一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

血液泵的制作方法

2022-11-14 15:18:27 来源:中国专利 TAG:


1.本发明涉及一种血管内血液泵,通过在患者血管中产生额外血流以支持或替代心脏功能。


背景技术:

2.已知不同类型的血液泵,例如轴向血液泵、离心血液泵以及混合型或对角血液泵,其中,血流是由轴向力和径向力共同引起的。血管内血液泵通常为经皮插入,例如通过股动脉插入左心室以桥接主动脉瓣膜(aortic valve),或通过股静脉插入右心室。
3.旋转式血液泵具有旋转轴线。在本专利申请中,术语“径向”和“轴向”分别是指旋转的轴线,并且分别是指“相对于旋转轴线的径向方向”和“沿着旋转轴线”。术语“内部”是指沿着径向朝向旋转轴线,并且术语“外部”是指沿着径向远离旋转轴线。
4.血管内血液泵通常包括泵送装置作为主要部件。该泵送装置具有泵部分以及驱动部分,该泵部分包括用于将血液从血流入口泵送到血流出口的初级叶轮,该驱动部分包括用于驱动该初级叶轮的马达。泵部分可包括位在血流入口和出口之间的可柔性弯曲套管。
5.所述泵送装置包括泵部分端部,所述泵部分端部设置在所述泵送装置的泵侧。泵送装置还包括驱动部分端部,该驱动部分端部设置在泵送装置的驱动侧。所述血液泵可进一步包括连接到所述泵送装置的导管,以便向所述泵送装置供给例如能量、和/或清洗流体。导管可以连接到泵部分端部,但是大部分连接到泵送装置的驱动部分端部。还可以想到的是,使叶轮向前和向后旋转。那么,泵部分的血流入口和血流出口可以互换。
6.通常,叶轮通过至少一个叶轮轴承支撑在泵送装置内。已知不同的转子轴承类型,例如滑动轴承,特别是流体动力滑动轴承、枢轴轴承、液体静压轴承、球轴承等,以及它们的组合。特别地,接触型轴承可以被实现为“血液浸入式轴承”,其中轴承表面具有血液接触。操作过程中的问题可能是摩擦和热量。如果轴承浸在血液中,则另一个问题可能是由于加热或清洗不足引起的血液凝结。
7.在wo 2017/021465中公开了一种血液清洗径向滑动轴承的实例。其中,图33公开了一种叶轮装置,其包括大致上为圆柱形的初级叶轮。初级叶轮的初级叶轮叶片朝着初级叶轮的旋转轴线延伸。初级叶轮叶片的尖端形成滑动轴承的外转子轴承表面。布置在初级叶轮中心处的销的圆柱表面形成滑动轴承的内转子轴承表面。为了冷却驱动单元的转子和定子,辅助叶轮设置在驱动单元的与初级叶轮相反的一侧,并且可随转子旋转。辅助叶轮将血液泵入定子和转子之间的轴向间隙。在辅助叶轮的轴向端处,滑动轴承设置在辅助叶轮的内端和轴承销之间。这种构造需要很多轴向构造空间,因此产生了难以在血管中前进的大体积血液泵。


技术实现要素:

8.本发明的目的是提供一种紧凑型血液泵,其血液流过定子和转子之间的轴向间隙。
9.这是通过具有根据本发明的独立权利要求1的特征的血液泵来实现的。在其附属权利要求中说明了本发明的优选实施例和进一步的发展。
