学成像镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于智能手机等便携式电子设备。上述的光学成像镜头还具有孔径大。超薄、成像质量佳的优点,能够满足智能电子产品微型化的需求。
118.在本技术中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面
透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
119.然而,本领域技术人员应当理解,在未背离本技术要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是光学成像镜头不限于包括七个透镜。如需要,该光学成像镜头还可包括其它数量的透镜。
120.下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体面型、参数的举例。需要说明的是,下述的例子一至例子八中的任何一个例子均适用于本技术的所有实施例。
121.例子一
122.如图1至图5所示,描述了本技术例子一的光学成像镜头。图1示出了例子一的光学成像镜头的结构示意图。
123.如图1所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
124.第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凹面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凸面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凸面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
125.在本例子中,光学成像镜头的总有效焦距f为2.48mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为11mm,光学成像镜头的最大视场角的一半semi

fov为75.0
°

126.表1示出了例子一的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0127][0128]
表1
[0129]
在例子一中,第一透镜e1至第七透镜e7中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型可利用但不限于以下非球面公式进行限定:
[0130][0131]
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数;ai是非球面第i

th阶的修正系数。下表2给出了可用于例子一中各非球面镜面s1

s14的高次项系数a4、a6、a8、a10、a12、a14、a16、a18和a20。
[0132]
[0133]
表2
[0134]
图2示出了例子一的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图3示出了例子一的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图4示出了例子一的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图5示出了例子一的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0135]
根据图2至图5可知,例子一所给出的光学成像镜头能够实现良好的成像品质。
[0136]
例子二
[0137]
如图6至图10所示,描述了本技术例子二的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图6示出了例子二的光学成像镜头的结构示意图。
[0138]
如图6所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0139]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凹面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凸面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0140]
在本例子中,光学成像镜头的总有效焦距f为2.26mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为11.00mm,光学成像镜头的最大视场角的一半semi

fov为75.0
°

[0141]
表3示出了例子二的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0142][0143]
表3
[0144]
表4示出了可用于例子二中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0145]
面号a4a6a8a10a12s18.8101e

