一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

色彩转换固态装置的制作方法

2023-02-02 04:53:25 来源:中国专利 TAG:

色彩转换固态装置
1.技术领域和

背景技术:

2.本发明涉及色彩转换层至显示衬底中的集成。更明确地说,本发明涉及提供封囊以保护色彩转换层免受环境因素影响。
3.可通过将不同微装置集成至系统衬底中来增强系统性能。挑战为不同微装置可具有不同性能并且也使用不同材料系统。这些材料系统通常对环境因素(例如,氧气或水)敏感。因此,期望提供对这些材料的保护以增强系统性能。


技术实现要素:

4.根据一个实施方案,本发明涉及一种经启用以将发光装置的色彩转换成另一色彩的固态装置,该装置包括以下各者:背板;发光装置,其在背板的顶部上;光分布层,其在发光装置的顶部上;以及色彩转换层,其在光分布层的顶部上。
5.根据另一实施方案,给出一种用以将发光装置的色彩转换成另一色彩的方法,该方法包含:形成背板;在背板的顶部上形成发光装置;在发光装置的顶部上形成光分布层;在光分布层的顶部上形成色彩转换层;以及将发光装置的色彩转换成不同于发光装置的原始色彩的另一色彩。
附图说明
6.在阅读以下实施方式之后且在参看图式之后,本公开的前述和其它优点将变得显而易见。
7.图1说明根据实施方案的方法的流程图。
8.图2说明根据实施方案的替代方法的流程图。
9.图3说明根据实施方案的替代方法的流程图。
10.图4说明根据实施方案的替代方法的流程图。
11.图5说明根据实施方案的替代方法的流程图。
12.图6说明本发明的各种实施方案。
13.图7a至图7c说明根据实施方案的微装置与色彩转换层的集成的横截面图。
14.图8a说明根据实施方案的微装置与色彩转换层及接点的集成的横截面图。
15.图8b说明根据实施方案的微装置与色彩转换层及封装壁的集成的横截面图。
16.图8c说明根据实施方案的微装置与色彩转换层的集成的横截面图。
17.图8d说明根据实施方案的微装置与色彩转换层的集成的横截面图。
18.图9a说明根据实施方案的微装置与色彩转换层的集成的横截面图。
19.图9b说明根据实施方案的微装置与色彩转换层的集成的横截面图。
20.图10a和图10b展示光分布层至发光装置与色彩转换层的组合中的集成。
21.图10c展示从光分布层的表面到边缘的反射粒子的有效浓度比。
22.虽然本公开易受各种修改和替代形式影响,但在图式中已作为示例展示特定实施方案或实施方式,且将在本文中对其进行详细描述。然而,应理解,本公开并不打算限于所
公开的特定形式。相反,本公开将涵盖属于如由随附权利要求书限定的本发明的精神及范围内的所有修改、等效物及替代例。
具体实施方式
23.一种用以改善系统性能的方法为将不同微装置集成至系统衬底中。挑战为不同微装置可具有不同性能并且也使用不同材料系统。本发明涉及通过集成功能调谐材料(例如,色彩转换层)来建立不同功能微装置(例如,红色、绿色、蓝色led或来自单个蓝色led的传感器)。功能调谐材料通常对环境因素(例如,氧气或水)敏感。
24.本发明的另一方面为建立封囊以保护这些材料。
25.在本公开中,使用微型led和色彩转换层描述结构。然而,类似结构可与其它微装置及其它功能调谐材料一起使用。
26.用于实施方案中的光源的形状是出于说明的目的,且装置可具有不同形状。光源装置可在将接触接收器衬底的一侧上具有一个或多个衬垫。衬垫可为机械衬垫、电衬垫或两者的组合。一个或多个衬垫可连接至共同电极或行/列电极。电极可为透明或不透明的。光源可具有不同层。光源可由不同材料制成,例如有机材料、无机材料或其组合。
27.参看图1,制造像素电路的方法包含:步骤102,例如根据系统衬底图案在供体衬底上制作微装置的至少一个群组;步骤104,例如用色彩转换层和/或彩色滤光片覆盖微装置的光输出(输入)表面;以及步骤106,例如将群组中的微装置中的至少一者转移至系统衬底。
28.参看图2,制造像素电路的方法包含:步骤202,例如根据系统衬底图案在供体衬底上制作微装置的至少一个群组;步骤204,例如用不透明或反射材料(例如,光衰减器)覆盖或阻挡始于微装置的不期望的光路径;步骤206,例如用色彩转换层和/或彩色滤光片覆盖微装置的光输出(输入)表面;以及步骤208,例如将群组中的微装置中的至少一者转移至系统衬底。