10.根据本发明的第一方面,血管内血液泵包括具有泵部分和驱动部分的泵送装置。泵部分包括具有初级血流入口和初级血流出口的泵壳体,所述初级血流入口和初级血流出口通过初级通路液压连接。驱动部分包括定子和转子,该定子和转子可绕旋转轴线旋转并且被配置为可转动初级叶轮。初级叶轮配置为沿着初级通路将初级血流从初级血流入口传送到初级血流出口。驱动部分还包括辅助血流入口和辅助血流出口,其通过辅助通路液压地连接,使得辅助血流可从辅助血流入口沿着辅助通路被输送到辅助血流出口。辅助通路包括在转子和定子之间延伸的轴向间隙。轴向间隙优选地也是包括定子和转子的电动马达的磁间隙。还提供了一种布置在转子的驱动部分端部的辅助叶轮,该辅助叶轮可与初级叶轮一起绕旋转轴线旋转,并且包括一个或多个辅助叶轮叶片,该一个或多个辅助叶轮叶片经配置成为通过辅助通路输送辅助血流。此外,所述血液泵包括给用于轴承转子的血液清洗径向滑动轴承。径向滑动转子轴承包括内部转子轴承表面和外部转子轴承表面。辅助叶轮形成径向滑动转子轴承的内部转子轴承表面。因此,辅助叶轮的血液清洗滑动轴承从辅助叶轮径向向外布置。这样,可以构建轴向紧凑型血液泵。
11.优选地,血液清洗径向滑动转子轴承布置成靠近泵壳体的外周边,使得从外部转子轴承表面通过泵壳体朝外传到周围一般血流的热传导可以发生。这可以进一步帮助建构紧凑型且可靠的血液泵,其中热量被有效地带走。这也可能有助于将较冷的血液输送到轴向间隙。
12.优选地,辅助叶轮是径向或径向轴向输送的叶轮。因此,辅助叶轮在辅助血流中产生离心力以产生压力。
13.优选地,由辅助叶轮和转子形成的转子内轴承表面具有共同的外径。然后,辅助血流可以进入轴向间隙而没有明显的偏转。此外,考虑到血管内血液泵必须具有较小的外径,因为它必须通过血管前进到心脏,因此,径向内的构造空间由于内转子轴承表面和转子具有相同的外径而得到最佳利用。即,进入轴向间隙的血液中的压力被辅助叶轮增加到极限,该极限仅由血液泵的驱动部分端部处的径向构造空间所限制。
14.优选地,至少两个,更优选地,至少三个辅助叶轮叶片延伸到外转子轴承表面。最靠近外转子轴承表面的辅助叶轮叶片的各个表面一起形成内转子轴承表面。这是辅助叶轮的表面,该表面相对于外部转子轴承表面安装了转子。因此,内转子轴承表面是不连续的,并且包括由叶轮叶片尖端所定义出的分开的至少两个,优选地为至少三个部分。这样,辅助叶轮叶片的尖端可形成径向滑动转子轴承的一部分。外部转子轴承表面可以是单个连续表面。此外,在替代方案中,外转子轴承表面可具有凹槽(grooves)和/或狭槽(slots)。
15.优选,至少一个辅助叶轮叶片相对于旋转轴线在轴向方向上从辅助叶轮突出。这样,叶片可以形成血液泵的旋转部分的轴向端。该轴向端可以敞开以使血液流入辅助叶轮。
16.优选地,至少一个辅助叶轮叶片的径向外边缘被倒角。相对于旋转轴线,可以在沿轴向延伸的辅助叶轮叶片的一部分与沿径向延伸的辅助叶轮叶片的一部分之间布置相应的倒角。特别地,血液泵可包括在供应导管和具有更大直径的泵壳体之间的轴向上的渐窄部分。渐窄有利于泵通过血管的前进。优选地,辅助叶轮的倒角布置在渐窄部分的下方。这样,倒角使得能够构建更紧密的血液泵。
17.优选地,至少一个辅助叶片与泵壳体的内壁或与布置在其内部的另一部分形成辅助泵间隙。辅助泵间隙优选地具有径向外边界,该径向外边界轴向延伸并形成径向滑动转子轴承的一部分。优选地,辅助泵间隙还具有径向延伸的轴向端部,该轴向端部布置在至少一个辅助叶轮叶片与泵壳体的内壁之间,优选地位于叶片的径向延伸端表面的倒角端。泵间隙的径向延伸部分保持了由辅助叶轮叶片建立的压力。在诸如沿倒角的轴向径向方向形成此间隙有助于构建紧凑型血液泵。特别地,泵壳体可以在倒角的位置处逐渐变窄。
18.优选地,至少一个,最优选地所有辅助叶轮叶片在其径向延伸方向上是笔直的。优选的是至少一个,优选地所有的,辅助叶轮叶片相对于旋转轴线沿径向大致或精确地延伸,或对于此径向倾斜。沿径向方向延伸的辅助叶轮叶片的泵送效果与辅助叶轮的旋转方向无关。辅助叶轮笔直的辅助叶轮叶片倾向于造成较少的血液凝结。
