一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种功率芯片终结区的制备方法及功率芯片的制备方法与流程

2022-12-13 20:10:37 来源:中国专利 TAG:


1.本发明涉及半导体技术领域,尤其涉及一种功率芯片终结区的制备方法及功率芯片的制备方法。


背景技术:

2.绝缘栅双极型晶体管(igbt)是一种mos场效应与双极型晶体管复合的新型电力电子器件。它不但具有mosfet输入电阻大、易于驱动、控制简单的优点;又具有双极型晶体管导通压降低、通态电流大的优点。在导通状态时,主要由元胞区传导电流;当阻断关闭时,器件需承受一定的耐压,其耐压能力取决于器件内部的电场分布在高电场尖峰发生累増崩溃的位置。现已成为现代电力电子电路中的核心元器件之一,广泛应用于交通、能源、工业、家用电器等领域。igbt大部分的应用场景都是应用在大功率大电流下,很多时候需要多颗芯片并联,所以对参数的一致性要求很高。
3.然而,整个芯片的结构包含元胞区与终结区两个部分,在器件元胞区的设计规则是器件本身元胞区是在二维方向上重复组成的平面,但其元胞区的边失去其对称性,所以需要有终结区结构来消散其器件关断跨压承受的电场分布,使器件达到额定耐压需求。因此在器件的设计上需要注意电场在其元胞内部与终结区边界的分布,基于这一考虑目前现今技术主要终结区结构有:场版结构(field plate),浮动环(floating ring),接面边界延伸(junction termination extension)和降低表面电场结构(resurf),其主要就是将边界的接面空乏区尽可能的向外延伸,以达到边缘的崩溃电压值。但是这种设计方式对于额定电压较小的器件尚可应对,对额定电压更高的器件,使器件需要更长的终结区承受电场分布,进一步使芯片面积增大使成本会更高。


技术实现要素:

4.针对现有技术中终结区存在的上述问题,现提供一种旨在大功率器件中提升终结区耐压的功率芯片终结区的制备方法。
5.本发明的另一目的在于提供一种大功率器件中提升终结区耐压的功率器件的制备方法。
6.具体技术方案如下:
7.一种功率芯片终结区的制备方法,其中,包括以下步骤:
8.提供一n型衬底;
9.于所述n型衬底上形成一p 接地环;
10.在所述n型衬底对应终结区位置对应形成一场氧化层;
11.在所述n型衬底上依次形成p型环,所述p型环在未形成所述场氧化层位置所述p型环之间保持间隔设置。
12.优选的,所述p型环包括表面线性p型环,所述表面线性p型环的制备方法包括:
13.提供一第一光罩,所述第一光罩对应所述p 接地环及所述p型环的形成位置开设
有通槽;
14.植入第一预定剂量的p型离子,以在所述n型衬底上分别形成所述p 接地环及所述表面线性p型环。
15.优选的,所述终结区与元胞区之间的第一个p 接地环,所述第一个p 接地环在所述第一个在终结区的边角区与平边区的交汇处。
16.优选的,形成所述p 接地环的方法包括:
17.确定p 接地环域的第一位置;
18.采用第二光罩暴露所述第一位置;
19.对暴露的所述第一位置植入预定剂量的p型离子。
20.优选的,所述p型环包括埋入线性p型环,所述埋入线性p型环的制备方法包括:
21.提供一第三光罩,所述第三光罩对应所述p型环的形成位置开设有通槽;
22.注入第二预定剂量的p型离子;
23.继续通过第四光罩植入预定剂量的砷离子,以在所述n型衬底上分别形成所述埋入线性p型环。
24.优选的,形成所述场氧化层的方法包括:
25.确定场氧化层的第二位置;
26.采用第五光罩暴露所述第二位置;
27.对暴露的所述第二位置进行刻蚀形成第一沟槽;
28.于所述第一沟槽内沉积形成所述场氧化层。
29.优选的,所述p型离子的植入剂量在:boron/100kev/4.0-8.0e14cm-2。
30.优选的,所述p型离子的植入剂量在:boron/100-360kev/1.0-4.0e14cm-2。
31.还包括一种功率芯片的制备方法,其中,包括以下步骤:
32.提供一n型衬底;
33.于所述n型衬底上形成一p 接地环;
34.在所述n型衬底对应终结区位置对应形成一场氧化层;
35.对应所述场氧化层位置依次形成p型环,所述p型环之间保持间隔设置;
36.继续在所述衬底的顶部形成复晶硅层;
37.在所述衬底的底部背向所述复晶硅层的一面依次形成截止层及p型层;
38.继续在所述复晶硅层上进行金属层布局。
39.上述技术方案具有如下优点或有益效果:
40.p 接地环决定边角的第一个电场强度,可藉由第一个p型环p 接地环来调整的电场强度,如图10所示,使其设计可以使用较大的曲率,避开弯角造成的电力线拥挤使电场强度增大(p 接地环是等位环,所以要用大的区率半径,具体可通过把p型线性环位置拉开,面积变大,崩溃电压就变大.e*x=v),因为大部分在弯角造成电压击穿完时,都以増加弯角弧度减少电场强度或是拉大终结区p型环的间距增加崩溃电压值,会増加芯片成本上升,但是此方式不需要再加p 接地环可以藉由在弯角p型环的浓度与光罩调整,増加p 浓度与间隔设计方式优化电场强度。
附图说明
41.参考所附附图,以更加充分的描述本发明的实施例。然而,所附附图仅用于说明和阐述,并不构成对本发明范围的限制。
42.图1为本发明一种功率芯片终结区的制备方法实施例的流程示意图;
43.图2-5为本发明一种功率芯片终结区的制备方法实施例形成表面线性p型环的制程方法对应的结构示意图;
44.图5-8为本发明一种功率芯片终结区的制备方法实施例形成埋入线性p型环的制备方法对应的结构示意图;
45.图9为本发明一种功率芯片终结区的制备方法实施例中,关于终结区b与元胞区a的结构示意图;
46.图10为本发明一种功率芯片终结区的制备方法实施例中,关于边角区设计的仿真示意图。
47.附图标记表示:
48.1、衬底;2、p 接地环;3、场氧化层;61、表面线性p型环;62、埋入线性p型环。
具体实施方式
49.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
50.需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
51.下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
52.如图1所示,一种功率芯片终结区的制备方法首选的实施例,包括以下步骤:
53.包括以下步骤:
54.提供一n型衬底1;
55.于所述n型衬底1上形成一p 接地环;
56.在所述n型衬底1对应终结区位置对应形成一场氧化层3;
57.在所述n型衬底1上依次形成p型环,所述p型环在未形成所述场氧化层3位置所述p型环之间保持间隔设置。
58.功率半导体器件(power semiconductor device)包括平面栅/沟槽栅mosfet晶体管、绝缘栅双极晶体管(igbt)、整流管与同步整流管等。这些半导体器件芯片(die)以igbt芯片之功能分为有源区、栅极区及场终结区三个部分。有源区和栅极区又称元胞区是芯片的功能区域,主要影响芯片的电压与电流相关参数等,如:导通电压、门极电压、开关与短路特性等。目前技术的场终结区是芯片的边缘区域主要普遍采用场限环(field limiting rings,flrs)与场板(field plates,fps)相结合的终端结构提供连接和沟道截止的无源区,主要使有源区周围的电场最小化并不用于传导电流,一般通过增大场限环个数、宽度以及场板的长度,即可提高器件耐压能力。另有,为了提高芯片高温性能,采用半绝缘材料如:掺氧半绝缘多晶硅(semi-insulating polycrystalline silicon,sipos)提高芯片的高温
