一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于从未处理的精液中选择性分选高活动和形态正常的精子的微流体装置

2022-11-12 22:07:38 来源:中国专利 TAG:

一种用于从未处理的精液中选择性分选高活动和形态正常的精子的微流体装置
发明领域
1.本发明涉及一种用于从未处理精液中分选高活动、形态正常和/或基因正常的精子的方法、装置和系统。
2.发明背景
3.人类不育是世界范围内的疾病,估计每年有8000万对夫妇受到影响。在发达国家,1-3%的新生儿是通过辅助生育怀上的,最常见的是体外受精(ivf)和卵子胞质内单精子注射(icsi)[1]。在不育原因中,三分之一是男性原因,并且许多此类情况采用辅助生育(art)治疗[2,3]。虽然足够强有力以绕过人类不育,但辅助生育技术通常不会这样做,并且2014年美国每周期的活产率平均低于35%[4]。此外,art可能会对后代产生包括如下的相关风险:(a)性染色体异常的风险增加,(b)基因组印记病的风险增加[5,6],(c)出生缺陷的风险增加,以及(d)父系或母系不育问题的遗传[7]。尽管art对许多夫妇有帮助,但其克服大部分人类不育的能力仍然有限。
[0004]
当art用于男性因素不育时,精子通常用传统的梯度洗涤或上游技术进行处理,以提高活动和形态正常的精子[8-10]。然后,通过icsi,选择精子用于由训练有素的胚胎学家使用,训练有素的胚胎学家根据形态特征选择单个精子进行卵子注射[7,11]。其他可影响art结果的精子性质(如胚胎质量、妊娠率和流产率)包括精子dna染色质、或染色体完整性或突变或甲基化分析,并且这些在常规icsi程序中并不考虑[12-13]。这引出了一个问题:是否icsi技术绕过了精子重要且相应的自然选择障碍。
[0005]
目前,没有可靠的方法非侵入性地评估可能与使用icsi时成功受孕和分娩具体相关的精子性质。本发明解决了本领域的这些缺点。


技术实现要素:

[0006]
本发明提供从原始或未处理的精液自分选具有高dna完整性的相对高活动或形态正常的精子细胞的方法和装置。
[0007]
在一实施方式中,本发明提供在一端具有入口、在另一端具有出口的流体通道。柱结构的阵列在流体通达中周期性间隔开。相邻柱结构之间的间隔范围为1微米至250微米。将含有精子细胞的原始或未处理的精液引入流体通道的入口处。在出口处收集来自流体通道的分选精子细胞。所分选的精子细胞通过它们与周期性间隔开的柱结构阵列相互作用由它们自身的自诱导移动在流体通道内进行自分选,其中装置和自分选在不使用任何外部流动、力或机制的情况下进行运行、以进料原始或未加工的精子使其通过流体通道,并且其中,自分选在出口中输出与未处理精液的未分选精子细胞相比具有高dna完整性的相对高活动、形态正常的精子细胞。
[0008]
在另一实施方式中,本发明提供了流体通道,其具有用于将原始精子引入装置的一个或多个入口、以及在流体通道内周期性间隔开的一个或多个几何结构或障碍的阵列。相邻柱结构之间的间隔范围为1微米至500微米。
[0009]
设计几何结构阵列,以使得当在阵列中发生精子的自诱导移动时,在不使用任何外部流动、力或机制的情况下进行精子自分选以进料原始或未加工的精子通过流体通道。这些几何结构可以是圆柱形、正方形、六边形或其他类型的棱柱,并且可以是裸露的或涂有任何类型的吸引或排斥精子细胞的化学物质。结构阵列可以是正方形、长方形、六边形或任意其它镶嵌细工图案(tessellating pattern)。
[0010]
分选过程选择出与未分选精子细胞相比相对高活动、形态正常、或基因正常的精子细胞。使用一个或多个出口收集来自装置的经分选的精子。
[0011]
入口、柱阵列和出口的设置可以是线形、圆形或其它设置。
[0012]
在另一实施方式中,提供了使用如上所述装置自分选精子细胞的方法。将精子样品(无论是原始的或以其他方式处理的)插入装置的入口。将该装置孵育5至60分钟时间。在该孵育过程中,精子细胞经历自分选过程而不使用初始沉积之外的任何外部流动、力或机制以进料未处理的精子通过流体通道,并且由此自分选输出了与未处理的精液相比相对高活动、形态正常、高dna完整性和低表观遗传异常的精子细胞。