19.优选是至少两个,优选为至少三个辅助叶轮叶片的外周表面具有相对于沿着该辅助叶轮的圆周方向的旋转轴线在径向上上升的斜面。这样,流体动力滑动转子轴承可以通过叶片的尖端与大致上为环形的外部转子轴承表面结合而形成。所述斜面经构造使得在旋转方向上在流体动力滑动转子轴承的轴承间隙中建立压力。所述倾斜可沿辅助叶轮叶片的整个宽度沿其圆周方向倾斜。或者,也可以沿辅助叶轮的圆周从辅助叶轮叶片的尖端的相对端开始以相反的方向设置两个斜面,从而在辅助叶轮叶片的尖端的一部分的中间部分中实现了辅助叶轮叶片的最大径向上升。这样的叶轮可在两个相反的旋转方向上操作。可以在外叶轮轴承表面上另外或替代地提供等效的构造细节。
20.优选地,将上述外周表面的规格应用于辅助叶轮叶片的轴向或径向轴向端面。辅助叶轮叶片的端面可相对于旋转轴线在径向方向上延伸,或沿着布置在辅助叶轮叶片的边缘处的倒角延伸。前述类型的辅助叶轮叶片的流体动力端面可以实现在辅助叶轮和血液泵的非旋转部分(例如是泵壳体)之间的内部轴向滑动转子轴承或轴向-径向滑动转子轴承的轴承表面中。轴向滑动转子轴承的外轴向或轴向-径向转子轴承表面例如可以布置在泵壳体处。通过轴向或轴向-径向转子轴承,可以传递叶轮的轴向力。
21.优选地,轴向或轴向-径向转子轴承表面由陶瓷材料制成。例如,陶瓷材料可以设置为陶瓷涂层。可替代地,叶轮和/或泵壳体的相应部分可以完全由陶瓷材料制成。
22.优选地,径向突出的凸起布置在外和/或内转子轴承表面上,并且该凸起的顶点在圆周方向上延伸。凸起可以在外或内转子轴承表面上延伸。优选地,顶点的半径大于辅助叶轮的直径的十分之一。这种突出的凸起的优点在于,在血液泵的旋转部分横向于主旋转方向旋转的情况下,在旋转部分的端部没有锐利的边缘接触周围的非旋转部分,否则这将会损坏泵的表面。取而代之的是,只有突出的凸起接触不旋转的相对表面。因此,降低了由于旋转轴线的旋转而损坏转子轴承的风险。
23.优选地,内转子轴承表面由陶瓷材料制成。例如,内转子轴承表面可以设置为陶瓷涂层。陶瓷材料的硬度改善了内转子轴承表面的磨损特性。优选地,陶瓷材料在与血液的反应方面是惰性的。
24.优选地,辅助叶轮是陶瓷材料的一体件。辅助叶轮也可以由涂覆有陶瓷材料的非陶瓷材料制成。
25.优选地,外转子轴承表面也由陶瓷材料制成。例如,外转子轴承表面可以设置为陶瓷涂层。
26.优选地,泵送装置包括形成陶瓷材料的外转子轴承表面的特定部件,例如转子轴承环。单独的陶瓷部件可为外转子轴承表面提供良好的形状稳定性,这特别重要,因为内转子轴承表面小,并且辅助叶轮叶片的尖端处的表面压力增加。
27.优选地,陶瓷材料是碳化硅(silicon carbide)。与大多数其他陶瓷材料相比,碳化硅具有高导热性的优势。因此,热量可以有效地从滑动转子轴承传递出去。导热可以通过转子朝向叶轮或通过泵壳体来发生,例如,特别是通过转子轴承环。
28.优选地,辅助叶轮的轴向长度小于辅助叶轮的最大外径。这样,辅助叶轮不会沿旋转轴线过度地延伸,而是在血液泵中的狭窄部件。然后,主要在径向方向上产生泵送效果,该径向效果比在轴向方向上更有效。这对于建造紧凑型血液泵是有利的。
29.优选地,初级叶轮布置在转子一侧,其与布置辅助叶轮处的转子之侧相对。这种布置的优点在于,在血液泵的旋转部分端部处的轴承,例如在辅助叶轮处的径向滑动轴承,就抗旋转轴线的旋转的刚度而言,优化地安装了旋转部分。
