一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

耦合深度学习和物理机制的区域性植被蒸腾预测方法

2022-11-09 22:25:39 来源:中国专利 TAG:


1.本发明属于计算机技术领域,具体涉及一种耦合深度学习和物理机制的区域性植被蒸腾预测方法。


背景技术:

2.陆地蒸散发(evapotranspiration, et)是从陆地表面转移到大气中的水,这种水交换通常涉及水的相变,从液体或冰转化为气体。植物蒸腾(transpiration, t)和土壤蒸发(evaporation,e)是同时存在的,且植物蒸腾往往比土壤蒸发和水面蒸发更为复杂,它与土壤环境、植物的生理结构以及大气状况有着密切的关系。目前针对不同下垫面的蒸散发估算模型包括水量平衡法、penman-monteith公式、priestley-taylor模型、能量平衡法等。其中priestley-taylor(p-t)模型是1972年priestley和taylor在假设无平流的条件下,计算饱和下垫面蒸散发的模型,该模型由于其输入参数少而得到广泛应用。
3.priestley-taylor(p-t)模型是以蒸发水量平衡为基础,在假设不存在平流的前提下,适用于计算饱和下垫面蒸散发的模型。然而p-t公式是无平流的假设条件下提出的,而这在现实情况中很难满足,流域下垫面总是呈现一定的不均匀性,从而导致平流的发生。为消除基本假设所带来的计算误差,原p-t公式中引入修正系数α,在一定程度上反映平流的影响。然而修正系数α具有很大的时空变异性,导致蒸散发的计算结果具有很大的不确定性。


技术实现要素:

4.本发明的目的在于克服现有技术的不足,提供一种耦合深度学习和物理机制的区域性植被蒸腾预测方法。
5.本发明是通过以下技术方案实现的:一种耦合深度学习和物理机制的区域性植被蒸腾预测方法,包括以下步骤:步骤1,针对被植被覆盖的目标区域,获取该区域的气象、植被和土壤相关参数信息,并得到这些信息所对应的实测植被蒸腾量信息;步骤2,基于传统p-t蒸散发模型进行改进构建植被蒸腾模型,构建的植被蒸腾模型表示为:,式中,t代表植被蒸腾量;δ为温度-饱和水汽压曲线斜率;