[0013]
一部分精子从装置的出口取出。那些精子细胞主要是通过该装置选择的具有优选质量的细胞,例如具有(i)高活动和线性持久性、(ii)形态正常性、(iii)高dna完整性、和(iv)低表观遗传异常。将未选出的精子丢弃,与出口中的精子相比,这些精子是优选程度较低的。
[0014]
附图简要说明
[0015]
图1显示了根据本发明的示例性实施方式的具有周期性结构的微流体精子分选芯片的示意图。将所示的样品pdms芯片设计结合到玻璃基材上,通道宽度为1.5mm,长度为8mm,高度为50μm。在通道的中间,圆柱形结构(在该图中直径为10μm)形成了周期性阵列。
[0016]
图2显示了根据本发明的示例性实施方式用于选择活动和形态正常精子的捕获和分离的简单周期性array(spartan)方法。间距值仅用于举例说明目的。
[0017]
图3显示了微流体装置的示例性实施方式的照片(比例尺10mm)。
[0018]
图4显示了装置中的周期性结构阵列的示例性实施方式的sem图像(比例尺50μm)。
[0019]
图5显示了其中具有精子细胞的周期性柱阵列的示例性实施方式的fesem图像(比例尺20μm)。
[0020]
图6显示根据本发明的示例性实施方式的流程图,其概述了用于运行模拟以设计装置的一些示例性实施方式的过程。
[0021]
图7显示了根据本发明的示例性实施方式在具有18
×
26μm(左)和26
×
26μm(右)结构阵列几何体的示例性通道中的(n=100)正常精子的模拟轨迹。
[0022]
图8显示了根据本发明的示例性实施方式在具有30x26μm结构阵列几何体的通道中模拟具有异常形态(3倍大的头部)的(n=100)精子的轨迹。
[0023]
图9显示了根据本发明的示例性实施方式在具有30x26μm结构阵列几何体的通道中模拟具有异常形态(18度歪脖)的(n=100)精子的轨迹。
[0024]
图10显示根据本发明示例性实施方式的测定曲线和直线速度的方法。
[0025]
图11显示了根据本发明的示例性实施方式在具有30
×
26μm结构阵列几何体的示例性通道中的(n=100)正常精子的模拟轨迹。
[0026]
图12显示了根据本发明的示例性实施方式在具有30
×
26μm结构阵列几何体的示
例性通道中的精子的轨迹。
[0027]
图13显示了根据本发明的示例性实施方式在通过具有各种结构阵列几何体的示例性通道的样品之前和之后精子的直线速度(vsl)的模拟结果。
[0028]
图14显示了根据本发明的示例性实施方式在通过在阵列中柱之间具有不同间隔值的示例性通道的样品之前和之后精子的直线速度(vsl)的实验结果。
[0029]
图15显示了根据本发明的示例性实施方式在通过具有不同长度的示例性通道的样品之前和之后精子的直线速度(vsl)的模拟结果。
[0030]
图16显示了根据本发明的示例性实施方式在通过具有不同长度的示例性通道的样品之前和之后精子的直线速度(vsl)的实验结果。
[0031]
图17显示了根据本发明的示例性实施方式在通过具有不同孵育时间的示例性通道的样品之前和之后精子的直线速度(vsl)的模拟结果。
[0032]
图18显示了根据本发明的示例性实施方式在通过具有不同孵育时间的示例性通道的样品之前和之后精子的直线速度(vsl)的实验结果。
[0033]
图19显示根据本发明示例性实施方式的从原始样品中选择高活动精子的方法概述。
[0034]
图20显示了根据本发明的示例性实施方式在通过具有不同长度的示例性通道的样品之后精子的曲线速度和精子回收率的实验结果。
[0035]
图21显示了根据本发明的示例性实施方式在通过具有不同孵育时间的示例性通道的样品之后精子的曲线速度和精子回收率的实验结果。
[0036]
图22根据本发明的示例性实施方式显示了在该装置的示例性实施方式中具有和不具有形态缺陷的精子的显微图像和fesem图像。
[0037]
图23根据本发明的示例性实施方式显示了在使用该装置的示例性实施方式处理之前和之后精子样品中具有形态缺陷的精子普遍程度的差异。
[0038]
