一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置的制作方法

2022-10-13 07:33:40 来源:中国专利 TAG:


1.本发明涉及新能源汽车技术领域,尤其涉及一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置。


背景技术:

2.电池是制约电动汽车发展的一个重要因素。相比于铅酸电池和镍电池而言,锂电池具有能量密度高、平均寿命长、单体电池工作电压、电流高,功率密度高、无毒、成本低等优势,在电动汽车领域被广泛使用。如今电动汽车用户普遍十分关心的是电池的充电问题。
3.充电桩是一种非车载充电设备,通常安装在固定的运营场所,可直接提供直流电压给电动汽车的电池包,具有充电功率大、充电速度快的优点。但充电场所固定,便携性欠佳,相比于充电桩,车载充电器可以提供更加便利的充电方式。
4.受限于车内有限的空间,车载充电器需要有较小的体积和重量,并且从用户的角度考量还需要有较高的充电效率。同时在满足用户功能需求的同时尽可能地压缩硬件成本也是研究开发人员需要考虑的重要问题。
5.现如今车载充电器都需要将其单独作为一个模块添加到电动汽车的硬件配置中,相关的优化改进方案也都是针对该模块整体进行研究,基于此,针对上述论述,期望获得一种新型的车载充电器替代方案,能够有效解决电动汽车空间限制,降低整体硬件成本的同时尽可能地提升充电效率。
6.例如,中国专利cn202110732515.0公开了一种基于双三相永磁同步电机驱动系统的车载集成充电机驱动电路,该系统工作于电驱动、充电与v2g等多重功能模式中,电驱大定额逆变器及电机绕组均可实现复用,无需增加其它器件,降低成本;然而,该申请的技术方案的充电效率低,发热量较大。


技术实现要素:

7.本发明主要解决现有的技术中车载充电器需要单独设置占用空间大且充电效率低的问题;提供一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置,复用一套硬件设备同时实现了双绕组电机控制及车载充电器充电的功能需求,在节省设备空间的同时具有十分可观的成本优势,具有更好的充电效率。
8.本发明的上述技术问题主要是通过下述技术方案得以解决的:一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置,包括电池模块、开关组件、第一相桥臂、第二相桥臂、第三相桥臂、第四相桥臂、第五相桥臂、第六相桥臂、第七相桥臂、电容c1、电容c2、第一绕组、第二绕组、第三绕组、第四绕组、第五绕组和第六绕组;通过控制开关组件的开闭形成第一工作模式和第二工作模式;所述第一工作模式为双绕组电机控制模式,控制所述开关组件,使所述第一相桥臂处于截止状态,所述电容c1、第二相桥臂、第三相桥臂和第四相桥臂形成第一双绕组电机功率控制模块,所述第一绕组、第二绕组和第三绕组形成第一
双绕组电机绕组模块,所述电容c2、第五相桥臂、第六相桥臂和第七相桥臂形成第二双绕组电机功率控制模块,所述第四绕组、第五绕组和第六绕组是形成第二双绕组电机绕组模块,在所述双绕组电机控制模式下,电池模块输出供电功率给第一双绕组电机功率控制模块和第二双绕组电机功率控制模块,第一双绕组电机功率控制模块输出pwm信号给第一双绕组电机绕组模块,第一双绕组电机绕组模块驱动电机工作;第二双绕组电机功率控制模块输出pwm信号给第二双绕组电机绕组模块,第二双绕组电机绕组模块驱动电机工作;所述第二工作模式为车载充电器充电模式,控制所述开关组件,使所述第一绕组的一端和第一相桥臂的中点连接市电的两端,所述第一相桥臂、第二相桥臂和电容c1形成pfc逆变电路模块,所述第三相桥臂和第四相桥臂组成逆变模块,所述第二绕组、第三绕组、第五绕组和第六绕组形成隔离变压器模块,所述第六相桥臂、第七相桥臂和电容c2组成整流模块,所述第五相桥臂处于截止状态,在所述载充电器充电模式下,市电输入pfc逆变电路模块,经过pfc逆变电路模块进行功率校正后输入逆变模块,将直流电转换为交流电后输入隔离变压器模块进行升压,将升压后的电流输入整流模块,将交流电转换为直流电对电池模块进行充电。
9.作为优选,所述的开关组件包括继电器k1、继电器k2、继电器k3、继电器k4、继电器k5和继电器k6,在所述双绕组电机控制模式下,控制所述继电器k1、继电器k2、继电器k5和继电器k6闭合,控制所述继电器k3和继电器k4断开;在所述车载充电器充电模式下,控制所述继电器k1、继电器k2、继电器k5和继电器k6开关,控制所述继电器k3和继电器k4闭合。
10.作为优选,所述的第二绕组和第三绕组串联形成隔离变压器的原边,所述第五绕组和第六绕组串联形成隔离变压器的副边。
11.作为优选,所述的第一绕组、第二绕组和第三绕组为对称绕组,采用星型连接组成第一双绕组电机绕组模块。
12.作为优选,所述的第四绕组、第五绕组和第六绕组为对称绕组,采用星型连接组成第二双绕组电机绕组模块。
13.作为优选,通过在所述第一绕组和第一双绕组电机绕组模块的星型连接中点之间设置继电器k5、在第五相桥臂中点和第四绕组之间设置继电器k6,通过控制继电器k5和继电器k6的通断实现双绕组电机控制模式下的第一双绕组电机绕组模块和车载充电器充电模式下的绕组串接构成隔离变压器的结构切换。
14.作为优选,所述的继电器k3设置在第一相桥臂中点和市电的l端之间,所述继电器k4设置在第一绕组和市电的n端之间,继电器k4和继电器k5形成双刀双掷开关,通过控制继电器k5和继电器k6的接通实现车载充电器充电模式下的市电交流功率输入。
15.作为优选,所述的第一绕组、第二绕组和第三绕组的电气阻感特性相同。
16.作为优选,所述的第四绕组、第五绕组和第六绕组的电气阻感特性相同。
17.本发明的有益效果是:(1)无需将车载充电器再单独视为一个独立的模块,而是极大程度上复用双绕组电机控制下的硬件拓扑,实现一拓扑两功用;(2)复用双绕组电机控制拓扑的器件实现车载充电,可以有效提升充电效率;(3)在进行硬件改造过程中只引入了少量的功率开关器件和继电器器件,同时实现双绕组电机控制和车载充电器充电的功能,整体上极大地压缩成本,并且两功能之间相互独立,并不增加实际控制的复杂度,结构简单且成本低。
附图说明
18.图1是本发明实施例的双绕组电机控制模式下的拓扑结构示意图。
19.图2是本发明实施例的车载充电器充电模式下的拓扑结构示意图。
20.图3是本发明实施例的双绕组电机控制模式和车载充电器充电模式切换的继电器控制操作条件示意图。