29.参看图3,制造像素电路的方法包含:步骤302,例如根据系统衬底图案在供体衬底上制作微装置的至少一个群组;步骤304,例如用不透明或反射材料(例如,光衰减器)覆盖或阻挡始于微装置的不期望的光路径;步骤306,例如用色彩转换层和/或彩色滤光片覆盖微装置的光输出(输入)表面;步骤308,在色彩转换层之前和/或之后沉积层以用于封装和/或热耗散;以及步骤310,例如将群组中的微装置中的至少一者转移至系统衬底。
30.参看图4,制造像素电路的方法包含:步骤402,例如根据系统衬底图案在供体衬底上制作微装置的至少一个群组;步骤404,例如用不透明或反射材料(例如,光衰减器)覆盖或阻挡始于微装置的不期望的光路径;步骤406,例如用色彩转换层和/或彩色滤光片覆盖微装置的光输出(输入)表面,其中色彩转换层可包括介电层以用于钝化;步骤408,在色彩转换层之前和/或之后沉积层以用于封装和/或热耗散;以及步骤410,例如将群组中的微装置中的至少一者转移至系统衬底。
31.参看图5,制造像素电路的方法包含:步骤502,例如根据系统衬底图案在供体衬底上制作微装置的至少一个群组;步骤504,例如用不透明或反射材料(例如,光衰减器)覆盖或阻挡始于微装置的不期望的光路径;步骤506,例如用色彩转换层和/或彩色滤光片覆盖微装置的光输出(输入)表面,其中色彩转换层或光衰减器中的一者可包括充当微装置的电
极的导电层;步骤508,在色彩转换层之前和/或之后沉积层以用于封装和/或热耗散;以及步骤510,例如将群组中的微装置中的至少一者转移至系统衬底。
32.参看图6a至图6c,说明转移程序,其中供体衬底602最初包括三个微装置604。微装置604中的每一者包括电极606,其可为透明的,但理想地包含提供光衰减器功能的不透明或反射材料。中间微装置604包括,例如涂覆有用于将从微装置604发射的光转换成不同色彩的第一色彩转换或滤光片层608。左方微装置604包括,例如涂覆有用于将从微装置604发射的光转换成第三色彩的第二色彩转换或滤光片层610。三个微装置604一起可包含形成显示装置的像素所需的三种不同色彩,例如红色、绿色及蓝色。可将备用微装置添加至与系统衬底中的像素相关的装置的每一集合。在测试供体(盒)衬底上的微装置之后,可重新映射用于每一微装置的功能调谐材料以确保对于系统衬底中的不同像素,存在可接受数目个微装置。举例来说,如果被分配绿色转换的装置不起作用,那么可将备用的红色和绿色转换分配至原始装置及备用装置中的两个装置。
33.在第一实施方案中,三个微装置604被转移至盒衬底(cartridge substrate),且具备安装于微装置604的相对末端上的第二电极616作为电极606。第二电极616可包括用于将来自微装置604的任何光重导向回穿过任何光分布材料、围绕任何光衰减器结构且穿过任何色彩转换层608或610的不透明或反射材料。微装置604中的每一者接着安装于接收器衬底612上的衬垫614上(图6b),其中第二电极616与衬垫614电接触。
34.替代地,如图6c中所说明,三个微装置604可直接转移至接收器衬底612,其中电极606与衬垫614接触。在此实施方案中,接收器衬底612及衬垫614对于从微装置604发射的光及任何后续转换可为透明的。
35.图7a展示嵌入于功能调谐/更改/修改材料710中的微装置700,作为示例,这些材料在本说明书的其余部分中被称作色彩转换层。此处,多个半导体层形成/转移至衬底中,以形成顶表面700-1及底表面700-2。多个半导体层在形成微装置(作为示例展示微装置700)的不同区域中通过至少一个侧表面700-3(或700-4)隔离。此处,微装置700可在装置的至少一侧(或仅一侧)上具有至少一个接点(通孔)702、704。接点702、704将装置700连接至衬垫706、708。微装置700可具有不同层的堆叠,例如包夹于电荷阻挡层与掺杂层之间的作用层。围绕微装置700形成的空间系通过光学耦合至至少一个侧表面700-3(或700-4)的至少一个覆盖层建立。围绕装置形成的空间/外壳结构由一个或多个盖壁712、714、716及718组成。顶部及底部盖壁(层)712、714延伸超出微装置700的至少一个侧表面700-3、700-4。功能调谐材料(例如,色彩转换材料)710在外壳结构内部。盖壁712、714、716及718可为封装层以保护色彩转换材料免受氧气及湿气影响。色彩转换材料可为磷光体或量子点。此外,盖壁可包括具有一些光学性质的光学增强层以增强至色彩转换材料中的光耦合。在一种状况下,盖壁712或716可为反射层以将光反射至色彩转换材料中。在另一种状况下,盖壁712或716经设计以仅反射小波长(例如,小于450nm),同时其允许较长波长穿过。此允许转换后的光穿过壁。在另一种状况下,壁714增强从微装置700到色彩转换材料710中的光提取。在一个实例中,壁718具有反射性以将光反射回。在另一种状况下,壁718为透明的,从而允许至少一些波长穿过。
