一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

电化学装置及电子装置的制作方法

2022-11-23 16:08:24 来源:中国专利 TAG:


1.本技术涉及电化学技术领域,具体涉及一种电化学装置及电子装置。


背景技术:

2.锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等特点,广泛应用于电能储存、便携式电子设备和电动汽车等各个领域。随着锂离子电池的使用范围不断扩大,市场对锂离子电池提出了更高的要求,例如要求锂离子电池具有更快的充电速度、更长的使用寿命。
3.电解液的保液量对锂离子电池的循环性能有很大影响,高压密条件下,高保液量会带来更多的安全问题和挑战,而降低电解液含量会带来循环性能衰减的问题。


技术实现要素:

4.本技术的目的在于提供一种电化学装置及电子装置,以提高电化学装置的循环性能。具体技术方案如下:
5.本技术第一方面提供了一种电化学装置,其包括正极极片、负极极片、电解液和隔膜,所述电解液质量占电芯总质量的质量百分含量a为2%至8%,例如,a可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%或为其间的任意范围;所述电解液中包含s
4
/s
6
以上价态的含硫物质,基于所述电解液的总质量,所述含硫物质的质量百分含量b为10%至20%,例如,b可以为10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%或为其间的任意范围。
6.其中,所述电芯总质量为所述电化学装置除包装结构外其余部分的质量。
7.本技术发明人经研究发现,控制电解液的质量百分含量及含s
4
/s
6
价态成膜添加剂的质量百分含量在本技术的范围内,能够在负极形成稳定的高离子传导固体电解质界面(sei)膜,在循环过程中降低电解液消耗,在低注液量的条件下能够提升电化学装置的循环性能和安全性能。
8.本技术的一种实施方案中,所述含硫物质选自下式的化合物中的至少一种:
[0009][0010]
其中,
[0011]
r1、r2、r3、r4、r5、r6、r7各自独立地选自c1至c
10
饱和烃基、c2至c
10
不饱和烃基、c1至c
10
卤代烷基、c2至c
10
卤代烯基、c2至c
10
卤代炔基、c6至c
26
芳基、-f、-cl、-h中的任一种;
[0012]
r1和r2、r3和r4、r5和r6、r7和r8可以连接成环。
[0013]
不限于任何理论,本技术人经研究发现,当选择上述含硫物质时,能够进一步提升
电化学装置的循环性能和安全性能。
[0014]
本技术的一种实施方案中,所述含硫物质包括2,4-丁磺内酯、1,3-丙磺内酯、亚硫酸乙烯酯、亚硫酸丙烯酯、亚硫酸二甲酯、二乙基亚硫酸酯中的至少一种。不限于任何理论,本技术人经研究发现,当选择上述含硫物质时,能够进一步提升电化学装置的循环性能和安全性能。
[0015]
本技术的一种实施方案中,所述电解液包括含氟添加剂,基于所述电解液的总质量,所述含氟添加剂的质量百分含量c为15%至30%,例如,c可以为15%、18%、21%、24%、27%、30%或为其间的任意范围。本技术人经研究发现,通过控制含氟添加剂的质量百分含量在本技术范围内,有利于在负极生成稳定高离子传导的sei膜,从而提升电化学装置的循环性能和安全性能。
[0016]
本技术的一种实施方案中,所述含氟添加剂选自下式的化合物中的至少一种:
[0017][0018]
其中,
[0019]
x1、x2、x3、x4、x5、x6各自独立地选自c1至c
10
氟代饱和烃基、c2至c
10
氟代不饱和烃基、c1至c
10
卤代烷基、c2至c
10
卤代烯基、c2至c
10
卤代炔基、c6至c
26
芳基、-f、-h中的任一种;
[0020]
y1选自含p、b、o、n或s;
[0021]
y2、y3各自独立地选自c1至c
10
氟代饱和烃基、c2至c
10
氟代不饱和烃基、p、b、o、s、n中的任一种;
[0022]
x1和x2、x3和x4、x5和x6以及y2和y3中的至少一个为含氟基团;
[0023]
x1和x2、x3和x4、x5和x6以及y2和y3可以连接成环。
[0024]
不限于任何理论,本技术人发现,通过选择上述含氟添加剂,可以进一步提升电化学装置的循环性能和安全性能。
[0025]