30.优选地,辅助血流出口布置在初级叶轮的初级通路的外部。因此,辅助血流与主血流分离。然后,经由辅助通路输送的血液仅与来自初级通路的血液在初级通路之外混合。由于血流具有相反的流动方向,因此产生的液力损失较小,并且使辅助血流独立于初级血流,而初级血流则取决于前负荷和后负荷条件。换句话说,由于主血流与辅助血流的分离,辅助血流仅取决于泵的旋转。
31.优选地,辅助血流出口相对于由泵部分输送的主血流的方向倾斜或垂直地布置。当初级血流在辅助血流出口附近流动时,血液将通过文丘里效应从辅助血流出口中吸出。这支持了辅助血流。
32.优选地,辅助血流入口包括多个入口孔。入口孔优选地绕旋转轴线周向布置。优选地,入口孔布置成圆形。进一步优选的是,在两个相邻的入口孔之间的间隙中,布置有线通道。例如,线通道可用于容纳用于驱动单元的至少一根供电线。入口孔和线通道的这种布置组成血液泵的紧凑型设计。
33.转子和定子之间的轴向间隙布置在辅助叶轮的下游。辅助叶轮可以布置在辅助血流入口与轴向间隙之间的腔中。特别地,辅助叶轮径向地或径向地-轴向地输送血液。沿着辅助血流通路,在辅助血流入口的下游,在泵壳体的壁中设置有辅助入口通孔。从辅助入口通孔,血液可以在辅助入口通孔的内端进入该腔。辅助入口通孔的内端优选地设置成比轴向间隙在径向上更向内。在辅助叶轮的内部区域和辅助叶轮的外部区域之间起作用的离心力产生压力以将血液输送通过轴向间隙。特别地,辅助血流入口的径向最外段可以设置成比轴向间隙中入口之径向最内段还要在径向上更向内。
34.优选地,所述泵送装置还包括三级叶轮。三级叶轮优选地设置在轴向间隙的下游。优选的是,三级叶轮配置为将血液从轴向间隙中抽出。三级叶轮因此增加了通过辅助通路的血液的通过量。
35.优选地,三级叶轮可绕旋转轴线旋转。三级叶轮可与转子一起旋转。
36.优选地,辅助血流出口设置在初级叶轮和定子之间形成的径向间隙处。优选的是,血液可以在径向间隙的整个外周横截面上流出径向间隙。这样大的流出横截面减小了辅助血液通道的液压阻力。
37.特别地,径向间隙的可旋转壁可与转子一起旋转。因此,产生了血液的螺旋阻力
流,该螺旋阻力流通过其在间隙内的旋转,通过在螺旋阻力流中的血液上的离心力来增强通过辅助通路的血液流动。
38.优选地,径向间隙的固定壁设置成与径向间隙的可旋转壁相对。固定壁优选地机械地连接到定子。
39.优选地,三级叶轮设置在径向间隙内。优选地,三级叶轮形成径向间隙的可旋转壁的一部分。优选的是,三级叶轮包括至少一个三级叶轮叶片。三级叶轮叶片优选地经配置成沿径向方向输送血液。三级叶轮叶片可相对于旋转轴线在径向方向上近似或精确地延伸。这样,三级叶轮的效果与三级叶轮的旋转方向无关。
40.优选地,在轴向间隙的流出端设置有进入三级叶轮的流入。因此,三级叶轮可有效地直接从轴向间隙中抽取血液。轴向间隙和径向间隙之间的短连接减小了沿着辅助血液流动通道的液压阻力。
附图说明
41.当结合附图阅读时,将更好地理解优选实施例的上述概述以及以下详细描述。然而,本公开的范围不限于附图中公开的特定实施例。在附图中:
42.图1为本发明的血液泵的第一实施例的剖面图;
43.图2为图1的一部分,即泵部分的放大图;
44.图3为图1的一部分,即驱动部分的放大图;
45.图4为朝向血液泵的第一实施例的泵部分端部的透视图;
46.图5实质上为图4的视图,但是具有透明泵壳体;
47.图6实质上为与图5相同视图,但为血液泵的第二实施例视图;