图24根据本发明的示例性实施方式显示了用包括该装置的示例性实施方式的各种方法处理后具有正常形态的精子的百分比。
[0039]
图25显示了根据本发明示例性实施方式的精子成熟度。
[0040]
图26根据本发明的示例性实施方式显示了在使用该装置的示例性实施方式处理之前和之后精子样品中精子核成熟度差异。
[0041]
图27显示了根据本发明示例性实施方式的精子中dna片段化的图像。
[0042]
图28根据本发明的示例性实施方式显示了在使用该装置的示例性实施方式处理之前和之后精子样品中精子dfi差异。
[0043]
图29根据本发明的示例性实施方式显示了在使用该装置的示例性实施方式处理之前和之后精子样品中精子全甲基化差异。
[0044]
图30显示了根据本发明示例性实施方式选择用于精子srd模拟的参数。
[0045]
图31显示根据本发明示例性实施方式的描述装置和方法粗粒度模拟的方程式。
[0046]
图32显示根据本发明示例性实施方式的形成装置和方法粗粒度模拟的状态关系。
[0047]
图33显示根据本发明示例性实施方式的用于模拟装置和方法的vsl分布。
具体实施方式
[0048]
出于本发明的目的,通过母体生殖道的精子旅程——在数百万年的进化和繁殖中胎生哺乳动物中保有的现象——被认为是对于有繁殖能力(fertile)的精子的天然有效“过滤器”。使用微流体方法在体外模拟该途径的物理部件,通过结合流体物理学的多尺度计算机模拟设计,并检查该人工宫颈-子宫-输卵管途径如何影响精子的描述特征,以及有繁殖能力的精子更精细的临床相关测定,包括dna完整性和甲基化状态。
[0049]
研发的spartan(用于捕获和分离的简单周期性阵列)方法成功地模拟了天然途径的基本过滤特征,并分离了具有高dna完整性和低表观遗传变异的高活动和形态正常的精子,用于在生育诊所中使用。
[0050]
能够使用此方法的装置具有一系列微制造结构,以优化自分选效率和形态上有活力(viable)的精子的选择。微流体装置的示意图如图1所示。在装置的一部分,入口、或一组入口通过贯穿装置上表面的孔形成。任选地,这之后是不包含任何表面特征的微通道的过渡区域。装置的功能并不需要过渡区域,但实际制造可能需要过渡区域。装置的下一部分是主要活动区域,由柱子的规则阵列组成。该阵列可以采用的几何体的一个示例是圆柱体的矩形点阵。在周期性结构阵列之后,具有第二可选的过渡区域,随后是出口、或一组出口,所述出口同样由贯穿装置上表面的孔形成。
[0051]
该装置首先使用可以支持精子细胞的缓冲溶液进行填充。该溶液的一个示例是精子清洗介质。此外,为了防止介质蒸发,入口和出口可以用在缓冲溶液中不互溶的非蒸发性介质覆盖。该介质的一个示例是矿物油。所述装置然后通过某一方法如移液管将原始精子样品沉积到入口中来加载。然后装置孵育规定时间,取决于装置,所述规定时间范围为5至120分钟。在这一点上,可以使用某以方法如移液管从一个或多个出口收集经分选的精子。
[0052]
为了概念验证,使用标准软光刻制造具有圆柱形结构的示例性微流体精子分选装置。简言之,在4“硅晶片上涂覆50微米厚的su-8光刻胶层并使之显影,形成微通道。随后,使用sylgard 184(美国密歇根州米德兰市道康宁公司)以1:10v/v比率的碱与固化剂倒在硅晶片上、脱气并在70摄氏度下固化2个小时来制备精子分选微流体芯片。固化后,使用acu punch(尖端1.0和2.0mm)冲切形成入口和出口腔室。用氧等离子体将所得通道密封在载玻片上,并在使用前在60摄氏度下烘烤30分钟。该特定装置的示意图如图2所示,并且实际装置的照片如图3所示。微制造周期结构的fesem图像如图4所示,该结构内的精子细胞如图5所示。
[0053]
本装置的目的是以有效率的方式利用由微流体通道中的周期性结构诱导的作用于精子细胞的流体动力学效应对活动且健康的精子细胞进行分选。由于涉及许多变量(例如周期性结构尺寸和形状、结构元件之间的间距、通道长度、收集时间等),研发了多尺度计算模型以优化通道设计。
[0054]
使用多尺度计算机建模的装置设计
[0055]
方法
[0056]