本技术的一种实施方案中,所述含氟添加剂包括氟代碳酸乙烯酯、氟代碳酸甲乙酯、氟代碳酸二甲酯、氟代碳酸二乙酯、氟代丙酸乙酯、氟代丙酸丙酯、氟代乙酸乙酯、六氟磷酸锂、双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、四氟硼酸锂、三氟甲基磺酸锂和二氟磷酸锂中的至少一种。当含氟添加剂为含氟锂盐时,基于电解液的总质量,含氟锂盐的质量百分含量为10%至30%,例如可以为10%、12%、15%、18%、21%、24%、27%、30%或为其间的任意范围。不限于任何理论,本技术人发现,通过选择上述含氟添加剂,可以进一步提升电化学装置的循环性能和安全性能。
[0026]
本技术的一种实施方案中,所述正极极片的孔隙率为d%,d的取值范围为5≤d≤
35,例如,d可以为5、10、15、20、25、30、35或为其间的任何范围,其中d%与a%的关系如下:0.5≤d%/a%≤15,例如,d%/a%可以为0.5、1、3、5、7、9、12、15或为其间的任意范围。本技术人经研究发现,通过控制正极极片的孔隙率在上述范围内,协同控制孔隙率及电解液的质量百分含量,在高压密的条件下,电解液将孔隙充分润湿,能够提供足够的电子通路,且无较多的副产物,从而提高电化学装置的循环性能和安全性能。
[0027]
本技术的一种实施方案中,所述负极极片表面的sei膜中硫元素的质量百分含量与氟元素的质量百分含量之和为e%,其中,10≤e≤50,例如,e可以为10、15、20、25、30、35、40、45、50或为其间的任意范围。本技术人经研究发现,当e值过高时(例如e大于50),电化学装置的界面动力学变差,进而循环性能恶化;当e值过低时(例如e小于10),sei膜稳定性降低,循环性能和安全性能恶化,通过控制e值在上述范围内,可以进一步提高电化学装置的循环性能和安全性能。
[0028]
本技术第二方面提供了一种电子装置,包含本技术第一方面提供的电化学装置,由于本技术的电化学装置具有良好的循环性能和安全性能,从而本技术提供的电子装置具有较长的使用寿命和良好的性能。
[0029]
本技术提供了一种电化学装置及电子装置,通过调控电化学装置中电解液的质量百分含量、含硫物质和含氟添加剂的使用,提高sei膜的离子电导率,在循环过程中降低电解液消耗,限定孔隙率与电解液保液量之间的关系,在降低注液量同时提升安全性能和循环性能。
具体实施方式
[0030]
为使本技术的目的、技术方案、及优点更加清楚明白,以下参照实施例对本技术进一步详细说明。显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。本领域普通技术人员基于本发明中的实施例所获得的所有其他实施例,都属于本技术保护的范围。
[0031]
需要说明的是,本技术的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本技术,但是本技术的电化学装置并不仅限于锂离子电池。
[0032]
本技术中的正极极片没有特别限制,只要能够实现本技术目的即可。所述正极极片通常包含正极集流体和正极活性材料。上述正极集流体没有特别限制,可以为本领域公知的任何正极集流体,例如铝箔、铝合金箔以及复合集电体等。上述正极活性材料没有特别限制,可以为现有技术的任何正极活性材料,例如,可以包括镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、钴酸锂、锰酸锂或磷酸锰铁锂中的至少一种。
[0033]
在本技术中,正极集流体和正极活性材料的厚度没有特别限制,只要能够实现本技术目的即可。例如,正极集流体的厚度为8μm至12μm,正极活性材料的厚度为30μm至120μm。
[0034]
在本技术中,正极材料层中还可以包括导电剂,本技术对导电剂没有特别限制,只要能够实现本技术目的即可,例如可以包括但不限于导电炭黑(super p)、碳纳米管(cnts)、碳纤维、鳞片石墨、科琴黑、石墨烯、金属材料或导电聚合物中的至少一种。上述碳纳米管可以包括但不限于单壁碳纳米管和/或多壁碳纳米管。上述碳纤维可以包括但不限于气相生长碳纤维(vgcf)和/或纳米碳纤维。上述金属材料可以包括但不限于金属粉和/或
金属纤维,具体地,金属可以包括但不限于铜、镍、铝或银中的至少一种。上述导电聚合物可以包括但不限于聚亚苯基衍生物、聚苯胺、聚噻吩、聚乙炔或聚吡咯中的至少一种。
[0035]
任选地,正极还可以包括导电层,导电层位于正极集流体和正极材料层之间。本技术对导电层的组成没有特别限制,可以是本领域常用的导电层,例如可以包括但不限于上述导电剂和上述粘结剂。
