一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种增强无铅压电陶瓷热稳定性的制备方法与流程

2022-11-19 14:41:48 来源:中国专利 TAG:


1.本发明涉及功能陶瓷材料制备技术领域,特别是涉及一种增强无铅压电陶瓷热稳定性的制备方法。


背景技术:

2.压电材料是受到压力作用时会在两端面间出现电压的晶体材料,压电材料能够实现电能和机械能的相互转换,在传感器和换能器等领域得到广泛应用,这些应用的工作温区通常超出100℃,铌酸钾钠(以下简称knn)基无铅压电陶瓷具有较大的压电常数d33和较高的居里温度tc,描述压电体的力学量和电学量之间的线性响应关系的比例常数称为压电常数,居里点(curie point)又作居里温度(curie temperature,tc)或磁性转变点,是指磁性材料中自发磁化强度降到零时的温度,是铁磁性或亚铁磁性物质转变成顺磁性物质的临界点,近二十年来得到广泛研究,在knn基体系中通过构建多晶型相变(ppt),压电系数d33可提升至500pc/n以上,但当环境温度偏离ppt温区时压电系数d33迅速下降,极大地限制其在压电器件中的广泛应用,因此,迫切需要提高knn基陶瓷的温度稳定性。
3.基于以上缺陷和不足,有必要对现有的技术予以改进,设计出一种增强无铅压电陶瓷热稳定性的制备方法。


技术实现要素:

4.本发明主要解决的技术问题是提出一种新的掺杂,应用传统烧结工艺引入了一种弛豫材料到knn基体系中,从而达到提升knn基压电陶瓷的压电性在高温时的稳定性。
5.为解决上述技术问题,本发明采用的一个技术方案是:提供一种增强无铅压电陶瓷热稳定性的制备方法,该种增强无铅压电陶瓷热稳定性的制备方法包括以下步骤:
6.s1、首先将原材料k2co3碳酸钾、na2co3碳酸钠、nb2o5氧化铌、bi2o3氧化铋、mgo氧化镁按照化学式(1-x)(k
0.5
na
0.5
)nbo3–
xbi(mg
2/3
nb
1/3
)o3采用电子天平称量;
7.s2、称量好的原材料放入游星球磨罐中进行研磨粉碎混合4h;
8.s3、干燥s2中粉碎混合好的材料,然后放入模具中压制成型;
9.s4、在900℃下保温四小时预烧s3中压制成型材料,将预烧好的材料再次放入游星球磨罐中研磨14h;
10.s5、再次研磨的材料干燥好以后,按照8%的质量比添加粘合剂,干燥箱80℃进行干燥,粘合剂采用聚乙烯醇pva;
11.s6、将s5中添加粘合剂的材料造粒成型排胶烧成,通过研钵搅拌过400目筛,550℃保温两小时排胶,烧成温度在1100℃-1200℃之间,保温4h;
12.s7、将s6得到材料烧制电极,烧制条件650℃,保温半小时,进行各种电路性能测试。
13.优选的是,s1中按照化学式(1-x)(k
0.5
na
0.5
)nbo3–
xbi(mg
2/3
nb
1/3
)o3采用电子天平称量原材料,是依次将单个原材料质量除以总质量得到质量百分数,在把质量百分数乘以
原料纯度,得到实际百分数,在以实际百分数乘以质量得到称量质量,x的含义是bmn的摩尔。
14.优选的是,s3中采用干燥箱80℃进行干燥,模具采用陶瓷干压模具,压制成一个圆形块,压力1.8mpa。
15.与现有技术相比,本发明的有益效果是:
16.使用弛豫材料,通过传统的烧结工艺引入基于knn的系统中,以设计在居里温度下发生的弥散相变,产生高压电响应和热稳定性,改性的同时不牺牲居里温度。
附图说明
17.图1是knn-bmn陶瓷的x射线衍射测试结果。
18.图2是knn-bmn陶瓷的扫描电镜的照片。
19.图3是knn-bmn陶瓷的相对介电常数的测试结果。
20.图4是x=0.01的陶瓷的相对介电常数的测试结果。
21.图5是x=0.01的陶瓷的弥散系数。
22.图6是(1-x)knn-xbmn(x=0.005-0.07)陶瓷的d33测试结果。
23.图7是x=0.01的陶瓷d33的温度稳定性测试结果。
具体实施方式
24.下面结合附图对本发明较佳实施例进行详细阐述,以使发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
25.请参阅图1至图7,本发明实施例包括:
26.一种增强无铅压电陶瓷热稳定性的制备方法,该种增强无铅压电陶瓷热稳定性的制备方法包括以下步骤:
27.s1、首先将原材料k2co3碳酸钾、na2co3碳酸钠、nb2o5氧化铌、bi2o3氧化铋、mgo氧化镁按照化学式(1-x)(k
0.5
na
0.5
)nbo3–
xbi(mg
2/3
nb
1/3
)o3采用电子天平称量,按照化学式采用电子天平称量原材料,是依次将单个原材料质量除以总质量得到质量百分数,在把质量百分数乘以原料纯度,得到实际百分数,在以实际百分数乘以质量得到称量质量,x的含义是bmn的摩尔;
28.s2、称量好的原材料放入游星球磨罐中进行研磨粉碎混合,时间4h,充分混合均匀即可;
29.s3、干燥s2中粉碎混合好的材料,然后放入模具中压制成型,采用干燥箱80℃进行干燥,模具采用陶瓷干压模具,压制成一个圆形块,压力1.8mpa;
30.s4、在900℃下保温四小时预烧s3中压制成型材料,将预烧好的材料再次放入游星球磨罐中研磨14h,预烧再次研磨,预烧的作用稳定、控制原料晶型,破坏原有结构,提高烧结结构稳定性,提高原料烧结活性,减少灼减减少收缩;
31.s5、再次研磨的材料干燥好以后,按照8%的质量比添加粘合剂,干燥箱80℃进行干燥,粘合剂采用聚乙烯醇pva;
32.s6、将s5中添加粘合剂的材料造粒成型排胶烧成,通过研钵搅拌过400目筛,550℃保温两小时排胶,烧成温度在1100℃-1200℃之间,保温4h;
33.s7、将s6得到材料烧制电极,烧制条件650℃,保温半小时,进行各种电路性能测试,如图1-7所示。
34.图1是knn-bmn陶瓷的x射线衍射测试结果,从图1xrd图中可以看到,当x=0.005时,材料在室温下表现出典型的正交对称性,随着bmn含量的增加,正交相峰的相对强度降低,当四方相峰的强度随着bmn增加而增加时,可以确定结构变化的过渡点在x=0.01附近,当x≥0.03时,样品中约45
°
处的峰没有表现出明显的分裂,在室温下显示为菱面体或立方相,这意味着当x的添加量小于0.01mol时,knn-bmn将获得高压电性能。
35.图2是knn-bmn陶瓷的扫描电镜的照片,从图2sem照片中可以发现,当x=0.005时,晶粒尺寸分布呈现双峰结构,晶粒尺寸为2-5μm,而粗晶粒尺寸为10-50μm,但随着bmn含量的增加,晶粒尺寸在0.01≤x≤0.06处呈单峰分布,晶粒尺寸在1μm以下,当x=0.07时,晶粒出现异常长大,这表明合理添加bmn可以减轻异常晶粒生长并产生均匀的微观结构,并有利于减少温度变化时的压电性能损失。
36.图3是knn-bmn陶瓷的相对介电常数的测试结果,图3所示,所有陶瓷都显示出明显的扩散相变,当x=0.005和0.01时,可以观察到对应于正交-四方(o-t)和类似的四方-顺电立方(t-c)的两个相变,随着bmn含量的增加,tc处的峰向更低的温度移动,当x大于0.03时,四方顺电立方观察到相变,这与xrd数据非常吻合,这些结果表明四方相在室温下是稳定的。
37.图4是x=0.01的陶瓷的相对介电常数的测试结果,图4显示了knn-0.01bmn陶瓷的介电常数随温度和频率变化的函数,可以看出knn-0.01bmn陶瓷在tc(360℃)处具有明显的扩散相变特征,并且扩散程度随频率的增加而增加。
38.图5是x=0.01的陶瓷的弥散系数,确定了弥散系数γ值的拟合曲线的斜率,可以计算出γ=1.47,表明knn-0.01bmn陶瓷表现出类弛豫行为。
39.图6是(1-x)knn-xbmn(x=0.005-0.07)陶瓷的d33测试结果,如图6所示,现有的添加中x=0.01时,压电性能是最高的现有的添加中x=0.01时,压电性能是最高的。
40.图7是x=0.01的陶瓷d33的温度稳定性测试结果,如图7所示,压电常数在20~250℃温度范围内具有良好的温度稳定性,压电常数的温度稳定性提高可归因于扩散ppt的存在,因此,在b位(nb5 和mg2 )引入bmn使得纯knn的产生弥散相变。
41.在过去几年中,knn基无铅材料表现出可与传统pb(zr,ti)o3陶瓷即反铁电陶瓷相媲美的压电性能,这些系统中增强的介电和压电特性最初归因于准同型相界效应mpb或由多晶型相变ppt引起的分离正交相和四方相的影响,然而,这种转变相应地导致强烈的温度依赖性,此外,mpb或ppt基陶瓷通常是通过相对于室温向下调整居里温度tc的成分来设计的,居里温度tc的降低导致更多的温度依赖性特性和更低的极化稳定性,即老化和压电活性的损失。
42.一般来说,铁电陶瓷的压电特性可以用以下公式所示的简单项来表示:
43.d
ij