为干湿表测量常数;αv为植被修正系数;r
nv
为植被净辐射通量,r
nv
使用比尔定律估算;步骤3,构建用于预测αv的深度神经网络;所构建的深度神经网络的输入为步骤1中的目标区域的气象、植被和土壤相关参数,输出的估算结果为植被修正系数αv;将估算的αv带入步骤2构建的植被蒸腾模型,计算得到预测的植被蒸腾量,通过将预测的植被蒸腾量与步骤1中得到的实测植被蒸腾量进行验证来优化深度神经网络;步骤4,利用步骤3构建好的深度神经网络和步骤2构建的植被蒸腾模型,对被植被
覆盖的目标区域的植被蒸腾量进行预测。
6.在上述技术方案中,步骤1中,获取的气象、植被和土壤相关参数信息,包括:空气温度、地表净辐射通量、风速、相对湿度、饱和水汽压差、二氧化碳浓度、二氧化碳通量、植被高度、叶面积指数和土壤含水率。
7.在上述技术方案中,步骤1中,利用气象站系统,观测风速、二氧化碳浓度、二氧化碳通量、空气温度、地表净辐射通量、相对湿度、饱和水汽压差;利用植物冠层分析仪,测量植被高度和叶面积指数;利用土壤湿度仪,测量不同层位的土壤含水率。
8.在上述技术方案中,步骤1中,利用稳定氢氧同位素方法测定植被蒸腾量/总蒸散发量的比率,再根据观测到的总蒸散发量计算得到植被蒸腾量,该植被蒸腾量作为实测的植被蒸腾量。
9.在上述技术方案中,r
nv
使用比尔定律估算,见下式:,式中,rn为地表净辐射通量;lai代表叶面积指数;k代表消光系数;θs代表太阳天顶角。
10.在上述技术方案中,步骤3中,采用最小二乘法计算预测的植被蒸腾量和步骤1得到的实测植被蒸腾量之间的误差,若误差小于指定精度,则学习结束,并输出此处最佳的权值和阈值;否则将误差信号沿原来连接路径反向传播并逐步调整各层的连接权值和阈值,直到误差小于指定精度为止。
11.在上述技术方案中,步骤4中,首先,采集当前状态下的目标区域的气象、植被和土壤相关参数信息,包括:空气温度、地表净辐射通量、风速、相对湿度、饱和水汽压差、二氧化碳浓度、二氧化碳通量、植被高度、叶面积指数和土壤含水率;然后,将上述参数输入步骤3构建好的深度神经网络,由深度神经网络输出植被修正系数αv;最后,将该植被修正系数αv带入植被蒸腾模型,再计算出温度-饱和水汽压曲线斜率δ和植被净辐射通量r
nv
,即可计算出当前状态下被植被覆盖的目标区域的植被蒸腾量t。
12.本发明的优点和有益效果为:本发明基于原始p-t模型构建了p-t蒸腾模型,将该模型原始的净辐射通量rn和p-t修正系数α替换为植被净辐射通量r
nv
和植被修正系数αv;为了准确估计植被修正系数αv,创新性的将植被、土壤和气象参数输入深度神经网络(dnn)来预测αv,然后将估算的αv导入蒸腾模型计算植被蒸腾量,通过将实测植被蒸腾量与预测的植被蒸腾量进行验证来优化dnn模型中αv的估计。相较于单纯深度学习模型,本发明耦合物理机制的深度学习模型可显著提高在极端气候条件(极端干旱、热浪、低叶面积指数、多云天气)下的植被蒸腾量的模拟精度。这对于准确估算区域植被需水量、指导农田精准灌溉等领域具有重要意义。
13.此外,需要说明的是,目前现有技术可以利用稳定氢氧同位素方法测定t/et(植被蒸腾量/总蒸散发量)比率,再利用涡度相关监测设备观测总蒸散发量et,进而计算得到实际的植被蒸腾量t,这种实测的方法虽然准确,但是要用到昂贵的测试设备,并且需要专业的实验人员在实验室进行实验测定(例如,采用稳定氢氧同位素方法,需要在实验室内进行,测试设备一般在数十万元,非常昂贵)。而本发明的方法,虽然需要采集目标区域的气象、植被和土壤相关参数信息,但是这些信息都是用常规检测装置能够快速检测的,操作简
单方便。
附图说明
14.图1是本发明的耦合深度学习和物理机制的区域性植被蒸腾预测方法的流程图。
15.对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。
具体实施方式
16.为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。
17.一种耦合深度学习和物理机制的区域性植被蒸腾预测方法,参见附图1,包括以下步骤:步骤1,针对被植被覆盖的目标区域,获取该区域的气象、植被和土壤相关参数信息,包括:空气温度、地表净辐射通量、风速、相对湿度、饱和水汽压差、二氧化碳浓度、二氧化碳通量、植被高度、叶面积指数和土壤含水率。以上参数均为强度或通量参数。
18.具体的讲,利用气象站系统,可以观测风速、二氧化碳浓度、二氧化碳通量、空气温度、地表净辐射通量、相对湿度、饱和水汽压差等信息;利用植物冠层分析仪,可以测量植被高度和叶面积指数;利用土壤湿度仪,可以测量不同层位的土壤含水率。
19.利用稳定氢氧同位素方法测定t/et(植被蒸腾量/总蒸散发量)比率,再利用涡度相关监测设备观测总蒸散发量et,进而计算得到植被蒸腾量t。由于该植被蒸腾量t是通过实测的t/et比率和实测的et计算得到的,因此该植被蒸腾量t可以理解为实测的真实值。
20.步骤2,基于传统p-t蒸散发模型进行改进构建植被蒸腾模型。
21.传统的p-t蒸散发模型的表达式如下:(1)式中,et为蒸散发量 (mm);δ为温度-饱和水汽压曲线斜率(kpa/
°
c);

