一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种石墨烯基靶向吸氢纳米复合材料及其制备方法

2023-01-15 06:20:45 来源:中国专利 TAG:


1.本发明涉及功能复合材料技术,具体涉及石墨烯基靶向吸氢纳米复合材料制备技术。


背景技术:

2.随着低温和超导技术的不断发展,低温液体在空间技术等领域被越来越广泛地使用。低温及超低温的维持技术多采用高真空多层绝热(multi-layer insulation, mli)结构予以实现;高真空多层绝热的绝热夹层由多层绝热材料和高真空构成,其中多层绝热材料由具有高反射能力的辐射屏与具有低导热率的间隔物交替组合而成,能够减弱多层绝热间的辐射传热和固体导热,而高真空的作用是减少夹层中残余气体的对流传热。当绝热夹层内的真空度优于1
×
10-2
pa时,其优异的绝热性能才能得以体现。
3.但由于容器中绝热材料的放气以及容器本身的漏气,原有的高真空被逐渐破坏,真空夹层的绝热性能逐渐变差,大大缩短了低温容器的使用寿命。国内外大量研究显示,放气量占漏放气总量的70~80%,而放气的主要成分为h2,漏气的主要成分为空气。追根溯源,h2是导致夹层真空恶化的主要原因,容器真空寿命很大程度上取决于吸附剂的特性。
4.为消除mli低温容器真空夹层内的残余h2,维持夹层的高真空环境,设置吸气剂必不可少。为最大限度地吸收残余气体,尤其是氢气,有必要设计一款高效靶向吸氢剂。但一方面,自然界钯元素相对稀缺,传统氧化钯吸氢剂难以最大限度发挥钯元素的吸氢特性;另一方面,钯的替代元素虽可降低吸氢剂的成本但吸氢效果不佳。


技术实现要素:

5.本发明的目的是提供一种石墨烯基靶向吸氢纳米复合材料及其制备方法。
6.本发明是一种石墨烯基靶向吸氢纳米复合材料及其制备方法,石墨烯基靶向吸氢纳米复合材料的衬底材料为氧化石墨烯,pdo纳米粒子在go片层上所占的摩尔分数为86.83%,pdo的平均粒径为10.59nm,聚乙烯醇的炔基支链取代度为52%,go-pdo与alkyne-pva的质量比为1:10。
7.以上所述的石墨烯基靶向吸氢纳米复合材料的制备方法,其步骤为:步骤(1)制备氧化石墨烯;步骤(2)原位生长法制备出go-pdo纳米复合材料;步骤(3)炔基化改性聚乙烯醇;步骤(4)将go-pdo与alkyne-pva混合,制备成新型石墨烯基靶向吸氢纳米复合材料,即alkyne-pva-(go-pdo)纳米复合材料。
8.本发明的有益效果是:本发明从吸附材料入手,将吸氢性能卓越的pdo和不饱和有机支链负载于拥有巨大比表面积的氧化石墨烯片层上,研制一款新型石墨烯基靶向吸氢纳米复合材料。以pdo与h2间的化学反应作为吸氢过程的引发,其吸氢反应产物pd催化不饱和支链进一步发生加氢反应,最大限度地消除mli低温容器真空夹层内残余的h2,减缓真空夹
层的绝热失效,达到维温目的。本发明得到一种具有较大氢气吸附量的靶向吸氢剂;本发明的制备过程简单,无需苛刻的制备条件,相较于传统pdo吸氢剂其成本大大降低。
附图说明
9.图1为本发明制备复合材料的制备流程示意图,图2为本发明制备的复合材料透射电子显微镜图,图3为本发明制备的复合材料的吸附等温线。
具体实施方式
10.本发明是一种石墨烯基靶向吸氢纳米复合材料及其制备方法,石墨烯基靶向吸氢纳米复合材料的衬底材料为氧化石墨烯,pdo纳米粒子在go片层上所占的摩尔分数为86.83%,pdo的平均粒径为10.59nm,聚乙烯醇的炔基支链取代度为52%,go-pdo与alkyne-pva的质量比为1:10。
11.以上所述的石墨烯基靶向吸氢纳米复合材料,衬底材料为碳氧比为7.72:5.45的氧化石墨烯。
12.以上所述的石墨烯基靶向吸氢纳米复合材料的制备方法,其步骤为:步骤(1)制备氧化石墨烯;步骤(2)原位生长法制备出go-pdo纳米复合材料;步骤(3)炔基化改性聚乙烯醇;步骤(4)将go-pdo与alkyne-pva混合,制备成新型石墨烯基靶向吸氢纳米复合材料,即alkyne-pva-(go-pdo)纳米复合材料。
13.上述制备方法,在所述步骤(1)中,采用改进的hummers法,以浓硫酸、硝酸钠为氧化剂。
14.上述制备方法,在所述步骤(2)中,采用水热法,以pdcl2为前驱体材料,以ctab为表面活性剂,在氧化石墨烯上原位生长出pdo纳米颗粒。
15.上述制备方法,在所述步骤(3)中,采用氨基甲酸酯化法改性聚乙烯醇。
16.上述制备方法,在所述步骤(3)中,以dmf为溶剂,n-n羰基二咪唑为活化剂,其中,n-n羰基二咪唑、炔丙胺与聚乙烯醇的摩尔比为5:6:5。
17.上述制备方法,在所述步骤(4)中,以dmf为溶剂,go-pdo与alkyne-pva的质量比为1:10。
18.上述制备方法,每一步骤的干燥温度均为70℃,其中步骤(3)、步骤(4)使用真空干燥。
19.本发明以氧化石墨烯为载体材料,负载靶向吸氢剂pdo和带有炔基支链的聚乙烯醇,该新型材料确保吸气基团具有极大的裸露比表面积,石墨烯为各种吸气基团提供负载平台,并对各吸气基团进行有效可控间离。
20.当低温容器内有残余氢气放出时,pdo会与氢气发生化学反应:pdo h2=pd h2o,反应生成的pd又会作为炔基支链加氢反应的催化剂,实现继续吸氢。在同一位置、针对同一问题实现了对钯的两次利用。
21.本发明所制得的靶向吸氢纳米复合材料,可以放置于低温容器真空夹层内常温端,有效吸收容器内残余的氢气。
22.下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
23.本发明是石墨烯基靶向吸氢纳米复合材料及其制备方法,石墨烯基靶向吸氢纳米复合材料的衬底材料为氧化石墨烯,pdo纳米粒子在go片层上所占的摩尔分数为86.83%,pdo的平均粒径为10.59nm,聚乙烯醇的炔基支链取代度为52%,go-pdo与alkyne-pva的质量比为1:10。
24.制备方法的步骤为:采用改进的hummers法制备氧化石墨烯。称取1g石墨粉,2g硝酸钠,120ml98%浓硫酸放入圆底烧瓶中,在冰浴中搅30分钟,称取6g高锰酸钾,多次缓慢加入混合液中,控制温度低于10℃,将体系在冰浴下剧烈搅拌一小时后,转移至35℃油浴中搅拌5小时。向混合物中缓慢滴加100ml冷的去离子水,控制反应在80~95℃以下。待体系冷却至室温,滴加少量双氧水直至大量气泡放出,产物静置一天,倾去上清液。将混合物分别用5%hcl,去离子水,无水乙醇,丙酮离心洗涤,产物在60℃烘箱中干燥即可得到氧化石墨烯。
25.水热法在go上原位生长出pdo nps。称取0.3mmol pdcl2,加入二倍于其物质的量的浓盐酸(37%),搅拌至pdcl2充分溶解,形成钯氯酸水合物(h2pdcl4·
nh2o)溶液,记为溶液a;另称取0.104g十六烷基三甲基溴化铵(ctab)和0.026ggo溶于52ml去离子水,超声后形成go胶体分散液,记为溶液b;将溶液a与溶液b混合,用0.12mol/l的naoh溶液滴定至ph=10,在70℃下磁搅拌4h,用去离子水、乙醇反复离心洗涤沉淀物,放入70℃烘箱中干燥得到go-pdo黑色粉末。
26.采用氨基甲酸酯化法制备炔基化的聚乙烯醇。称取15mmol醇解度为78%的聚乙烯醇(pva),加入20ml n-n 二甲基甲酰胺(dmf),在85℃油浴中搅拌至聚乙烯醇完全溶解。冷却至室温后加入15mmol n-n 羰基二咪唑(cdi)并在室温下搅拌3h,加入18mmol炔丙胺,继续搅拌16h后加入5ml氨水搅拌1h淬灭反应。将反应液逐滴滴入盛有200ml无水乙醇的烧杯中,不断搅拌至产物全部析出,用乙醇溶液反复过滤、洗涤。将滤渣70℃真空干燥24h后得到白色絮状固体产物。
27.制备alkyne-pva-(go-pdo)复合材料。将1g炔基化聚乙烯醇溶解于20ml dmf中,与0.1g go-pdo混合,磁搅拌2h,将混合溶液逐滴滴入无水乙醇中,不断搅拌直至产物全部析出,反复洗涤沉淀物后真空干燥12h,得到alkyne-pva-(go-pdo)纳米复合材料。
28.利用“吸气剂吸附性能测试系统”,进行吸气材料真空吸氢性能测试,采用静态膨胀法获取其吸附等温线。附图3为制备靶向吸氢复合材料的吸附等温线,当平衡压力为9.85 pa时,吸氢容量达到116.92 ml/g。
29.以上所述仅是本发明的较优实施细节,并非是对本发明作任何其它形式的限制,凡是参照本发明说明书所作等效设计变换,直接或间接运用在其它相关领域,均在本发明要求保护范围。
30.本发明的优点是:

该新型纳米复合材料以石墨烯为基底,具有极大的裸露比表面积,能够为各种吸气基团提供负载平台,并可做到对各吸气基团的有效可控间离;

该高性能材料能最大限度地利用钯元素,提高对其利用率。pdo在常温低压条件下可与h2发生反应,生成pd和h2o,而此时,pd又可作为富炔聚乙烯醇的催化剂,继续实现吸氢。在同一位置、针对同一问题实现了对钯的两次利用;

从分子角度打开了人们在消氢途径上的新视野,为吸氢材料的大规模市场化应用提供了理论基础。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献