48.图7为二级叶轮的实施例的透视图;
49.图8为血液泵的第一实施例的分离器环的透视图;
50.图9为血液泵的第二实施例的分离器环的透视图;
51.图10以透视图示出了血液泵驱动部分端部的剖面,其示出辅助叶轮;
52.图11a为辅助叶轮和转子轴承环的透视图;
53.图11b为具有切口的转子轴承环的透视图;以及
54.图12为第一或第二实施例的三级叶轮的透视图。
具体实施方式
55.在图1中,图示出了血管内血液泵的第一实施例的剖面图。旋转零件未显示为切开。血管内血液泵1包括泵送装置11和附接到其上的以导管5形式的供给线。
56.泵送装置11至少在其中间部分包括基本上为圆柱形的泵壳体2。泵壳体2包括血流入口21和血流出口22。在图1中,泵壳体2似乎包括两个分开的部分,但是这些部分是整体的或连接成一体的。
57.如在图2所示的泵部分的放大的展示中以及在图4和5所示的前透视图中可以更好地看到,血流入口21包括初级血流入口211和二级血流入口212。初级血流入口211围绕二级血流入口212。初级血流入口211和二级血流入口212由流入分离器26隔开。在流入分离器26的内部中,流入分离器26包括叶轮轴承环27,其在图8中分别示出。此外,泵送装置11包括初
级叶轮31,初级叶轮31中整合有二级叶轮32。初级与二级叶轮31、32可绕旋转轴线10一起旋转。二级叶轮32可如图7所示具有嵌体的形式,并且可设置在初级叶轮31的二级叶轮腔312内部。二级叶轮腔312朝着泵送装置11的泵部分端部pse敞开。或者,初级叶轮31和二级叶轮32为一体形成的。
58.初级血流1bf从初级血流入口211流到流入分离器26之外的初级叶轮31,由初级叶轮31通过初级血流通路30进一步输送到初级血流出口22。二级血流2bf从二级血流入口212经过流入分离器26流到二级叶轮32,并更由二级叶轮32通过多个二级血流通路321被进一步输送到初级血流通路30。
59.因此,到达泵部分端部处的泵送装置11的血液流,优选地,大约为泵送装置11的几乎整个横截面,可以在没有明显偏转的情况下流入初级和二级血液入口211、212。由于二级血流入口212的中心位置,来自血流中间的血液也可以无偏转地进入泵送装置11。这是有利的,因为通常血流是层流,其中中心的流速最大。
60.初级叶轮31包括初级叶轮叶片313,初级叶轮叶片313延伸到初级血流通路30中,且在初级叶轮叶片313之间设置有初级叶轮通道311。初级叶轮通道311在初级叶轮通道311朝向泵部分端部pse的每个端部的初级通路入口314处具有初级节距。二级叶轮32包括至少一个且特别是两个通道形式的二级血流通路321,因此在下文中也称为二级叶轮通道321。二级叶轮通道321在设置在二级叶轮通道321的上游端的二级通道入口324处具有二级节距。二级节距优选地与初级节距相同,或者可以在一定程度上不同,只要非预期的流动情况,例如扰流,能够被防止。在二级叶轮32朝向驱动部分端部dse的一端,位在二级叶轮腔312与其中一个初级叶轮通道311之间设置有连接的贯通开口315。该贯通开口315在血液流动方向上的一端定义了二级血流出口213。二级血流出口213相对于旋转轴线10进一步在径向上向外设置。因此,通过二级叶轮32的旋转所产生的离心力将血液沿径向方向向外推。这样,二级血流2bf通过二级血流入口212而被输送,并且进一步通过二级叶轮32的二级叶轮通道321,以及与流过初级叶轮31的初级叶轮通道311的初级血流1bf合并。这样,就形成了被泵送血流pbf。被泵送血流pbf在血流出口22处离开泵送装置11。
