一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

微发光二极管布局结构及其制作方法与流程

2022-12-09 19:25:05 来源:中国专利 TAG:


1.本发明涉及一种微发光二极管(micro led)的布局结构,更具体言之,其涉及一种用于扩增实境(augmented reality,ar)与混合实境(mixed reality,mr)的微发光二极管布局结构及其相关制作工艺。


背景技术:

2.微发光二极管(micro led)是近年发展兴起的显示器技术,其特征为微型化led阵列结构,具有自发光显示特性,每一像素都能单独驱动,具有高亮度、高对比、低耗电、高分辨率及高色彩饱和度等特性。相较于同是自发光的有机发光二极管(oled)显示器,微发光二极管更具有效率高、寿命长、环境耐受性佳等优势。微发光二极管独特的低功耗、高亮度特性让它非常适合运用在穿戴式的手表、手机、车用显示器、扩增实境(augmented reality,ar)/虚拟实境(virtual reality,vr)、显示器及电视等领域,已被视为是继过渡的次毫米发光二极管(mini led)后最具发展潜力的下世代新型显示技术。
3.基于上述微发光二极管低功耗与高分辨率的特性与优点,目前业界正致力于研究与开发新的微发光二极管结构与相关制作工艺,以期能将其应用在小尺寸穿戴装置与扩增/混合实境(ar/mr,mixed reality)装置方面,例如具备扩增/混合实境功能的智能眼镜(smart glass)。然而,目前要将微发光二极管应用在扩增/混合实境的穿戴式装置上还有许多需要克服的技术瓶颈,例如巨量转移(mass transfer)的技术挑战、透光率的改善、微发光二极管镜片、以及与现有cmos制作工艺的整合性等等。


技术实现要素:

4.致力于研究与开发微发光二极管(micro led)在扩增(ar)/混合实境(mr)方面的应用,本发明于此提出了一种新颖的微发光二极管布局结构,其特点在于将微发光二极管设计成排列在每个显示单元的边缘并空出中间的透光区域,以此达到较高的透光率并同时兼具高分辨率与高光效的显示品质。
5.本发明的其一面向在于提出一种用于扩增实境与混合实境的微发光二极管布局结构,包含一透明基底,该透明基底上界定有多个显示单元排列成一单元阵列、多个微发光二极管,设置在每个显示单元的边缘区域并裸露出为边缘区域所围绕的透光区域、以及像素驱动电路,设置在该些微发光二极管正下方的该边缘区域上。
6.本发明的另一面向在于提出一种用于扩增实境与混合实境的微发光二极管布局结构的制作方法,其步骤包含提供一基底,其中该基底上界定有多个显示单元排列成一单元阵列,每个该显示单元包含边缘区域与为该边缘区域所围绕的透光区域、在该基底上的每个显示单元的该边缘区域上形成像素驱动电路与第一透光层、以及在该些边缘区域的该第一透光层上设置多个微发光二极管,该些微发光二极管与下方的该像素驱动电路连接。
7.本发明的这类目的与其他目的在阅者读过下文中以多种图示与绘图来描述的优选实施例的细节说明后应可变得更为明了显见。
附图说明
8.本说明书含有附图并于文中构成了本说明书的一部分,使阅者对本发明实施例有进一步的了解。该些图示描绘了本发明一些实施例并连同本文描述一起说明了其原理。在该些图示中:
9.图1为一搭载本发明具有微发光二极管布局结构的镜片的智能眼镜的示意图;
10.图2为本发明优选实施例一具有微发光二极管的显示单元的示意图;
11.图3为本发明优选实施例一具有微发光二极管的单元阵列的示意图;
12.图4为本发明另一实施例一具有微发光二极管的单元阵列的示意图;
13.图5为本发明又一实施例一具有微发光二极管的单元阵列的示意图;以及
14.图6至图10为本发明优选实施例一微发光二极管布局结构的制作流程示意图。
15.需注意本说明书中的所有图示都为图例性质,为了清楚与方便图示说明之故,图示中的各部件在尺寸与比例上可能会被夸大或缩小地呈现,一般而言,图中相同的参考符号会用来标示修改后或不同实施例中对应或类似的元件特征。
16.主要元件符号说明
17.100 智能眼镜
18.102 镜片
19.102a 中间区域
20.102b 周边区域
21.104 镜架
22.106 镜腿
23.108 单元阵列
24.109 间距
25.110 显示单元
26.110a 透光区域
27.110b 边缘区域
28.114微发光二极管
29.116 迷你阵列
30.120 基底
31.122 第一透光层
32.124 像素驱动电路
33.126 金属互连结构
34.128 第二透光层
35.130,132 凹槽
36.134 透镜层
37.136,138 微透镜结构
38.140 保护层
具体实施方式
39.现在下文将详细说明本发明的示例性实施例,其会参照附图示出所描述的特征以
便阅者理解并实现技术效果。阅者将可理解文中的描述仅通过例示的方式来进行,而非意欲要限制本案。本案的各种实施例和实施例中彼此不冲突的各种特征可以以各种方式来加以组合或重新设置。在不脱离本发明的精神与范畴的情况下,对本案的修改、等同物或改进对于本领域技术人员来说是可以理解的,并且旨在包含在本案的范围内。
40.阅者应能容易理解,本案中的「在