04

7.0664e

042.1986e

04

2.0439e

05

2.2561e

06s2

4.0077e

03

2.2117e

033.8340e

03

4.8373e

034.0051e

03s3

6.8701e

039.7072e

03

1.6481e

021.5971e

02

9.0069e

03s43.7204e

023.3545e

03

7.2586e

021.1110e

01

9.1202e

02s54.3413e

031.6354e

02

6.8004e

021.0181e

01

8.8579e

02s62.1826e

031.6959e

03

2.4787e

028.3695e

02

1.5161e

01s7

1.2191e

02

2.5886e

029.9093e

02

3.8195e

018.6402e

01s8

1.0777e

011.9729e

01

3.3877e

013.2136e

01

2.8564e

02s9

1.1760e

012.1128e

01

4.7268e

017.3242e

01

7.6742e

01s10

1.8632e

027.7691e

02

8.9568e

021.9767e

027.2131e

02s11

4.1426e

021.0748e

01

1.9469e

013.1536e

01

4.0186e

01s12

2.1127e

02

1.6595e

021.0144e

01

1.7306e

011.7552e

01s13

6.4214e

02

1.0246e

03

2.0119e

032.0208e

02

2.2979e

02s14

7.1418e

03

4.5319e

024.3294e

02

2.3706e

028.4193e

03面号a14a16a18a20a22s16.0409e

07

4.7007e

081.5075e

09

1.4264e

110.0000e 00s2

2.0476e

036.7571e

04

1.3389e

041.1642e

050.0000e 00
s33.1103e

03

6.6354e

048.2225e

05

4.6041e

060.0000e 00s44.5183e

02

1.3389e

022.1773e

03

1.4909e

040.0000e 00s54.7702e

02

1.5552e

022.8050e

03

2.1428e

040.0000e 00s61.6288e

01

1.0253e

013.4855e

02

4.9273e

030.0000e 00s7

1.1991e 009.8667e

01

4.4173e

018.2466e

020.0000e 00s8

3.0505e

013.4556e

01

1.6358e

012.9644e

020.0000e 00s95.0994e

01

1.9207e

013.0393e

023.2163e

040.0000e 00s10

9.4487e

025.3915e

02

1.5239e

021.7171e

030.0000e 00s113.4308e

01

1.7998e

015.2247e

02

6.4392e

030.0000e 00s12

1.1481e

014.8692e

02

1.2898e

021.9375e

03

1.2606e

04s131.2767e

02

4.0892e

037.6826e

04

7.8439e

053.3487e

06s14

1.9898e

033.0980e

04

3.0469e

051.7118e

06

4.1793e

08
[0146]
表4
[0147]
图7示出了例子二的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8示出了例子二的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图9示出了例子二的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图10示出了例子二的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0148]
根据图7至图10可知,例子二所给出的光学成像镜头能够实现良好的成像品质。
[0149]
例子三
[0150]
如图11至图15所示,描述了本技术例子三的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图11示出了例子三的光学成像镜头的结构示意图。
[0151]
如图11所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0152]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凹面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凸面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0153]
在本例子中,光学成像镜头的总有效焦距f为2.45mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为11.22mm,光学成像镜头的最大视场角的一半semi

fov为75.4
°

[0154]
表5示出了例子三的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0155][0156]
表5
[0157]
表6示出了可用于例子三中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0158]
面号a4a6a8a10a12s19.7305e

04

7.7809e

042.7021e

04

6.0103e

051.0356e

05s2

4.1813e

04

2.1700e

03

9.2731e

041.9582e

03

9.3161e

04s3

5.1388e

037.1993e

03

2.2364e

022.8977e

02

1.9267e

02s43.4918e

024.1370e

03

1.0119e

011.6782e

01

1.3754e

01s51.0760e

021.0752e

02

8.2654e

021.3402e

01

1.1394e

01s64.4139e

03

1.2443e

022.7889e

02

4.6063e

024.9394e

02s7

1.6828e

023.3725e

02

2.2875e

016.3301e

01

1.0687e 00s8

8.9850e

021.2368e

01

2.2322e

013.2736e

01

3.6036e

01s9

1.0240e

011.4890e

01

4.1140e

018.4502e

01

1.1740e 00s10

1.6599e

041.4231e

02

1.9450e

04

4.3069e

028.0588e

02s11

2.1330e

024.6395e

02

1.0561e

011.9990e

01

2.6538e

01s12

1.9829e

024.4228e

031.4303e

02

1.9037e

028.9593e

03s13

9.7849e

024.0504e

02

1.9217e

027.3429e

03

2.8458e

03s14

5.8170e

022.3205e

02

8.5868e

06

7.4853e

034.8233e

03面号a14a16a18a20a22s1

1.3419e

061.1227e

07

5.1792e

099.9247e

110.0000e 00s2

6.4014e

052.7632e

04

1.0450e

041.2105e

050.0000e 00
s37.4969e

03

1.7647e

032.3630e

04

1.3954e

050.0000e 00s46.4295e

02

1.7325e

022.4942e

03

1.4763e

040.0000e 00s55.6614e

02

1.6448e

022.5849e

03

1.6925e

040.0000e 00s6

3.2922e

021.3279e

02

2.9798e

032.8893e

040.0000e 00s71.1060e 00

6.9045e

012.3832e

01

3.5147e

020.0000e 00s82.7289e

01

1.3094e

013.5020e

02

3.9066e

030.0000e 00s91.0530e 00

5.7772e

011.7479e

01

2.2167e

020.0000e 00s10

7.2492e

023.6254e

02

9.6848e

031.0732e

030.0000e 00s112.2312e

01

1.1312e

013.1606e

02

3.7608e

030.0000e 00s122.1508e

03

4.6463e

032.3145e

03

5.2371e

044.6117e

05s131.2156e

03

4.3046e

049.9844e

05

1.2665e

056.5480e

07s14

1.6125e

033.2366e

04

3.9162e

052.6351e

06

7.5773e

08
[0159]
表6
[0160]
图12示出了例子三的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图13示出了例子三的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图14示出了例子三的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图15示出了例子三的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0161]
根据图12至图15可知,例子三所给出的光学成像镜头能够实现良好的成像品质。
[0162]
例子四
[0163]
如图16至图20所示,描述了本技术例子四的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图16示出了例子四的光学成像镜头的结构示意图。
[0164]
如图16所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0165]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凸面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0166]
在本例子中,光学成像镜头的总有效焦距f为2.61mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为13.34mm,光学成像镜头的最大视场角的一半semi

fov为75.2
°

[0167]
表7示出了例子四的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0168][0169]
表7
[0170]
表8示出了可用于例子四中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0171]
面号a4a6a8a10a12s15.4381e

