一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种地热资源热储空间构造分布的探测方法及装置

2023-01-15 11:01:39 来源:中国专利 TAG:


1.本发明属于探测技术领域,涉及一种地热资源热储空间构造分布的探测方法及装置。


背景技术:

2.在地热资源勘探中,热储空间构造分布探测对于地热能储层圈和开发具有重要意义。地热能储层往往与深大断裂和深度有地质活动区域相关,需要利用地球物理技术圈定地热资源有利区,查找详细地质构造探测导水和导热通道空间详细分布,即确定地热系统的热源和通道。由此可以看出,地热能勘探与地下不连续构造具有紧密联系,需要对地热能储层的圈定与导热通道进行详细探测。而地震勘探方法是一种有效的地热勘探方法,非线性散射数据是不连续地质体的地震响应,含有其重要地质信息,可以用来精确定位非均匀不连续地质体的详细地下空间位置,增强异常地质体的勘探精度。但是在现有方法中,大多采用平面波分解方法预测线性信号,该方法依赖于局部倾角场的准确估计,稳定性较差,需要均衡平滑半径和分辨率的问题,不利于该方法的实际应用。


技术实现要素:

3.本发明的目的在于克服现有技术存在的缺点,设计提出了一种地热资源热储空间构造分布的探测方法及装置,基于矩阵自身变换快速估计数据中的线性信号分量,获得高质量非线性信号数据,实现非均匀构造的高精度探测。
4.为实现上述目的,本发明实现地热资源热储空间构造分布探测的具体过程为:
5.(1)获取待测区域的共偏移距频率空间域地震波场数据;
6.(2)根据共偏移距频率空间域地震波场数据,基于矩阵自身变换估计数据中的线性信号分量,从而获得非线性信号分量;
7.(3)通过偏移算法对非线性信号分量进行偏移成像,得到地下非均匀构造分布的高分辨率成像定位结果,实现地热资源热储空间构造分布的探测。
8.作为本发明的进一步技术方案,步骤(1)的具体过程为:先采集待测区域的时间空间域地震数据,利用傅里叶变换将采集的时间空间域地震数据转换为频率空间域地震波场数据。
9.作为本发明的进一步技术方案,步骤(2)获得非线性信号数据的具体过程为:
10.(21)将步骤(1)获取的频率空间域地震波场数据中的每一个频率切片数据转换为相应hankel矩阵;
11.(22)计算hankel矩阵的右奇异矩阵每一列和每一行向量的采样概率;
12.(23)根据行列向量的采样概率,构建采样矩阵和对角尺度矩阵;
13.(24)利用采样矩阵和对角尺度矩阵,计算分解后的线性信号分量,从而获得非线性信号分量。
14.作为本发明的进一步技术方案,步骤(21)每一个频率切片数据相应的hankel矩阵
为:
[0015][0016]
其中,h为hankle矩阵,di为频率切片的第i道数据,m和n分别为矩阵的行和列。
[0017]
作为本发明的进一步技术方案,步骤(22)所述采样概率计算公式为:
[0018][0019]
其中,k为预定义秩参数,i表示第i列或行,e为矩阵的右奇异矩阵第i个分量。
[0020]
作为本发明的进一步技术方案,步骤(23)构建采样矩阵和对角尺度矩阵的具体过程为:根据采样概率确定第i行或第j列是否用于构建分解后矩阵,先定义初始采样矩阵s和对角尺度矩阵d为零矩阵,若第i个量被选定则更新如下:
[0021]sii
=1
[0022][0023]
否则
[0024]sij
=0
[0025]dij
=0
[0026]
其中,c为预定义的正整数参数。
[0027]
作为本发明的进一步技术方案,步骤(24)所述分解后的线性信号分量由三个子矩阵构成:
[0028]
l=wqv
[0029]
其中w=hsd,v=dsth,q=(dstw)

,(
·
)