上」、「在

之上」和「在

上方」的含义应当以广义的方式被解读,以使得「在

上」不仅表示「直接在」某物「上」而且还包括在某物「上」且其间有居间特征或层的含义,并且「在

之上」或「在

上方」不仅表示「在」某物「之上」或「上方」的含义,而且还可以包括其「在」某物「之上」或「上方」且其间没有居间特征或层(即,直接在某物上)的含义。
41.此外,诸如「在

之下」、「在

下方」、「下部」、「在

之上」、「上部」等空间相关术语在本文中为了描述方便可以用于描述一个元件或特征与另一个或多个元件或特征的关系,如在附图中示出的。
42.如本文中使用的,术语「基底」是指向其上增加后续材料的材料。可以对基底自身进行图案化。增加在基底的顶部上的材料可以被图案化或可以保持不被图案化。此外,基底可以包括广泛的半导体材料,例如硅、锗、砷化镓、磷化铟等。或者,基底可以由诸如玻璃、塑胶或蓝宝石晶片的非导电材料制成。
43.现在请参照图1,其为一搭载本发明具有微发光二极管(micro led)布局结构的镜片的智能眼镜100的示意图。智能眼镜100由镜片102、镜架104以及镜腿106三个部位构成。每个镜片102上界定有位于镜片边缘的周边区域102b以及被该周边区域102b所围绕的中间区域102a,其中中间区域102a即为一般镜片的透光部位,配戴眼镜的人可通过该部位接收到外界的影像光。在本发明实施例中,镜片102的中间区域102a上会设置有由微发光二极管所排列而成的显示单元阵列,来在镜片上提供扩增实境(augmented reality)或混合实境(mixed reality)的运作中能够与现实世界场景进行结合与互动的影像或信息。镜片102的周边区域102b可为不透光的非可视部位,其上可设置供微发光二极管运作的发光二极管驱动电路以及主要逻辑电路等。将发光二极管驱动电路与逻辑电路设计在镜片102的周围可以避免该些电路元件遮挡可视的中间区域102a,提升镜片整体透光度与视觉体验。
44.复参照图1,智能眼镜100的镜架104会与镜片102相接,其内部可以设置小型电路板,例如包含无线通讯模块、感测模块以及麦克风部件的电路板。智能眼镜100空间较大的镜腿106中则可以设置主电路板,例如包含微处理器、微系统模块以及扬声器部件的电路板,且可以容置体积较大的供能电池部件。上述的功能性电路或模块可通过镜架104中的接线来与镜片102周边区域102b上的电路连接,以将所欲传达的影像与信息通过镜片102上由微发光二极管排列而成的显示单元阵列显示出来。再者,将上述功能电路或模块设计在具有重量支撑的镜架104或镜腿106部位上可提供良好的佩戴体验。
45.接着请参照图2,其为根据本发明优选实施例一具有微发光二极管的显示单元的示意图。在本发明实施例中,ar/mr互动影像或信息是通过多个显示单元110发出影像光在镜片上显示出来。每个显示单元110较佳具有相同且规则的形状,如图2所示的正方形。在其他实施例中,显示单元110也可是矩形或是多边形,只要它们能在镜片102的中间区域102a上排列成均匀规律的单元阵列。在本发明实施例中,每个显示单元110都具有位于边缘的边缘区域110b以及被边缘区域110b所围绕的透光区域110a。其中,显示单元110的透光区域
110a上不会设置任何部件,其可视为是镜片102本体。显示单元110的边缘区域110b上则会设置多个微发光二极管114,其较佳会围住整个显示单元110的透光区域110a。在本发明较佳实施例中,这些微发光二极管114包含红(r)、绿(g)、蓝(b)三种颜色的微发光二极管,每个微发光二极管114都作为一子像素,每一组相邻的红(r)、绿(g)、蓝(b)微发光二极管114构成一像素,亦即可发出全彩光的影像点。该些像素所发出的影像光结合在一起即为镜片上所呈现出的输出影像。