为干湿表测量常数 (kpa/
°
c);rn为地表净辐射通量(w/m2);g为土壤热通量(w/m2),远小于rn,通常被忽略;α为priestley-taylor修正系数。
22.本发明将传统的p-t蒸散发模型中的地表净辐射通量rn和修正系数α替换为植被净辐射通量r
nv
和植被修正系数αv,从而得到新构建的植被蒸腾模型,其表达式为:(2)式中,t代表植被蒸腾量 (mm);δ为温度-饱和水汽压曲线斜率(kpa/
°
c);

为干湿表测量常数 (kpa/
°
c);αv为植被修正系数;r
nv
为植被净辐射通量(w/m2);r
nv
使用比尔定律估算,见下式(3):(3)式中,rn为地表净辐射通量(w/m2);lai代表叶面积指数(m2/m2);k代表消光系数;θs代表太阳天顶角。
23.步骤3,构建用于预测αv的深度神经网络(dnn)应用步骤2构建的植被蒸腾模型计算目标区域的植被蒸腾量的关键是准确确定植被修正系数αv,对于传统的p-t蒸散发模型而言,其修正系数α通常被设置为1.26或估计为绿色冠层分数、太阳辐射的函数,然而,这些对修正系数的确定方法具有很大的不确定性并且不能应用于各种植被种类和气象条件下的αv估计。为此,本发明创新性地将目标区域的植被、土壤和气象相关参数输入深度神经网络(dnn)来预测αv,并在气象参数数据集中引入了co2浓度和通量数据,以提高植被蒸腾量的预测准确性。具体的讲,步骤3包括以下步骤。
24.步骤3.1:构建深度神经网络(deep neural network,dnn),dnn算法是一种按照误差逆向传播训练的多层前馈神经网络,由输入层、隐含层和输出层构成,其中,输入层(s)包含n个节点,隐含层(h)包含h个节点,输出层(r)包含1个节点,从输入节点输入样本的n个特征值,向前传播,隐含层节点的输出为:(4)式中w(j,k)示输入层k节点对隐含层j节点的连接权值,x(
t
,k)表示输入的第t个样本的第k个特征值,b(
t
,j)为隐含层的阈值,f表示激活函数,选用relu函数作为激活函数,计算公式如下:(5)输出层节点的输出为:(6)式中w(
t
,j)表示隐含层j节点对输出节点连接权重值,b
(t)
为输出层的阈值。
25.步骤3.2:所构建的深度神经网络的输入节点输入样本的n个特征值包括:空气温度、地表净辐射通量、风速、相对湿度、饱和水汽压差、二氧化碳浓度、二氧化碳通量、植被高度、叶面积指数和土壤含水率,输出的估算结果为植被修正系数αv,将估算的αv进一步带入步骤2构建的植被蒸腾模型,计算得到预测的植被蒸腾量。
26.步骤3.3:通过将步骤3.2得到的预测植被蒸腾量与步骤1得到的实测植被蒸腾量进行验证来优化深度神经网络。具体的讲,本实施例采用最小二乘法计算步骤3.2估算得到的植被蒸腾量和步骤1得到的实测植被蒸腾量的误差e(θ),若误差小于指定精度,则学习结束,并输出此处最佳的权值和阈值;否则将误差信号沿原来连接路径反向传播并逐步调整各层的连接权值和阈值,直到误差小于指定精度为止。
27.步骤4,利用步骤3构建好的并且满足预测精度要求的深度神经网络和步骤2构建的植被蒸腾模型,对被植被覆盖的目标区域的植被蒸腾量进行预测。
28.首先,采集当前状态下的目标区域的气象、植被和土壤相关参数信息,包括:空气温度、地表净辐射通量、风速、相对湿度、饱和水汽压差、二氧化碳浓度、二氧化碳通量、植被高度、叶面积指数和土壤含水率;然后,将上述参数输入步骤3构建好的并且满足预测精度要求的深度神经网络,深度神经网络输出植被修正系数αv;最后,将该植被修正系数αv带入
植被蒸腾模型,再计算出温度-饱和水汽压曲线斜率δ和植被净辐射通量r
nv
,即可准确的计算出当前状态下被植被覆盖的目标区域的植被蒸腾量t。
29.以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献