61.初级和二级叶轮31、32共同安装在叶轮轴承37中。它们通过二级叶轮腔312连接或一体形成为单个部件。流入分离器26包括设置在流入分离器26内部的叶轮轴承环27。叶轮轴承37的外叶轮轴承表面277设置在叶轮轴承环27的内部。叶轮轴承37还包括内叶轮轴承表面327设置在二级叶轮32的外圆周处。
62.初级叶轮31与通向血流出口22的渐窄部分314固定地连接。渐窄部分314在相对于旋转轴线10径向向外的方向上引导被泵送血流pbf。然后血液到达血流出口22。
63.从渐窄部分314朝向泵部分端部pse的方向,驱动部分4设置在泵送装置11的泵壳体2的内部,该驱动部分4包括定子40和转子41。在定子40和转子41之间设置有轴向间隙401。为了冷却定子40和转子41,轴向间隙401被血液清洗。为此,辅助血流abf通过设置在驱动部分端部dse的辅助血流入口23进入驱动部分4。然后,血液由辅助叶轮42输送通过设置在辅助叶轮42与泵壳体2的内壁之间的辅助泵间隙423。血液从那里继续流入轴向间隙401。辅助血流abf从轴向间隙401进入径向间隙241。在径向间隙241的径向外端设置有辅助血流出口24。辅助血流abf在轴向间隙401中沿与初级和二级叶轮31、32的泵送方向相反的方向流动。驱动部分4内的辅助血流abf实质上也沿与在血液泵1周围流动的一般血流gbf相反的
方向流动。
64.参照图3所示的放大图可以更好地看出,转子轴承环43围绕辅助叶轮42。辅助叶轮42包括辅助叶轮叶片421。辅助叶轮叶片421在旋转轴线10的方向上朝向泵送装置11的驱动部分端部dse突出。径向转子轴承47设置在驱动部分端部dse处,并且包括外转子轴承表面4211和内转子轴承表面4311,在它们之间设置有轴向延伸的轴承间隙。外转子轴承表面4311设置在转子轴承环43上。由辅助叶轮42输送的血液流过轴承间隙,并进一步流到转子41与定子40之间的轴向间隙401。血液从轴向间隙401流到径向间隙241。径向间隙241在初级叶轮31的渐窄部分314和定子40之间延伸。辅助血流出口24设置在径向间隙241和泵送装置11的周围之间的过渡处。辅助血流出口24设置成垂直于旋转轴线10。在此,来自辅助血流abf的血液与来自泵部分2的被泵送血流pbf和周围的一般血流gbf合并。如图所示,当辅助血流出口24设置成靠近泵壳体2的外径并靠近初级血流出口22时,被泵送血流pbf和一般血流gbf由于它们的流速而支持从径向间隙241中抽出血液。这增强了通过轴向间隙401的辅助血流abf。
65.旋转轴线10延伸穿过辅助叶轮42的中心,并且在辅助叶轮42的与转子41相对的一侧,设置有隆起422。在旋转轴线10朝向驱动部分端部dse并且与隆起422相邻的方向上设置有轴承销44。轴承销44连接到泵壳体2。轴承销44朝向辅助叶轮42的轴向轴承表面具有凸形形状。旋转轴线10穿过轴承销44的轴向轴承表面的顶点,并且穿过隆起422的轴向轴承表面的顶点。这样,轴承销44与隆起422相互作用并形成止推轴承,以便在隆起422和轴承销44之间传递关于旋转轴线的轴向力,其中,前述零件可相对于彼此旋转。显然地,接触表面小,旋转摩擦力就小。
66.血液泵1的驱动部分端部包括一个或多个,优选地,为三个辅助入口通孔231。辅助入口通孔231从辅助血流入口23延伸到辅助叶轮腔232,辅助叶轮42设置在其中。因此,血液从辅助血流入口23经由辅助入口通孔231流向辅助叶轮42。