46.接着请参照图3,其为根据本发明优选实施例具有微发光二极管的单元阵列的示意图。在本发明实施例中,多个前述的显示单元110会在镜片102的中间区域102a上排列成单元阵列108。如图3所示,该些单元阵列108会紧密地排列设置,彼此间隔一小段间距109。以如此设置,可以看到微发光二极管114在镜面上排列成网状形态,该些微发光二极管114即在镜片上构成了一影像输出屏幕,可输出ar/mr互动影像或信息。另一方面,未设置、未被微发光二极管114所遮盖的部位(即透光区域110a)则作为一般镜片的透光部位,配戴智能眼镜的人可通过该些透明部位接收到外界的影像光。
47.根据本发明上述特征,本发明相较于现有技术的优点如下:首先,本发明的微发光二极管114是直接制作在镜片的透光/可视区域上,有别于现有技术大多采用干涉波导的方式将影像从设置在镜片外的影像输出装置处导至镜面上,直接在镜片上输出影像的做法影像分辨率较高、不失真、视野较宽,且较为省电。再者,本发明上述的显示单元110设计可以在镜面上空出均匀且大面积的透光区域,使得微发光二极管的设置不会影响到镜片原有的透光性质,透光率可大于50%,甚至可达70%,同时又保有优良的影像输出品质。
48.接着请参照图4,其为根据本发明另一实施例中具有微发光二极管的单元阵列的示意图。此实施例的单元阵列108与前述实施例大同小异,差异在于此实施例中的显示单元110与显示单元110彼此邻接,其间不具有间隙。
49.接着请参照图5,其为根据本发明又一实施例中具有微发光二极管的单元阵列的示意图。在此实施例中,显示单元110的组成与前述实施例大同小异,然而微发光二极管114并不是围绕着整个透光区域110a排列的,而是每四个微发光二极管114(例如红(r)、绿(g)、红(r)、蓝(b)的配置)先排列成一个正方形的迷你阵列116,该些迷你阵列116再彼此间隔地设置在每个显示单元110的边缘区域110b上。这类微发光二极管114迷你阵列116的优点在于,由于微发光二极管114在巨量转移步骤中是以四个一组的方式进行取放,其可提升巨量转移步骤的良率并减少转移所需的时间。
50.接着请依序参照图6至图10,其为根据本发明优选实施例中微发光二极管布局结构的制作流程示意图。本发明微发光二极管布局结构的制作工艺可与一般现有的互补式金属氧化物半导体(cmos)制作工艺整合,更具体言之,本发明的微发光二极管布局结构可以与周边所需的驱动电路以及逻辑电路在同一cmos制作工艺中同时形成在镜片上,不需要开发新的额外制作工艺或是会对现有制作工艺造成影响,可节省大量的制作成本与开发时间。
51.首先参照图6。提供一基底120作为整个制作工艺的制作基础,如以半导体材料所构成、适合cmos制作工艺的基底,其中的半导体材料可选自由硅、锗、硅锗化合物、硅碳化物以及砷化镓等材料所构成的群组。在本发明实施例中,基底120上界定有前述显示单元110的透光区域110a以及边缘区域100b,其中透光区域110a上将不会设置任何元件,边缘区域
100b则会用来设置本发明的微发光二极管以及驱动电路等部件。接着,以一般的cmos制作工艺在基底120的边缘区域100b上制作出像素驱动电路124与金属互连结构126等部件。需注意在本发明实施例中,像素驱动电路124(包含栅极元件)可与设置在镜片周边区域102b(见图1)上的微发光二极管驱动电路以及逻辑电路等元件同时在cmos的前段制作工艺(feol)中制作形成,且像素驱动电路124会与该些微发光二极管驱动电路以及逻辑电路电连接,以接收并传递所需的影像信号。同理,边缘区域100b上的金属互连结构126可与镜片周边区域102b上的金属互连结构同时在cmos的后段制作工艺(beol)中制作形成。像素驱动电路124可采用共同阴极的设计,其通过接触件与金属互连结构126连接。前述的像素驱动电路124以及金属互连结构126都可形成在基底120上的一第一透光层122中。第一透光层122可包含一般逻辑元件上的层间介电层(inter-layer dielectric,ild)与金属间介电层(inter-metal dielectric,imd),其材料可为超低介电常数(ultra low-k,ulk)材料或是四乙氧基硅烷(tetraethoxysilane,teos),以化学气相沉积(cvd)等沉积制作工艺形成在基底上。金属互连结构126的材料可选自由钨(w)、铜(cu)、铝(al)、钛铝合金(tial)、钴钨磷化物(cowp)等所构成的群组,但不局限于此。