由于流体-游泳者连接(fluid-swimmer coupling)的非线性特性和复杂几何体的存在,如何选择自分选装置的几何特征并不清楚或显而易见,所以我们创建了一个多尺度模型来模拟精子细胞在装置中的移动。该模型由两块组成:基于细粒度微粒的模型、以及沿周期阵列所形成的点阵使用概率移动的粗粒度模型。简而言之,细粒度模型使用随机旋转
动力学(srd),一种已成功用于多种软物质系统十多年的基于微粒的中尺度溶剂(mesoscale solvent)。在srd中,流体以粗粒度方式建模,精子细胞以珠簧结构包埋,并且柱子作为不可透过的屏障,所有这些都在热波动的存在下通过流体动力学相互作用而相互影响。该模型产生微观轨迹,然后用于培养基于规则的概率点阵模型,以描述在给定柱几何体(geometry)中的精子移动,获得真实的时间和长度尺度。更具体地,粗粒度模型是具有旋转的离散时间点阵模型。在各时间步骤,精子具有向右或向左旋转的依赖于方向的概率,然后是沿着点阵迈出一步的概率。通过加载由srd模型产生的概率规则,该模型可以复制精子行为用于大量精子和许多步骤。建模方法的概述如图6所示。其它详细内容参见下文有关建模方法详述的部分。
[0057]
速度和收集率的模拟结果
[0058]
利用我们的多尺度模型,构建了几种模拟几何体来研究周期性集合的障碍物对精子行为的影响。由于已知精子与其附近的表面具有流体动力学相互作用,因此这种相互作用的一个合理结果是各种排列可以使得事件精子(incident sperm)加速、减慢或重定向。我们的模拟显示出由于所模拟精子的刚性,精子在足够小的柱间距下被卡住的行为。一旦超过这种紧密的限制,我们发现精子将在该几何体中保持相当持久的轨迹(参见图7)。
[0059]
此外,如果网格在一个维度上具有小纵横比并且在另一个维度中具有大纵横比(在精子长度的量级上),则精子将优选地沿着长间隔轴游动。从表面上看,该效果是矛盾的,因为人们会天真地期望精子会采取阻力最小的路径——即,宽的通道。然而,当柱相当靠近时,它们的作用有点像多孔壁,并且精子被吸引到其上。像所有推进游泳者(pusher swimmer)一样,精子的游泳几何体导致精子转向其正对着游的表面。当与平坦表面相互作用时,这会导致精子遵循该平坦表面。然而,当表面具有足够大小和有利几何体的间隙时,精子将转而进入并并游过该间隙。净效应是使得精子重定向。
[0060]
具有使得精子重定向的选择允许我们给出一条沿着活跃游泳者(健康精子)将优先行进的路径,而碎片和死精子将受到扩散的限制。这将使我们能够制造出显著更小且更快的装置,用于分离和选择健康精子。
[0061]
形态选择的模拟结果
[0062]
我们还研究了柱几何体对具有形态缺陷的精子的不同影响。歪脖和大2倍头部的精子的样品模拟轨迹显示于图8和9中。正如这两种情况所示,我们发现周期性几何障碍会促使精子的转向行为,并由此比简单通道更有效地限制精子。
[0063]
实验结果
[0064]
使用来自模拟的预测作为指导,我们制作了一个特征为高纵横比圆柱周期性阵列的概念验证样品微流体通道。更具体地,所制造的微流体芯片的尺寸分别为长度8mm和宽度1.5mm,分别具有1mm和2mm的入口和出口腔室直径。在通道的中间,直径10μm的圆柱形结构彼此以特定距离放置。
[0065]
使用来自斯坦福医学院ivf实验室的去识别的丢弃精液样品(de-identified discarded semen sample)进行精子分选分析。最初,精子分选微流体芯片用精子清洗介质进行预填充,并且在介质出口的顶部放置一薄层矿物油,以防止精子分选分析期间介质蒸发。将体积为0.5-2μl(4000-6000个精子/μl)的去识别的丢弃精液样品(discarded semen sample)加入入口储器中,然后用一层矿物油覆盖入口。随后,将精子分选芯片置于37℃的
孵育器中15分钟。最后,使用光学显微镜(卡尔蔡司(carl zeiss),axio vision 4.8.2.sp3)对分选芯片进行成像和分析,用于获得活动精子的百分比、精子轨迹和出口处的回收百分比。
[0066]
测定精子轨迹运动学参数,如精子活动力、曲线速度(vcl)和直线速度(vsl)。vcl是指观察期间精子头部所覆盖的距离。vsl指的是精子轨迹的起点和终点之间的直线距离(参见图10)。活动精子的百分比定义为活动精子相对于精子总数的分数。