67.至少一个线通孔25设置在泵送装置11的驱动部分端部dse处。线通孔25可以从导管5延伸到定子40。优选地,绕着旋转轴线10设置三个线通孔25。在两个辅助入口通孔231之间,可以设置一个线通孔25。在线通孔25中,至少一根供给线51、52和/或53可以延伸以连接到定子40。优选地,如图所示,供给线51、52和/或53穿过导管5的内部延伸到患者身体的外部。供给线51、52和/或53从导管5延伸到定子40,而不接触血液。
68.图4示出了泵部分3的泵部分端部pse的前透视图。如图所示,二级叶轮32设置在叶轮轴承环27的内部。叶轮轴承环27设置在流入分离器26的内部。作为该实施例的替代,可以省略附加的叶轮轴承环27,使得外叶轮轴承表面277由流入分离器26形成。在此,流入分离器26通过三个支柱28安装在初级血流1bf和二级血流2bf之间。示出了二级血流2bf通过二级血流入口212流入二级叶轮32,该二级血流入口212被设置成流入叶轮轴承环27中。在二级叶轮32中,血液沿着二级叶轮通道321并通过贯通开口315流到二级血流出口213。在此,二级血流2bf与初级血流1bf合并形成被泵送血流pbf。
69.图5以透视图示出了泵部分3的泵部分端部pse,其中泵壳体2以透明的方式表示。贯通开口315和二级血流出口213设置在两个初级叶轮叶片313之间。如图所示,支柱28通过外支柱连接环29连接。支柱连接环29在泵部分端部pse处配置在泵壳体2的内周面内。叶轮轴承环27由支柱28支撑。可以想到的是,将支柱连接环29和支柱28制造为一体。优选地,叶
轮轴承环27也是该部件的一部分。所述部件也可以与泵壳体2一体形成。
70.图6示出了泵部分3的泵部分端部pse的透视图,其中以透明的方式示出了与图3至图5所示的实施例不同的泵壳体2,流入分离器26在流入分离器26的下游端包括至少一个切口261,优选为三个切口261。切口261设置在两个支柱28之间。叶轮轴承环27是流入分离器26的一部分或与其固定连接,并且切口261还延伸穿过叶轮轴承环27。在二级叶轮旋转时,二级叶轮通道321与切口261对齐时,其横截面增大。二级叶轮32在叶轮轴承环27内沿朝向泵部分端部pse的方向最大延伸到切口261的一端。这具有如下效果:在操作中,由于旋转轴线向推力的配合部分,切口261的边缘在内叶轮轴承表面327上延伸,并在其形成开始时去除了血块,或者优选地防止了血块的形成,因为旋转轴线向止推轴承表面328的配合部分在切口261处直接血液接触。这有助于避免轴向止推轴承内的血液停滞。如图7所示,内叶轮轴承表面327也具有边缘325,边缘325具有从外叶轮轴承表面277去除血块的作用。
71.图7以透视图详细示出了二级叶轮32。在此,二级叶轮32配置为嵌体并且大致具有圆柱体的形式。其可以由与初级叶轮31不同的材料制成,例如由陶瓷材料制成。嵌体包括圆柱形部分323,其设置在初级叶轮31的二级叶轮腔312内部。圆周突起329在二级叶轮腔312中形成用于二级叶轮32的轴向止动件。内叶轮轴承表面327设置在二级叶轮32的外圆周处。在二级叶轮32朝向泵部分端部pse的端部处设置有两个二级叶轮通道321。二级叶轮通道321在二级叶轮32的上游端具有最大的横截面。因此,通道321远离血流入口21的横截面减小。在此,当血液流过二级叶轮通道321时,血液从主要轴向指向轴向-径向方向。