[0036]
本技术中的负极集流体没有特别限制,可以使用金属箔材或多孔金属板等材料,例如铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。负极活性材料层包括负极活性材料、导电剂、粘结剂和增稠剂。粘结剂可以是丁苯橡胶(sbr)、聚偏二氟乙烯(pvdf)、聚四氟乙烯(ptfe)、聚乙烯醇缩丁醛(pvb)、水性丙烯酸树脂(water-basedacrylic resin)或羧甲基纤维素(cmc)中的至少一种;增稠剂可以是羧甲基纤维素。
[0037]
在本技术中,负极材料层中还可以包括导电剂,本技术对导电剂没有特别限制,只要能够实现本技术目的即可,例如可以包括但不限于上述导电剂中的至少一种。
[0038]
在本技术中,负极材料层中还可以包括粘结剂,本技术对粘结剂没有特别限制,只要能够实现本技术目的即可,例如可以包括但不限于上述粘结剂中的至少一种。
[0039]
任选地,负极还可以包括导电层,导电层位于负极集流体和负极材料层之间。本技术对导电层的组成没有特别限制,可以是本领域常用的导电层,导电层可以包括但不限于上述导电剂和上述粘结剂。
[0040]
本技术中的隔膜没有特别限制,只要能够实现本技术目的即可,隔离膜基材可以选自聚乙烯(pe)、聚丙烯(pp)、聚对苯二甲酸乙二醇酯(pet)、聚酰亚胺(pi)或芳纶中的至少一种。举例来说,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯和超高分子量聚乙烯中的至少一种组分。尤其是聚乙烯和聚丙烯,它们对防止短路具有优良的作用,并可以通过关断效应改善电化学装置的稳定性。本技术的隔离膜可以具有多孔结构,孔径的尺寸没有特别限制,只要能实现本技术的目的即可,例如,孔径的尺寸可以为0.01μm至1μm。在本技术中,隔离膜的厚度没有特别限制,只要能实现本技术的目的即可,例如厚度可以为5μm至500μm。
[0041]
在本技术中,电解液还可以包括非水溶剂,本技术对非水溶剂没有特别限制,只要能实现本技术的目的即可,例如,可以包括但不限于碳酸酯化合物、羧酸酯化合物、醚化合物或其它有机溶剂中的至少一种。上述碳酸酯化合物可以包括但不限于链状碳酸酯化合物或环状碳酸酯化合物中的至少一种。上述链状碳酸酯化合物可以包括但不限于碳酸二甲酯(dmc)、碳酸二乙酯(dec)、碳酸二丙酯(dpc)、碳酸甲丙酯(mpc)、碳酸乙丙酯(epc)或碳酸甲乙酯(mec)中的至少一种。上述环状碳酸酯可以包括但不限于碳酸亚乙酯(ec)、碳酸亚丙酯(pc)、碳酸亚丁酯(bc)或碳酸乙烯基亚乙酯(vec)中的至少一种。上述羧酸酯化合物可以包括但不限于甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯或己内酯中的至少一种。上述醚化合物可以包括但不限于二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃或四氢呋喃中的至少一种。上述其它有机溶剂可以包括但不限于二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、n-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯或磷酸酯中的至少一种,基于电解液的总质量上述其他非水溶剂的总质量百分含量10%至80%,例如,可以为10%、15%、20%、30%、35%、40%、45%、50%、55%、60%、65%、
70%、75%、80%或其间的任意范围。
[0042]
在本技术中,电解液还可以包括锂盐,锂盐包括但不限于六氟磷酸锂双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂、二氟草酸硼酸锂、四氟硼酸锂、三氟甲基磺酸锂、二氟磷酸锂、六氟砷酸锂、二草酸硼酸锂、高氯酸锂中的至少一种,本技术对锂盐的质量百分含量没有特别限制,只要能实现本技术的目的即可,基于电解液的总质量,锂盐总的质量百分含量为10%至37.5%,例如可以为10%、12%、14%、16%、18%、20%、30%、37.5%或为其间的任意范围,当含氟锂盐同时作为含氟添加剂和锂盐时,含氟锂盐的质量百分含量为10%至30%,例如可以为10%、12%、14%、16%、18%、20%、30%或为其间的任意范围。
[0043]