051.0041e

05

1.1354e

052.7397e

06

3.4458e

07s26.7987e

04

1.0276e

033.3459e

03

3.4361e

031.9507e

03s3

2.2750e

035.3844e

03

5.9206e

033.3102e

03

1.0702e

03s45.4428e

032.3233e

02

4.4385e

024.2191e

02

2.4742e

02s5

2.7831e

031.4953e

02

2.8436e

022.7755e

02

1.6369e

02s66.0291e

04

1.0761e

031.1922e

03

7.0255e

04

1.1141e

04s74.6018e

036.2900e

03

7.3839e

022.7194e

01

6.5074e

01s8

4.6464e

025.5241e

02

1.2975e

012.1757e

01

2.9011e

01s9

6.5572e

029.7754e

02

2.1486e

013.7429e

01

4.8615e

01s10

4.7705e

033.9827e

02

5.0143e

022.7717e

021.0807e

02s11

2.2729e

033.0360e

02

4.4280e

025.9593e

02

8.1525e

02s124.7882e

03

1.0595e

022.6062e

02

3.0766e

022.3130e

02s13

3.3179e

02

1.0686e

029.0665e

031.2383e

03

3.7083e

03s149.1060e

03

3.7656e

022.5384e

02

9.5952e

032.3233e

03面号a14a16a18a20a22s12.5295e

08

1.0885e

092.5435e

11

2.4840e

130.0000e 00s2

6.7411e

041.4206e

04

1.6809e

058.5481e

070.0000e 00
s31.8024e

04

1.6476e

06

5.8103e

061.0790e

06

6.5918e

08s49.5689e

03

2.4973e

034.3196e

04

4.5283e

052.1660e

06s56.0807e

03

1.3970e

031.8222e

04

1.0377e

050.0000e 00s65.8663e

04

4.1497e

041.2479e

04

1.3956e

050.0000e 00s79.8708e

01

9.4491e

015.4766e

01

1.7495e

012.3688e

02s82.7070e

01

1.5968e

015.2174e

02

7.0897e

030.0000e 00s94.3462e

01

2.4682e

017.9081e

02

1.0760e

020.0000e 00s10

3.1128e

022.5128e

02

1.0835e

022.5063e

03

2.4401e

04s118.4938e

02

5.8135e

022.4474e

02

5.7582e

035.8011e

04s12

1.1865e

024.1279e

03

9.2505e

041.1946e

04

6.7150e

06s131.8174e

03

4.4824e

046.1882e

05

4.5671e

061.4089e

07s14

3.6791e

043.6673e

05

2.0769e

065.0675e

080.0000e 00
[0172]
表8
[0173]
图17示出了例子四的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18示出了例子四的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图19示出了例子四的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图20示出了例子四的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0174]
根据图17至图20可知,例子四所给出的光学成像镜头能够实现良好的成像品质。
[0175]
例子五
[0176]
如图21至图25所示,描述了本技术例子五的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图21示出了例子五的光学成像镜头的结构示意图。
[0177]
如图21所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0178]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凸面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0179]
在本例子中,光学成像镜头的总有效焦距f为2.56mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为11.57mm,光学成像镜头的最大视场角的一半semi

fov为75.1
°

[0180]
表9示出了例子五的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0181][0182]
表9
[0183]
表10示出了可用于例子五中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0184][0185]
表10
[0186]
图22示出了例子五的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图23示出了例子五的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图24示出了例子五的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图25示出了例子五的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0187]
根据图22至图25可知,例子五所给出的光学成像镜头能够实现良好的成像品质。
[0188]
例子六
[0189]
如图26至图30所示,描述了本技术例子六的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图26示出了例子六的光学成像镜头的结构示意图。
[0190]
如图26所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0191]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为
凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凹面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0192]
在本例子中,光学成像镜头的总有效焦距f为2.61mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为12.76mm,光学成像镜头的最大视场角的一半semi

fov为75.0
°

[0193]
表11示出了例子六的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0194][0195]
表11
[0196]
表12示出了可用于例子六中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0197]
面号a4a6a8a10a12s1