耐压性能有效阻挡离子对器件的污染,提高器件的可靠性。
59.现有技术中,设计具有比有源区更高的击穿电压能力的场终止区大都是选择合适的环宽、个数及场板的长度决定。但是,器件耐压能力与环数、环宽和场板长度之间存在非线性关系,其值随着器件额定电压越大,所需的场终止区耐压宽度必然增大,因此如何设计一个优化的终结区结构又可以提高抗离子能力是一大技术难点。
60.本技术正式为了应对器件额定电压越来越大,场终止区耐压宽度必然增大,进一步使器件越做越大成本上升的问题。其通过设置的p型环,增加p区域可空乏区域,所以可以缩短距离,进一步地在p型环的上方设置n离子层,n离子层可以有效地达到抑制硅/氧化层的界面电荷与移动离子能力等会造成崩溃电压下降。
61.在一种较优的实施方式中,p型环6在终结区在两个场氧化层3中间露出的硅表面内呈线性设置。
62.在一种较优的实施方式中,所述终结区b与元胞区a之间的第一个p 接地环,所述第一个p 接地环在所述第一个在终结区的边角区与平边区的交汇处。在本实施例中,边角区p 与平边区p ,因为曲率半径造成弯角电力线密集电场强度变更高,通过改进加大边角区p 以扩大曲率半径减小电场强度,配合与线性p型环6调整优化边角区电场强。现有的处理方式直接平区设计延伸到边角区,这就是目前常发生终结区失效点在边角区的交界处或是边角区上。
63.在一种较优的实施方式中,所述p型环包括表面线性p型环61,所述表面线性p型环61的制备方法包括:
64.提供一第一光罩,所述第一光罩对应所述p 接地环及所述p型环的形成位置开设有通槽;
65.植入第一预定剂量的p型离子,以在所述n型衬底上分别形成所述p 接地环及所述表面线性p型环61。
66.在一种较优的实施方式中,形成p 接地环的方法包括:确定p 接地环域的第一位置;采用光罩一暴露第一位置;对暴露的第一位置植入预定剂量的p型离子。优选的,p型离子的植入剂量在:boron/100kev/4.0-8.0e14cm-2。
67.在一种较优的实施方式中,形成场氧化层3的方法包括:确定场氧化层3的第二位置;采用第五光罩暴露第二位置;对暴露的第二位置进行刻蚀形成第一沟槽;
68.于第一沟槽内沉积形成场氧化层3。在本实施例中,形成的第一沟槽可采用locos fox的制程工艺。
69.在一种较优的实施方式中,所述p型环包括埋入线性p型环62,所述埋入线性p型环62的制备方法包括:
70.先制备p 接地环;
71.制备p 接地环后,继续提供一第三光罩,所述第三光罩对应所述p型环的形成位置开设有通槽;
72.注入第二预定剂量的p型离子;
73.继续通过第四光罩植入预定剂量的砷离子,以在所述n型衬底上分别形成所述埋入线性p型环62。
74.其中,第二预定剂量大于第一预定剂量,在制备埋入线性p型环62时注入的pp型离
子的植入剂量在:boron/360kev/4.0-8.0e14cm-2。而在制备表面线性p型环61是注入p型离子的植入剂量在:boron/100kev/4.0-8.0e14cm-2,制备表面线性p型环61的较为突出的优点是,仅使用一个光罩,同时形成所述p 接地环及所述表面线性p型环61,相比埋入式节省一个光罩的使用。
75.对应两种p型环的制备方法进行说明:
76.实施例一
77.s11、提供一n型衬底1;
78.s12、提供一第一光罩,所述第一光罩对应所述p 接地环及所述p型环的形成位置开设有通槽;
79.s13、植入第一预定剂量的p型离子,以在所述n型衬底上分别形成所述p 接地环及所述表面线性p型环61;
80.s14、在所述n型衬底1对应终结区位置对应形成一场氧化层3;
81.s15、所述p型环在未形成所述场氧化层3位置所述p型环之间保持间隔设置。
82.实施例二
83.s21、提供一n型衬底1;
84.s22、于所述n型衬底1上形成一p 接地环;
85.s23、在所述n型衬底1对应终结区位置对应形成一场氧化层3;
86.s24、继续提供一第三光罩,所述第三光罩对应所述p型环的形成位置开设有通槽;
87.s25、注入第二预定剂量的p型离子;
88.s26、继续通过第四光罩植入预定剂量的砷离子,以在所述n型衬底上分别形成所述埋入线性p型环62。
89.如图前面箭头处就是开始位置,蓝色代表平区,红色3d就是边角,所以要放宽间隔,在边角区域,才可以达到崩溃电压值.只要把p型线性环位置拉开,面积变大,崩溃电压就变大.e*x=v
90.本发明的技术方总共还包括一种功率芯片的制备方法的实施例,其中,包括以下步骤:
91.提供一n型衬底1;
92.于n型衬底1上形成一p 接地环;
93.在n型衬底1对应终结区位置对应形成一场氧化层3;
94.对应场氧化层3位置依次形成p型环,p型环之间保持间隔设置
95.继续在衬底1的顶部(sti或是locos场氧化层3上方)形成复晶硅层,其目的是为了将在线性p型环61上的电场强度峰值,因为复晶场板的效果将电场尖峰引到场氧化层3进而降低直接跨压在p型环61上结构布局设计的终结环的电场强度更低;
96.在衬底1的底部背向复晶硅层的一面依次形成截止层及p型层;
97.继续在复晶硅层上进行金属层布局。
98.在本实施例中,终结区的制备工艺在上述的终结区的制备工艺中已做详细阐述,此处不再赘述;需要说明的是,p型环之后的制备工艺为现有的常规制备工艺,不做较为详细的展开。
99.以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范
围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献