52.请参照图7。在边缘区域110b上形成像素驱动电路124以及金属互连结构126之后,微发光二极管114会被设置在第一透光层122上并与其中的金属互连结构126的电连接。在本发明实施例中,微发光二极管114会先在一led基板上完成制作。之后,再通过巨量转移制作工艺将个别的微发光二极管114从源基板上分离并取放到基底120上,与对应的金属互连结构126完成连接,例如通过倒装接合的方式。如此,像素驱动电路124便可经由金属互连结构126控制微发光二极管114的发光。
53.请参照图8。在完成微发光二极管114的接合后,接下来要进行微透镜阵列的制作。首先在该些微发光二极管114以及第一透光层122的正面上形成一第二透光层128。第二透光层128的材质可与第一透光层122完全相同,其可为超低介电常数材料或是四乙氧基硅烷,以cvd制作工艺形成在第一透光层122上。第二透光层128会覆盖并保护微发光二极管114,且后续制作工艺将在第二透光层128上制作出微透镜结构。接着,通过光刻制作工艺在第二透光层128形成多个凹槽130,132。在本发明实施例中,凹槽130,132在透光层表面基本上会排列成阵列形态,且由于微发光二极管114与透光区域110a所需的微透镜结构尺寸不同,透光区域110a与边缘区域110b两种区域上所形成凹槽130,132的宽度与深度也会有所不同。在本发明较佳实施例中,边缘区域110b上的每个凹槽132会重叠并对应一个所设置的微发光二极管114。
54.请参照图9。在凹槽130,132形成后,接着在第二透光层128上形成一层透镜层134。透镜层134的材料可为透光率达90%以上的聚丙烯酸(polymethylmethacrylate,pmma)、聚苯乙烯(polystyrene,ps)、聚碳酸酯(polycarbonate,pc)、环状烯烃聚合物(cycloolefin polymer,cop)、环状烯烃共聚物(cyclic olefin copolymer,coc)等常用的塑胶光学材料,其会覆盖整个第二透光层128的表面并填满凹槽130,132。接着,进行一紫外线固化制作工艺使得所沉积的透镜层134固化收缩,如此形成如图中所示的微透镜结构136,138。在本发明实施例中,由于形成微透镜结构136,138的透镜层134沉积在具有不同宽度与深度的凹槽130,132中,收缩后形成的微透镜结构136,138会具有不同的曲率,可提供较佳的视觉平衡。在本发明优选实施例中,边缘区域110b上的每个微透镜结构138都会对应一个下方的微发
光二极管114(子像素)。在其他实施例中,也有可能是一个微透镜结构138对应多个微发光二极管114,且微透镜结构138也可能是凸透镜形态而非凹透镜形态,视发明需求而定。
55.请参照图10。在完成微透镜阵列的制作后,接下来进行一晶背研磨制作工艺,如化学机械平坦化(cmp)制作工艺,来薄化不透光的基底120,使其厚度与重量减少,以适合制作成最终的镜片成品。接着,进行光刻制作工艺移除透光区域110a的基底120,使得透光区域110a的正反面透光。最后,在基底120与裸露出的第一透光层122背面镀上一层保护层140,如透光的氧化硅层或氮化硅层,如此即完成了本发明微发光二极管布局结构的制作。上述的微发光二极管布局结构可直接作为智能眼镜的镜片来使用,或者是将其附接在一额外的透明基底上来使用。
56.以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献