[0067]
我们的模拟和实验结果非常一致,显示了通过使用计算机模拟如何获得成功的设计参数。图11和12显示了30x26μm阵列周期的计算机模拟和体外实验的精子轨迹。在从图13(多尺度模拟)和图14(实验)孵育30分钟后,相对于不同的阵列周期,比较入口与出口处的直线速度(vsl)值。图15显示了相对于具有30
×
26μm阵列周期的不同通道长度,由入口和出口处精子轨迹的多尺度模拟(孵育30分钟后)所获得的直线速度(vsl)值。图16显示了具有30x26μm阵列周期且具有不同长度(在出口处孵育30分钟)的通道的vsl的实验测定。通过图17(模拟)和图18(实验测定)vsl分析显示了与空白通道相比在出口处不同孵育时间的精子分选。
[0068]
图19显示精子分选过程的示意图:最初将精液加载到装置中,进行孵育,然后回收并分析输出的精子,以及在入口、柱区和出口处的精子轨迹的显微图像。图20显示具有不同通道长度的spartan芯片的精子回收效率的vcl实验测定。图21显示具有不同孵育时间的spartan芯片的精子回收效率的vcl实验测定。
[0069]
图22显示具有不同形态缺陷的diff-quick染色精子和fesem图像的显微图像:(i)正常、(ii)歪脖(bent-neck)和(iii)大头(比例尺10μm)。图23显示了原始精液(箭头显示异常精子),以及使用spartan芯片分选的精子(比例尺50μm)。图24显示通过上游技术(swim-up technique)、空白和spartan芯片处理的精子的sk形态分析。总之,这些结果显示了该装置如何能够过滤具有形态缺陷的精子。
[0070]
图25显示酸性苯胺蓝染色的显微图像,显示出精子核成熟的不同阶段。图26显示使用spartan芯片分选的精子核成熟度百分比与来自原始精液样品(n=5精液样品)的精子核成熟度百分比的分析。图27显示使用tunnel试验法分析精子dna片段化的荧光染色图像。图28显示了通过spartan芯片分选的精子的dna片段化指数(dfi)与来自原始精液样品(n=5个精液样品)的dna片段化指数(dfi)的分析。图29显示未分选精子和通过spartan方法分选的精子的全甲基化分析。
[0071]
其它注意
[0072]
精子细胞在周期性结构内移动得更快,类似于自诱导流场。该系统的一个新颖之处在于:周期性放置在通道内的结构改变了精子移动的方式。例如,具有变形形态的精子发生相互作用和采取的途径与具有正常形态的精子不同。精子和周期性结构之间的流体动力学相互作用促进了这一点。观察到精子细胞由于某些作用(包括流体动力学相互作用)在柱几何体内移动得更快——与入口或出口中的其对应物相比,并且可以被认为是由精子细胞产生的自诱导流场。精子细胞实际上会与通道中的周期性障碍物相互作用从而优选选择较窄的路径是非显而易见的。有证据表明精子的遗传和表观遗传质量及其形态和活动之间存在联系,因此影响其功能。因此,这些几何结构的净效应是对功能性精子进行分选,这是独特且非显而易见的结果。
[0073]
我们还在某些周期中看到,精子细胞在通道的周期性障碍区域中比在外部移动得更快。根据通道障碍的几何体、以及精子尾部运动和精子形态,可以利用这种效果从而更有效地分选精子细胞。计算机模拟正被用于研发最佳设计,并已用于指导初始实验和原型的研发。这是独特的效果,并且无法预期。一种天真的预期是:这些周期性的障碍会使精子细胞在移动穿过时减慢;然而,我们发现根据几何体的具体情况,可以使精子细胞加速或转向不同的方向。这导致出人意料的自分选现象。
[0074]
本发明中使用的流体通道没有移动或流动,并且内部的流体不是主动驱动的。分选的整个过程在没有任何外部流动或来自通道的姿态力(attitudinal force)的情况下发生。精子细胞活动的来源是由于它们自身的活动性,其具有独特的模式、并且精子与精子不同,特别是在形态学上有挑战或临床有问题的样本中尤为如此。精子的这种独特的自诱导移动导致自分选行为,以前在周期性结构从未报道过。我们可以通过调整我们放置在精子前面的障碍物的周期和形状来改变分选效果,这一点尤其引人注目。这些属性可以在行和/或列的不同组之间改变,以引起特定分选能力。