本技术中的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携cd机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
[0044]
电化学装置的制备过程为本领域技术人员所熟知的,本技术没有特别的限制。例如锂离子电池可以通过以下过程制造:将正极和负极经由隔离膜重叠,并根据需要将其卷绕、折叠等操作后放入壳体内,将电解液注入壳体并封口。此外,也可以根据需要将防过电流元件、导板等置于壳体中,从而防止锂离子电池内部的压力上升、过充放电。
[0045]
以下,举出实施例及对比例来对本技术的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为质量基准。
[0046]
具体测试方法和设备
[0047]
循环测试方法:
[0048]
将锂离子电池放至25℃恒温箱中,以恒定电流0.5c充电至4.5v下,恒压充电至0.05c,再以1.0c恒流放电至3.0v,此为一个充放电循环过程,按上述方式进行500次循环充放电测试,监控容量保持率。
[0049]
容量保持率=[剩余放电容量/初始放电容量]
×
100%。
[0050]
热箱测试方法:
[0051]
将锂离子电池在20
±
5℃下0.5c恒流充电至4.2v,4.2v下恒压充电至0.05c,设置炉温为25℃,静置30min后开始以5
±
2℃/min升温速率,升温至指定温度
±
2℃,保持60min,监控过程中电压、锂离子电池表面温度及炉温的变化以及是否漏液、起火、爆炸。
[0052]
跌落测试方法:
[0053]
将锂离子电池在20
±
5℃下0.5c恒流充电至4.2v,4.2v下恒压充电至0.05c,从高度为1.5米的位置自由跌落到光滑大理石表面;跌落顺序:正面-反面-下面-上面-左面-右面-左上角-右上角-左下角-右下角,每个面/角连续做1次跌落为一轮,检查电池,共跌落10轮。记录锂离子电池测试后电压和内阻电压、锂离子电池表面温度的变化以及是否漏液、起火、爆炸。
[0054]
孔隙率的测试方法:
[0055]
采用气体置换法测试正极极片孔隙率:样品的孔体积占样品总体积的百分比p%。
[0056]
将待测的正极极片冲切成固定大小(直径d=10mm)且形状规则的小圆片,称取一定质量的样品小片,置于真密度测试仪(accupyc ii 1340)中,密闭测试系统,通入惰性气体,测试得到样品的真实体积v0,根据样品小片的面积和厚度计算其表观体积v。极片孔隙率计算如下:
[0057]
p%=[(v-v0)/v]
×
100%。
[0058]
电解液质量测试:
[0059]
将锂离子电池拆开,放入样品盒中,倒入碳酸二甲酯(dmc)使电池极片完全浸泡在dmc溶液中,浸泡8h后,换用新的dmc浸泡过夜(14h)。将浸泡后的锂离子电池取出放入烧杯中,放入真空干燥箱中烘过夜(14h)。根据锂离子电池浸泡前及烘干后电芯的质量差,算出锂离子电池中的电解液的质量百分含量:
[0060]
电解液质量百分含量=电解液质量/锂离子电池质量
×
100%。
[0061]
sei膜中元素含量测定方法:
[0062]
在含水量《10ppm的氩气气氛手套箱中,将锂离子电池放电、拆解得到负极极片,用碳酸二甲酯(dmc)洗去极片表面残存的电解液,晾干,置于x射线光单子能谱测试仪(xps)的样品仓中,选取平整的材料颗粒表面区域测试x射线光电子能谱,以c1s的峰位置为284.8ev较准,对谱图中出现的峰进行标定,面积积分和归一化处理,得到不同元素的百分含量。
[0063]
实施例1
[0064]
(1)电解液的制备
[0065]
在含水量《10ppm的氩气气氛手套箱中,将碳酸亚乙酯(ec)、碳酸亚丙酯(pc)、丙酸乙酯(ep)按质量比1:1:1均匀混合,形成基础溶剂,然后按照表1所示加入含硫物质和lipf6溶解并搅拌均匀,形成电解液,最终,基于电解液的总质量,lipf6的质量百分含量为12.5%,余量为基础溶剂。
[0066]
(2)正极极片的制备
[0067]
将正极活性材料钴酸锂(licoo2)、导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照重量比96:2:2进行混合,加入n-甲基吡咯烷酮(nmp)作为溶剂,调配成为固含量为75%的浆料,并在真空搅拌机作用下搅拌至体系成均匀的正极浆料。将正极浆料均匀涂覆在厚度为10μm的正极集流体铝箔的一个表面上,90℃条件下烘干,得到正极活性材料层厚度为110μm的单面涂布正极活性材料的正极极片。以上步骤完成后,即完成正极极片的单面涂布。之后,在该正极极片的另一个表面上重复以上步骤,即得到双面涂布正极活性材料的正极极片。涂布完成后,将正极极片冷压后裁切成74mm