2q
ij
εrε0pi(1.1)
44.其中:d
ij
:压电系数,i代表电气元件方向,j代表机械效应方向
45.q
ij
:电致伸缩系数
46.ε:介电常数
47.pi:剩余极化强度
48.为了提高保持高居里温度tc的knn基陶瓷的温度稳定性,同时ppt的rt相共存有利于高压电性能,在本发明中,将弛豫铁电体中的弥散相变特性引入到knn基陶瓷中,典型的弛豫钙钛矿铁电体(pb(mg1/3nb2/3)o3)pmn,bi基钙钛矿bi(mg
2/3
nb
1/3
)o3(bmn)表现和pmn具有相似的稳定的铁电性,用于改性和调整knn陶瓷。
49.添加的bi基钙钛矿bmn使得微观结构变得均匀和致密,根据bmn的含量,0相-t相的相变温度t
o-t
和居里温度tc处的峰移至较低温度,此外,所有陶瓷在最高温度附近均表现出明显的弥散相变特征,例如,对于knn-0.01bmn陶瓷,在居里温tc(最高温度约为360℃)下观察到明显的类弛豫铁电行为,弥散系数γ为1.47,此外,(1-x)knn-xbmn(x=0.01)陶瓷在20-250℃温度范围内表现出更高的温度稳定性(d33=128pc/n),压电常数热稳定性的增强可能与弥散相变密切相关,虽然压电常数不是很高,但knn-bmn陶瓷的d33值可以持续到250℃,在高温下具有实际应用潜力,因此,在knn陶瓷中应用弥散机制可以提高压电性能的温度稳定性。
50.本发明一种增强无铅压电陶瓷热稳定性的制备方法,提出一种新的掺杂,应用传统烧结工艺引入了一种弛豫材料到knn基体系中,从而达到提升knn基压电陶瓷的压电性在高温时的稳定性。
51.以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献