[0075]
如在我们的计算机模拟中观察到的那样,周期的示例性范围是:能够进行分选的效果对于周期性间隔值在1至500微米的范围内是明显的。
[0076]
自分选装置的尺寸
[0077]
在示例性装置中,自分选装置的尺寸和周期性间隔的结构阵列可以是如下的:
[0078]
·
阵列中柱之间的宽度或长度间距:1-250微米,5-200微米或5-30微米。
[0079]
·
阵列中柱的高度:约50微米,范围为20至80微米。
[0080]
·
入口长度:约2mm,范围为至多4mm。
[0081]
·
通道长度:约4mm,范围为至多20mm。
[0082]
·
出口长度:约2mm,范围为至多4mm。
[0083]
建模详述
[0084]
使用了结合通过细粒度模拟捕获的行为细节的强度、以及粗粒度模型的计算效率的方法。我们通过表征所考虑的特定几何体中精子的微观行为来开始。一旦我们有关于精子在这个几何体中移动的足够数据,我们就可以利用这些信息快速推断出更大的轨迹,让我们能够长时间检查它们的群体行为。
[0085]
细粒度精子模型:我们使用胡克(hookean)势来模拟精子作为珠-簧链,以防止拉伸和弯曲。非直接结合(non-straight bond)通过将构成结合的第二个区段旋转该结合所需的最小能量角来实现[14]。
[0086]
溶剂模型:精子与使用称为随机旋转动力学(srd)的技术模拟的中尺度溶剂结合。该技术将流体模拟为一组点微粒,以离散的时间步长进行,各时间步骤由两个过程组成。在第一(流动(streaming))步骤中,微粒以弹道(balistically)移动,而在第二(碰撞)步骤中,微粒在单个集体碰撞中与其局部邻居交换动量[15-18]。
[0087]
为了将精子模型与该溶剂结合,精子的珠子包括在集体碰撞中,使得它们能够与流体交换动量。该结合还用于将周期性结构阵列插入模拟中。阵列结构由被限制而不能移动的微粒组成。另外,精子的珠和障碍物的珠以截顶的伦纳德-琼斯势相互作用,提供防止精子穿过障碍物的刚性拒斥相互作用,并补充由srd流体介导的流体动力学相互作用。[14]由于srd溶剂具有许多取决于温度的性质(包括粘度),必须确保系统的总体温度随时间恒
management of male infertility)》,2015,斯普林格(springer).第5-11页。
[0097]
[3]tasoglu,s.等人,《自然中奔跑精子的耗尽——在分选过程中模仿微流体通道(exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting)》.小(small),2013.9(20):第3374-3384页。
[0098]
[4]manipalviratn,s.,a.decherney,和j.segars,《印记病和辅助生殖技术(imprinting disorders and assisted reproductive technology)》,生育与不育(fertility and sterility),2009.91(2):第305-315页。
[0099]
[5]maher,e.r.,m.afna,和c.l.barratt,《与辅助生殖技术相关的表观遗传风险:表观遗传、印记、art和冰山?(epigenetic risks related to assisted reproductive technologies:epigenetics,imprinting,art and icebergs?)》,人类生殖学(human reproduction),2003.18(12):第2508-2511页。
[0100]
[6]belva,f.等人,《年轻成人icsi后代的精液质量:第一结果(semen quality of young adult icsi offspring:the first results)》,人类生殖学(human reproduction),2016页。
[0101]
[7]henkel,r.r.和w.-b.schill,《art的精子准备(sperm preparation for art)》,生殖生物内分泌学(reprod biol endocrinol),2003.1(1):第108页。