36.参看图7b,盖壁712或716可具有两个部分:反射部分720及透明部分。反射层720在装置700的顶侧上延伸(或可延伸至底侧)。在一种状况下,透明部分也可能仅对波长的一部
分透明,以阻挡微装置光不经过转换而直接射出。
37.在图7c中所展示的另一种状况下,彩色滤光片层722可沉积于壁中的至少一者上以进一步防止一些波长离开结构/装置700或从外部进入色彩转换材料710中。
38.图8a展示在顶侧或底侧上具有接点802、804的微装置800。衬垫806可经由接点中例如顶侧处的接点802的至少一者耦合至装置800。在一种状况下,可为电介质的层812覆盖装置表面的未由接点802覆盖的部分。可存在可具有不同功能的侧表面814,例如钝化层、光学增强层或封装层。此处,缓冲层或牺牲层832处于微装置800与衬底830之间。
39.图8b展示其中形成封装壁812a及812b。封装层812a可与侧表面814相同。这些侧表面814可通过例如印刷、蒸发、印刷、溅镀或更多的不同手段沉积。侧壁层可通过传统的光刻、剥离或印刷来图案化。
40.图8c展示其中色彩转换材料形成于封装壁812b的顶部上。色彩转换层810可覆盖装置800的不面向衬底830的侧。
41.图8d展示形成覆盖壁816及818以将色彩转换材料围封于壁818、812及816之间。
42.在另一实施方案中,如图8e中所展示,这些壁可具有具不同功能的不同层的堆叠。在一种状况下,这些壁可包括反射(例如,全部或选择性)层812c及封装层812b。
43.在另一实施方案中,色彩转换层可在微装置800的顶表面或底表面上。在如图8f中所展示的一个实例中,如果在同一表面上存在接点,那么接点804的高度将增加以延伸超出所述表面上的色彩转换层。有可能添加壁820以覆盖接点804的侧面及微装置800的所述表面。
44.在图9a中所展示的另一实施方案中,表面中的一个表面上的接点904a可经由迹线904b连接至装置800的相对侧上的接点802区域。迹线可通过介电层与装置分离。迹线需要在一些区域处为透明的,以允许光穿过且与色彩转换层耦合。在另一种状况下,迹线仅覆盖微装置的侧面的部分,使得光可穿过其它区域。为了更好的封装,在迹线904b之后形成用于封装的壁层812a及812b。
45.在另一实施方案中,色彩转换层可在微装置800的顶表面或底表面上。在如图9b中所展示的一个实例中,如果在同一表面上存在接点,那么接点904a通过迹线904b被转移至另一区域上的另一接点904c。此处,壁可覆盖接点904a、迹线904b及用于光学或封装功能的微装置的表面。
46.在以上实施方案中,顶表面及底表面上的盖壁和侧面上的盖壁可彼此延伸以提供更好的保护。在另一种状况下,用于侧面上的盖壁(层)可在底部或顶部盖壁(层)上方延伸。
47.根据一个实施方案,提供一种光电子装置。该光电子装置包含:多个半导体层,其形成于衬底上,从而形成顶表面和底表面,其中该多个半导体层具有形成至少一个侧表面的隔离区域;一个或多个覆盖层,其围绕光学耦合至至少一个侧表面的隔离区域而形成空间;以及功能调谐材料,其安置于由一个或多个覆盖层形成的空间中。
48.根据其它实施方案,一个或多个覆盖层包含以下各者中的一者或多者:钝化层、介电层、光学增强层、封装层、反射层及彩色滤光片层,且功能调谐材料包含色彩转换材料。
49.根据一些实施方案,这些功能调谐材料进一步安置于以下各者中的一者上:光电子装置的顶表面和底表面。
50.根据另一实施方案,至少一个接点安置于以下各者中的至少一者上:光电子装置
的顶表面及底表面,且衬垫经由至少一个接点耦合至光电子装置。
51.根据另一实施方案,至少一个接点的高度能够延伸超过安置于至少一个接点的同一侧上的功能调谐材料,且其中至少一个接点在以下各者中的一者上:光电子装置的顶表面和底表面经由迹线连接至光电子装置的另一表面上的至少另一接点。该迹线通过介电层与光电子装置分离。