为moore-penrose逆矩阵,非线性信号分量由n=h-l得到。
[0030]
作为本发明的进一步技术方案,步骤(3)所采用的偏移算法为kirchhoff偏移算法。
[0031]
本发明与现有技术相比,先获取待处理区域的共偏移距频率空间域地震波场数据;再将每一个频率切片数据转换为相应的hankel矩阵,并计算hankel矩阵的右奇异矩阵每一列和行向量的采样概率;然后根据行列向量的采样概率构建采样矩阵和对角尺度矩阵,利用采样矩阵和对角尺度矩阵计算分解后的线性信号分量,从而获得非线性信号分量;最后通过kirchhoff偏移算法,对非线性信号分量进行偏移成像,得到地下非均匀构造分布的高分辨率成像定位结果,该方法运用矩阵分解技术,从矩阵自身构建线性信号分量,从而获取非线性信号,避免高成本数学运算,提高地下非均匀构造的识别和探测能力,稳定性好,无需考虑均衡平滑半径和分辨率的问题,能用于地热资源实际勘探中。
附图说明:
[0032]
图1为本发明的工作流程框图。
[0033]
图2为本发明获取非线性信号分量的流程框图。
[0034]
图3为本发明所述地热资源热储空间构造分布的探测装置的结构框图。
[0035]
图4为本发明所述数据处理模块的结构框图。
[0036]
图5为本发明实施例1待测区域的原始地震波场叠加数据记录。
[0037]
图6为本发明实施例1分离的非线性信号分量数据图。
[0038]
图7为本发明实施例1得到的非线性信号分量数据成像结果图。
具体实施方式:
[0039]
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0040]
实施例1:
[0041]
如图1和图2所示,本实施例提供了一种地热资源热储空间构造分布的探测方法,具体过程为:
[0042]
(1)获取待测区域的共偏移距频率空间域地震波场数据:先采集待测区域的时间空间域地震数据,利用傅里叶变换将采集的时间空间域地震数据转换为频率空间域地震波场数据,如图1所示;
[0043]
(2)根据共偏移距频率空间域地震波场数据,基于矩阵自身变换估计数据中的线性信号分量,从而获得非线性信号数据(如图6所示),具体为:
[0044]
(21)将步骤(1)获取的频率空间域地震波场数据中的每一个频率切片数据转换为相应hankel矩阵h,
[0045][0046]
其中,di为频率切片的第i道数据,m和n分别为矩阵的行和列;
[0047]
(22)计算hankel矩阵的右奇异矩阵每一列和每一行向量的采样概率,采样概率计算公式为:
[0048][0049]
其中,k为预定义秩参数,i表示第i列或行,e为矩阵的右奇异矩阵第i个分量;
[0050]
(23)根据行列向量的采样概率,构建采样矩阵和对角尺度矩阵,具体为:根据采样概率确定第i行或第j列是否用于构建分解后矩阵,先定义初始采样矩阵s和对角尺度矩阵d为零矩阵,若第i个量被选定则更新如下:
[0051]sii
=1
[0052][0053]
否则
[0054]sij
=0
[0055]dij
=0
[0056]
其中,c为预定义的正整数参数;
[0057]
(24)利用采样矩阵和对角尺度矩阵,计算分解后的线性信号分量,分解后的线性信号分量由三个子矩阵构成:
[0058]
l=wqv
[0059]
其中w=hsd,v=ds
t
h,q=(ds
t
w)

,(
·
)

为moore-penrose逆矩阵,非线性信号分量由n=h-l得到;
[0060]
(3)通过偏移算法对对非线性信号分量进行偏移成像,得到地下非均匀构造分布的高分辨率成像定位结果,如图7所示,实现地热资源热储空间构造分布的探测。
[0061]
实施例2:
[0062]
如图3和图4所示,本实施例提供了一种地热资源热储空间构造分布的探测装置装置,包括:
[0063]
数据获取模块,用于获取待测区域的共偏移距频率空间域地震波场数据;
[0064]
数据处理模块,用于基于矩阵自身变换估计数据中的线性信号分量,从而获得非线性信号分量;
[0065]
成像模块,对非线性信号分量进行偏移成像,得到地下非均匀构造分布的高分辨率成像定位结果。
[0066]
具体的,数据处理模块包括hankel矩阵转换单元、采样概率计算单元、矩阵构建单元和非线性信号数据获取单元,hankel矩阵转换单元将每一个频率切片数据转换为相应hankel矩阵h,采样概率计算单元计算hankel矩阵的右奇异矩阵每一列和每一行向量的采样概率,矩阵构建单元根据行列向量的采样概率,构建采样矩阵和对角尺度矩阵,非线性信号数据获取单元利用采样矩阵和对角尺度矩阵,计算分解后的线性信号分量,从而获得非线性信号分量。
[0067]
更具体的,hankel矩阵转换单元得到的hankle矩阵h为:
[0068][0069]
其中,di为频率切片的第i道数据,m和n分别为矩阵的行和列;
[0070]
采样概率计算单元采用的采样概率计算公式为:
[0071][0072]
其中,k为预定义秩参数,i表示第i列或行,e为矩阵的右奇异矩阵第i个分量;
[0073]
矩阵构建单元根据采样概率确定第i行或列是否用于构建分解后矩阵,先定义初始采样矩阵s和对角尺度矩阵d为零矩阵,若第i个量被选定则更新如下:
[0074]sii
=1
[0075][0076]
否则
[0077]sij
=0
[0078]dij
=0
[0079]
其中,c为预定义的正整数参数;
[0080]
非线性信号数据获取单元中分解后的线性信号分量由三个子矩阵构成:
[0081]
l=wqv
[0082]
其中w=hsd,v=ds
t
h,q=(ds
t
w)

,(
·
)

为moore-penrose逆矩阵,非线性信号分量由n=h-l得到。
[0083]
本实施例先通过数据采集模块获取待处理区域的共偏移距频率空间域地震波场数据;数据处理模块将每一个频率切片数据转换为相应的hankel矩阵,并计算hankel矩阵的右奇异矩阵每一列和行向量的采样概率;然后根据行列向量的采样概率构建采样矩阵和对角尺度矩阵,利用采样矩阵和对角尺度矩阵计算分解后的线性信号分量,从而获得非线性信号分量;最后成像模块通过kirchhoff偏移算法,对非线性信号分量进行偏移成像,得到地下非均匀构造分布的高分辨率成像定位结果。
[0084]
本发明实施例所提供的地热资源热储空间构造分布的探测方法及装置的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述,未详细描述的算法和计算过程均为本领域通用技术。
[0085]
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。
[0086]
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献