[0102]
[8]mortimer,d.和s.mortimer,《用于辅助生殖的精子准备方法(methods of sperm preparation for assisted reproduction)》,新加坡的医学院年刊(annals of the academy of medicine,singapore),1992.21(4):第517-524页。
[0103]
[9]asghar,w.等人,《选择具有较高dna完整性和较少反应性氧物质的功能性人精子(selection of functional human sperm with higher dna integrity and fewer reactive oxygen species)》,先进医疗材料(advanced healthcare materials),2014.3(10):第1671-1679页。
[0104]
[10]berkovitz,a.等人,《如何通过精子选择改善ivf-icsi结果(how to improve ivf

icsi outcome by sperm selection)》,生殖生物医学在线(reproductive biomedicine online),2006.12(5):第634-638页。
[0105]
[11]sivanarayana,t.等人,《通过精子染色质分散(scd)的精子dna片段化分析:dna片段化与卵胞浆内单精子注射结果的相关性(sperm dna fragmentation assay by sperm chromatin dispersion(scd):correlation between dna fragmentation and outcome of intracytoplasmic sperm injection)》,生殖医学和生物学(reproductive medicine and biology),2014.13(2):第87-94页。
[0106]
[12]b.等人,《作为dna片段化和icsi中受精指标的精子形态异常(sperm morphological abnormalities as indicators of dna fragmentation and fertilization in icsi)》.妇产科档案(archives of gynecology and obstetrics),2010,281(2):第363-367页。
[0107]
[13]mohammad,h.n.-e.等人,《精子dna损伤和精子精蛋白缺乏对icsi后受精和胚胎发育的影响(effect of sperm dna damage and sperm protamine deficiency on fertilization and embryo development post-icsi)》,生殖生物医学在线(reproductive biomedicine online),2005.11(2):第198-205页。
[0108]
[14]y.yang,j.elgeti和g.gompper.phys rev e 78,061903(2008)。
[0109]
[15]malevanets和r.kapral.j chem phys 110,8605

8613(1999)。
[0110]
[16]e.t
ü
zel,m.strauss,t.ihle和d.m.kroll.phys rev e 68,036701(2003)。
[0111]
[17]e.t
ü
zel,t.ihle和d.m.kroll.phys rev e 74,056702(2006)。
[0112]
[18]e.t
ü
zel,ph.d.,论文,明尼苏达大学(2006)。
[0113]
[19]h.h
í
jar和g.sutmann,physical review e 83 046708(2011)。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献