52.根据一些实施方案,封装层保护色彩转换材料免受氧气和湿气影响,光学增强层将光反射至色彩转换材料中,反射层增强至色彩转换材料中的光耦合,且反射层在以下各者中的一者上延伸:光电子装置的顶表面及底表面。反射层包含反射部分和透明部分。
53.根据其它实施方案,多个覆盖层通过以下各者中的一者沉积:印刷、蒸发、印刷及溅镀,且通过以下各者中的一者图案化:光刻、剥离及印刷。
54.根据其它实施方案,一个或多个覆盖层将功能调谐材料包围在至少一个侧表面与一个或多个覆盖层之间。
55.图10a和图10b展示光分布层至发光装置与色彩转换层的组合中的集成。色彩转换层将发光装置的色彩转换成不同于发光装置的原始色彩的另一色彩。此处,发光装置1000可为形成或转移至背板或衬底1030中的微型led。背板或衬底1030可具有控制发光装置1000及例如平坦化层1032和接触层1034的其它层的电路。光分布层1014形成于发光装置1030的顶部上。此处,光分布层1014的形状越靠近发光装置1030可能越厚。光分布层可为分散于聚合物溶液中的例如银纳米粒子、银纳米线等的反射纳米粒子的组合。为了进一步增加光分布层的有效性,发光装置1030可直接地或间接地在反射层上。此外,可调整反射粒子的分布以增加光均匀性。此可通过不同干燥方法以及不同溶液来达成。干燥的一个示例可为在控制蒸汽压的控制环境中使反射层干燥。此可控制溶液从层蒸发的速度。蒸发的速度可导致边缘首先干燥,且因此材料会集中在中心处并形成圆顶形状,其导致在中心处更厚。在另一种状况下,材料可经冲压以形成圆顶形状。色彩转换层1040及1042接着形成于光分布层1014上。色彩转换层1040及1042可在光分布层1014上方延伸。在一种状况下,色彩转换层1040及1042为量子点(qd)。在另一种状况下,彩色滤光片形成于色彩转换层1040及1042的顶部上。在另一种状况下,另一光分布层1044形成于色彩转换层的顶部上,以通过将光传递回至色彩转换层来进一步增加转换效率。此处,可设定内部反射使得更多地反射原始光。可在色彩转换层之后或在彩色滤光片层之后使用封装层1046,以用于改善层的可靠性。色彩转换层中的一些在暴露于例如氧气及湿气的一些材料下可倾向于降解。封装层1046可保护那些层免受氧气及湿气影响。此外,封装可提供对微装置1000的进一步机械支撑。
56.在另一种状况下,修改光分布层的厚度以增加装置的顶部上方的光反射率。图10b展示此结构的示范性实施方案。此处,在发光装置1000的顶部上,光分布层1014看起来像圆顶形状(其可为发光装置结构1000之后的另一形状)。由装置1000产生的光1002通过反射粒子1016反射,且因此分布于薄膜1014中。在光1002逸出薄膜1014之后,其通过色彩转换层1040转换成另一色彩且作为另一光1004发射。
57.图10c展示从光分布层1030的表面到边缘的反射粒子的有效浓度比。如可见,更多反射粒子位于结构的中心处,或大体上安置于结构的中心处。可调制反射粒子的浓度以使光朝向光分布层的边缘延伸。
58.方法方面
59.本发明公开一种用以将发光装置的色彩转换成另一色彩的方法。该方法包含形成以下各者:背板;发光装置,其在背板的顶部上;光分布层,其在发光装置的顶部上;色彩转换层,其在光分布层的顶部上;以及将发光装置的色彩转换成不同于发光装置的原始色彩的另一色彩。此处,背板包含用以控制所述发光装置的电路。而且,背板具有在顶部上的平坦化层,且发光装置在反射层的顶部上。此外,光分布层反射粒子在聚合物内部,且反射粒子大体上安置于光分布层的中心处。而且,调制反射粒子的浓度以使光朝向光分布层的边缘延伸。可通过不同干燥方法以及不同溶液来调整反射粒子的分布以增加光均匀性。另外,光分布层的形状越靠近发光装置越厚,且色彩转换层为量子点并在光分布层上方延伸。接下来,在色彩转换层的顶部上存在另一光分布层以通过将光传递回至色彩转换层来增加转换效率,该色彩转换层的顶部上具有彩色滤光片。最后,在色彩转换层之后使用封装层以改善层的可靠性,且发光装置为形成或转移至背板或衬底中的微型led。
60.出于说明及描述的目的,已呈现本发明的一个或多个实施方案的前述描述。其并不预期为穷尽的或将本发明限于所公开的精确形式。鉴于上述教示,许多修改和变化是可能的。希望本发明的范围并不被此实施方式限制,而被随附在此的权利要求书限制。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献