9.2441e

051.7980e

04

8.5399e

051.8335e

05

2.1899e

06s21.6770e

031.4114e

031.5055e

04

8.4219e

045.4306e

04s31.0325e

032.5119e

03

3.0666e

035.2153e

047.5361e

04s42.8630e

021.2317e

02

5.0145e

025.6152e

02

3.4136e

02s5

2.4963e

031.7447e

02

4.2433e

025.0053e

02

3.5409e

02s6

3.6595e

04

9.2316e

044.5481e

03

1.0362e

021.5408e

02
s71.6259e

02

6.6313e

023.9218e

01

1.4309e 003.1880e 00s8

1.4150e

03

5.4078e

021.5162e

01

4.2352e

018.8770e

01s9

3.3046e

02

8.0037e

037.6171e

033.0147e

02

1.1596e

01s108.7904e

034.1634e

039.7158e

03

6.2507e

021.2849e

01s111.0956e

021.3241e

02

2.6504e

024.1793e

02

5.7390e

02s12

8.0631e

03

1.0648e

023.8135e

02

5.5429e

025.0356e

02s13

1.7186e

02

3.2885e

024.1451e

02

2.9201e

021.3848e

02s142.9359e

02

5.7650e

024.2370e

02

1.9022e

025.6028e

03面号a14a16a18a20a22s11.5398e

07

6.2891e

091.3629e

10

1.1828e

120.0000e 00s2

2.0544e

045.3984e

05

8.8123e

066.3679e

070.0000e 00s3

5.9173e

042.0854e

04

4.1475e

054.5514e

06

2.1641e

07s41.1740e

02

1.8466e

03

4.4194e

053.7503e

050.0000e 00s51.5707e

02

4.1545e

035.6271e

04

2.5117e

050.0000e 00s6

1.3305e

026.5070e

03

1.6488e

031.6868e

040.0000e 00s7

4.4185e 003.7076e 00

1.7232e 003.3975e

010.0000e 00s8

1.3237e 001.3339e 00

8.5410e

013.1108e

01

4.8930e

02s91.7856e

01

1.4481e

016.0726e

02

1.0502e

020.0000e 00s10

1.4652e

011.0182e

01

4.2961e

021.0130e

02

1.0276e

03s115.4075e

02

3.0935e

029.6192e

03

1.2520e

030.0000e 00s12

3.0132e

021.1848e

02

2.9345e

034.1317e

04

2.5117e

05s13

4.6561e

031.0988e

03

1.7081e

041.5458e

05

6.0953e

07s14

1.0979e

031.4076e

04

1.1264e

055.0659e

07

9.6952e

09
[0198]
表12
[0199]
图27示出了例子六的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图28示出了例子六的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图29示出了例子六的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图30示出了例子六的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0200]
根据图27至图30可知,例子六所给出的光学成像镜头能够实现良好的成像品质。
[0201]
例子七
[0202]
如图31至图35所示,描述了本技术例子七的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图31示出了例子七的光学成像镜头的结构示意图。
[0203]
如图31所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0204]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为凹面。第二透镜e2具负光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凹面。
第三透镜e3具有正光焦度,第三透镜的物侧面s5为凸面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凹面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0205]
在本例子中,光学成像镜头的总有效焦距f为2.69mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为12.26mm,光学成像镜头的最大视场角的一半semi