×
867mm的规格待用,经测试,正极极片的孔隙率为15%。
[0068]
(3)负极极片的制备
[0069]
将负极活性材料石墨、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照重量比97.4:1.4:1.2进行混合,然后加入去离子水作为溶剂,调配成为固含量为70%的负极浆料,并在真空搅拌机作用下搅拌至体系成均匀的负极浆料。将负极浆料均匀涂覆在厚度为8μm的负极集流体铜箔的一个表面上,90℃条件下烘干,得到负极活性材料层厚度为130μm的单面涂布负极活性材料的负极极片。以上步骤完成后,即完成负极极片的单面涂布。之后,在该负极极片的另一个表面上重复以上步骤,即得到双面涂布负极活性材料的负极极片。涂布完成后,将负极极片冷压后裁切成76mm
×
851mm的规格待用。负极极片的压实密度为1.8g/
cm3。
[0070]
(4)隔离膜
[0071]
以聚乙烯(pe)多孔聚合物薄膜作为隔离膜。
[0072]
(5)锂离子电池的制备
[0073]
将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正极片和负极片之间起到隔离的作用,然后卷绕,尾部收尾贴胶,置于冲好的铝箔袋中,将铝箔袋边缘封装,然后放置在85℃真空烘箱中干燥12h,将干电芯中的水分去除,最后将上述制备好的电解液注入到真空干燥后的电池中,经过真空封装、静置、化成、成形等工序,即完成锂离子电池的制备。
[0074]
实施例2至实施例16
[0075]
除了按照表1调整电解液的质量百分含量、含硫物质的种类及质量百分含量以外,其余与实施例1相同。
[0076]
对比例1至对比例5
[0077]
除了按照表1调整电解液的质量百分含量、含硫物质的种类及质量百分含量以外,其余与实施例1相同。
[0078]
表1
[0079][0080][0081]
注:表1中,“/”表示不存在相关制备参数。
[0082]
从实施例1至实施例16可以看出,锂离子电池的循环性能和安全性能随着电解液的质量百分含量及含硫物质的变化而变化。电解液的质量百分含量通常会影响到锂离子电池的循环性能和安全性能,从实施例1至实施例4、对比例1至对比例2中可以看出,选用电解液的质量百分含量在本技术范围内的锂离子电池,能够有良好的循环性能和安全性能。
[0083]
含硫物质的种类和质量百分含量通常也会影响锂离子电池的循环性能和安全性能,从实施例5至实施例16、对比例3至对比例5中可以看出,选用含硫物质的种类及质量百分含量在本技术范围内的锂离子电池,能够有良好的循环性能和安全性能。
[0084]
实施例17至实施例30
[0085]
除了按照表2调整电解液的质量百分含量、含氟添加剂的种类和质量百分含量、sei膜中s元素与f元素质量百分含量之和e%以外,其余与实施例1相同。
[0086]
对比例6
[0087]
除了按照表2调整电解液的质量百分含量、含氟添加剂的种类和质量百分含量、sei膜中s元素与f元素质量百分含量之和e%以外,其余与实施例1相同。
[0088]
表2
[0089]
[0090][0091]
从实施例17至实施例30可以看出,锂离子电池的循环性能和安全性能随着电含氟添加剂的变化而变化。从实施例17至实施例30、对比例6中可以看出,选用含氟添加剂的质量百分含量在本技术范围内的锂离子电池,能够有良好的循环性能和安全性能。
[0092]
从实施例18至实施例20、实施例21至实施例24中可以看出,选用三种含氟添加剂协同作用,可以更好地提高锂离子电池的循环性能和安全性能。
[0093]
实施例31至实施例42
[0094]
除了在实施例1的基础上按照表3调整电解液的质量百分含量及正极极片的孔隙率以外,其余与实施例1相同。
[0095]
表3
[0096][0097]
从实施例31至实施例42可以看出,锂离子电池的循环性能和安全性能随着正极极片的孔隙率的变化而变化,选用孔隙率、孔隙率与电解液质量百分含量的比值在本技术范围内的锂离子电池,能够有良好的循环性能。
[0098]
以上所述仅为本技术的较佳实施例,并不用以限制本技术,凡在本技术的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本技术保护的范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献