72.二级叶轮通道321相对于二级叶轮32的旋转轴线10不对称地设置。在二级叶轮32指向血流入口21的一端,旋转轴线10延伸穿过二级叶轮通道321的其中之一。在此,位于旋转轴线10上的旋转中心与二级叶轮32的实心部分不重合。这具有血液在旋转中心处凝聚的优点,与周围血流不存在速度差的情况可以被避免。
73.在二级叶轮通道321和内叶轮轴承表面327之间的过渡处,设置了边缘325。如上所述,此边缘325用于推开外叶轮轴承表面277上的血块形成。内叶轮轴承表面327在泵部分端部pse处提供径向轴承的内表面。二级叶轮32还包括轴向叶轮轴承表面328。其设置在圆周突起329处。轴向叶轮轴承表面328形成上述轴向止动件或轴向止推轴承的一部分。轴向止动件可以配置为轴向轴承,其能够在叶轮旋转期间将力量从二级叶轮32传递到轴承环27。
74.图8示出了叶轮轴承环27的放大图。外叶轮轴承表面277设置在叶轮轴承环27的内部。叶轮轴承环27包括轴向轴承环表面278。如图所示,轴向轴承环表面278可以设置在叶轮轴承环27的轴向端。
75.图9示出了根据另一实施例的叶轮轴承环27的透视图,该叶轮轴承环27与图8所示的实施例的不同之处在于,其包括切口261,如前所述,切口261设置在叶轮轴承环27的下游端。切口261的数量最好与支柱28的数量相匹配。
76.图10示出了穿过驱动部分4的驱动部分端部dse的横截面透视图。如图所示,辅助血流abf在辅助血流入口23处进入泵壳体2。辅助叶轮42加速血液,血液继续流入轴向间隙401。如轴向间隙401内的箭头abf所示,血液不直接在旋转轴线10的方向上流动,而是具有强劲的周向流动分量,使得血液沿着螺旋状沿着轴向间隙401流动。
77.图11示出了转子41的在泵送装置11的驱动部分端部dse处的端部的透视图。辅助叶轮42的辅助叶片421可被清晰地识别,并且它们沿径向笔直地延伸。辅助叶轮叶片421在
其外圆周上提供径向转子轴承47的内转子轴承表面4211。此外,辅助叶轮叶片421每个都具有倒角4212。该倒角4212有利于形成如图10所示的泵送装置11的渐窄驱动部分端部dse。此外,辅助叶轮叶片421包括在二级叶轮42的轴向端处的径向延伸的端面4214。在二级叶轮42的轴向端的中心处形成有隆起422。隆起422与轴承销44相互作用,如图10所示。
78.图11a还示出了转子轴承环43,其设置在二级叶轮42的内转子轴承表面4211的周围。转子轴承环43的外转子轴承表面4311与辅助叶轮42的内转子轴承表面4211一起形成转子轴承47。辅助叶轮42具有轴向长度l和直径d。可替代地,如图11b所示,转子轴承环43可以具有切口,该切口的形状、功能和布置类似于上述叶轮轴承环27的切口261。
79.图12以透视图示出了连接到初级叶轮31的渐窄部分314的转子41的一端。三级叶轮242设置在渐窄部分314和转子41的泵部分端部之间,并且从转子41的外径径向延伸到渐窄部分314的外径以形成肩部。该肩部的轴向平面形成径向间隙24的可旋转壁2411。三级叶轮叶片2412从可旋转壁2411朝着泵送装置11的驱动部分端部dse突出。优选地,三级叶轮叶片2412沿着旋转轴线10轴向地延伸。特别地,三级叶轮叶片2412是笔直的并且相对于旋转轴线10在径向方向上延伸。此外,在替代方案中,可以省略三级叶轮叶片2412。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献