fov为75.6
°

[0206]
表13示出了例子七的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0207][0208]
表13
[0209]
表14示出了可用于例子七中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0210][0211]
表14
[0212]
图32示出了例子七的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图33示出了例子七的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图34示出了例子七的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图35示出了例子七的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0213]
根据图32至图35可知,例子七所给出的光学成像镜头能够实现良好的成像品质。
[0214]
例子八
[0215]
如图36至图40所示,描述了本技术例子八的光学成像镜头。在本例子及以下例子中,为简洁起见,将省略部分与例子一相似的描述。图36示出了例子八的光学成像镜头的结构示意图。
[0216]
如图36所示,光学成像镜头由物侧至像侧依序包括:第一透镜e1、第二透镜e2、第三透镜e3、光阑sto、第四透镜e4、第五透镜e5、第六透镜e6、第七透镜e7、滤光片e8和成像面s17。
[0217]
第一透镜e1具有负光焦度,第一透镜的物侧面s1为凸面,第一透镜的像侧面s2为
凹面。第二透镜e2具正光焦度,第二透镜的物侧面s3为凸面,第二透镜的像侧面s4为凸面。第三透镜e3具有正光焦度,第三透镜的物侧面s5为凹面,第三透镜的像侧面s6为凸面。第四透镜e4具有正光焦度,第四透镜的物侧面s7为凸面,第四透镜的像侧面s8为凸面。第五透镜e5具有负光焦度,第五透镜的物侧面s9为凹面,第五透镜的像侧面s10为凹面。第六透镜e6具有正光焦度,第六透镜的物侧面s11为凸面,第六透镜的像侧面s12为凸面。第七透镜e7具有负光焦度,第七透镜的物侧面s13为凹面,第七透镜的像侧面s14为凹面。来自物体的光依序穿过各表面s1至s16并最终成像在成像面s17上。
[0218]
在本例子中,光学成像镜头的总有效焦距f为2.59mm,第一透镜的物侧面s1至成像面s17的轴上距离ttl为13.76mm,光学成像镜头的最大视场角的一半semi

fov为75.0
°

[0219]
表15示出了例子八的光学成像镜头的基本结构参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0220][0221]
表15
[0222]
表16示出了可用于例子八中各非球面镜面的高次项系数,其中,各非球面面型可由上述例子一中给出的公式(1)限定。
[0223][0224]
表16
[0225]
图37示出了例子八的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图38示出了例子八的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。图39示出了例子八的光学成像镜头空间频率为50lp/mm时470nm到650nm波段范围内的衍射离焦mtf图。图40示出了例子八的光学成像镜头在830nm到870nm波段范围内的衍射离焦mtf图。
[0226]
根据图37至图40可知,例子八所给出的光学成像镜头能够实现良好的成像品质。
[0227]
综上,例子一至例子八分别满足表17中所示的关系。
[0228]
条件式/例子12345678(t34 t45)/ct40.790.520.510.910.890.780.740.82nmax1.751.731.721.741.751.741.831.83(r1 r6)/(r1

r6)0.430.300.440.670.460.510.700.74n3/(n1 n5)0.510.510.500.510.520.520.540.54(v2

v3)/(v1

v5)0.410.380.420.490.600.490.410.41f456/f230.900.670.670.710.730.620.860.71
(ct6 ct7)/f0.580.770.700.830.810.830.790.912*epd/(dt32 dt41)0.890.890.860.820.880.890.840.80sag12/et10.610.760.630.470.780.590.510.43sag52/et50.450.270.280.290.300.300.320.32et2/dt22 et7/dt721.111.010.821.241.041.491.291.28(r7

r8)/(r11

r12)0.340.430.430.530.440.470.550.46r2/f1 r10/f5

1.26

1.38

1.38

1.44

1.40

1.37

1.48

1.42f6/(f3

f7)0.570.400.480.460.480.480.550.30
[0229]
表17
[0230]
表18给出了例子一至例子八的光学成像镜头的有效焦距f,各透镜的有效焦距f1至f7,最大视场角的一半semi

fov等。
[0231]
基础数据/例子12345678f1(mm)

3.59

3.17

3.28

4.12

3.78

4.22

4.18

3.09f2(mm)

9.64

10.00

10.00

10.00

10.40

10.00

16.1410.00f3(mm)3.573.894.004.064.054.314.029.90f4(mm)2.872.642.672.902.742.732.883.00f5(mm)

3.40

2.97

2.98

3.05

2.98

2.99

2.99

3.15f6(mm)7.535.545.495.585.925.855.194.85f7(mm)

9.68

10.00

7.50

7.95

8.37

7.82

5.44

6.45f(mm)2.482.262.452.612.562.612.692.59ttl(mm)11.0011.0011.2213.3411.5712.7612.2613.76imgh(mm)3.153.153.153.153.153.153.153.15semi

fov(
°
)75.075.075.475.275.175.075.675.0f/epd2.202.202.202.402.402.652.752.70
[0232]
表18
[0233]
本技术还提供一种成像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
[0234]
显然,上述所描述的实施例仅仅是本实用新型一部分的实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。
[0235]
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本技术的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
[0236]
需要说明的是,本技术的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本技术的实施方式能够以除了在这里图示
或描述的那些以外的顺序实施。
[0237]
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献