具体实施方式
21.以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
22.为了使本发明的目的、技术方案及优点更加清楚明白,通过下述实施例并结合附图,对本发明实施例中的技术方案的进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定发明。
23.实施例:一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置,如图1所示,在双绕组电机控制模式下的结构,包括电池模块、第一双绕组电机功率控制模块、第一双绕组电机绕组模块、第二双绕组电机功率控制模块和第二双绕组电机绕组模块。
24.电池模块:电池正负极分别接通连接点1和连接点2,分别引出两路,分别与第一双绕组电机功率控制模块和第二双绕组电机功率控制模块的上下端连接,同时为两路的三相逆变电路提供直流电压。其中一路在模块中电池和第一双绕组电机功率控制模块中的电容c1之间并接一对上下桥臂q1和桥臂q2,两桥臂均由功率开关管和续流二极管连接而成。在与桥臂q1的上端连接通路中配置继电器k1,并引出连接点1。在与桥臂q2的下端连接通路中配置继电器k2,并引出连接点2。在上下桥臂q1和q2连接中点引出继电器k3,并引出连接点l,连接点l与市电模块的l端连接。另外一路不额外配置相关功率器件和继电器开关器件,在双绕组电机控制模式下,控制继电器k1、继电器k2闭合,控制继电器k3断开并使得桥臂q1和桥臂q2均处于截止状态,桥臂q1和桥臂q2组成第一相桥臂,在该模式下桥臂q1和桥臂q2略显冗余,但却是车载充电器充电模式中不可或缺的组成结构。
25.第一双绕组电机功率控制模块:由电容c1和三相桥臂组成,电容c1的上下端与三相逆变电路桥臂的上下端连接,包括第二相桥臂、第三相桥臂和第四相桥臂,各相分为上下两个桥臂,每个桥臂由功率开关管和续流二极管连接而成基本组块ut1作为第一相桥臂的上桥臂,基本组块桥臂ub1作为第二相桥臂的下桥臂,两组块相互连接,桥臂中点与第一双绕组电机绕组模块第一绕组la1连接。基本组块vt1作为第二相桥臂的上桥臂,基本组块vb1作为第二相桥臂的下桥臂,两组块相互连接,桥臂中点与第一双绕组电机绕组模块的第二绕组lb1连接。基本组块wt1作为第三相桥臂的上桥臂,基本组块wb1作为第三相桥臂的下桥臂,两组块相互连接,桥臂中点与第一双绕组电机绕组模块的第三绕组lc1连接,三相桥臂中点连接到第一双绕组电机绕组模块的三相绕组,通过控制各桥臂功率管门极信号,第一双绕组电机功率控制模块输出pwm波驱动第一双绕组电机绕组模块。
26.第一双绕组电机绕组模块:由三相对称绕组第一绕组la1、第二绕组lb1和第三绕
组lc1星型连接组成,第一绕组la1、第二绕组lb1和第三绕组lc1的电气阻感特性相同,第一绕组la1与星型中点连接的链路中配置双刀双掷开关,其中继电器k5控制第一绕组la1与星型中点的连接,继电器k4控制第一绕组la1与连接点n的连接,连接点n与市电模块的n端连接,其中继电器k4断开,继电器k5闭合,保证该绕组模块在电机驱动模式下的正常运行。
27.第二双绕组电机功率控制模块:由电容c2和三相桥臂组成,包括第五相桥臂、第六相桥臂和第七相桥臂,各相分为上下两个桥臂,每个桥臂由功率开关管和续流二极管连接而成,基本组块ut2作为第五相桥臂的上桥臂,基本组块ub2作为第五相桥臂的下桥臂,两组块相互连接。桥臂中点与第二双绕组电机绕组模块的第四组la2连接,通路中配置继电器k6。基本组块vt2作为第六相桥臂的上桥臂,基本组块vb2作为第六相桥臂的下桥臂,两组块相互连接,桥臂中点与第二双绕组电机绕组模块的第五绕组lb2连接。基本组块wt2作为第七相桥臂的上桥臂,基本组块wb2作为第七相桥臂的下桥臂,两组块相互连接,桥臂中点与第二双绕组电机绕组模块的第六绕组lc2连接,控制继电器k6闭合,三相桥臂中点连接到第二双绕组电机绕组模块的三相绕组,通过控制各桥臂功率管门极信号,第二双绕组电机功率控制模块输出pwm波驱动第二双绕组电机绕组模块。
28.第二双绕组电机绕组模块:由三相对称绕组第四绕组la2、第五绕组lb2和第六绕组lc2星型连接组成,第四绕组la2、第五绕组lb2和第六绕组lc2的电气阻感特性相同,受第二双绕组电机功率控制模块发出的pwm驱动控制。
29.在双绕组电机控制模式下,电池模块分别同时通过第一双绕组电机功率控制模块和第二双绕组电机功率控制模块驱动控制第一双绕组电机绕组模块和第二双绕组电机绕组模块。
30.如图2所示,是本发明的车载充电器充电模式下的结构,包括市电模块、pfc逆变电路模块、逆变模块、隔离变压器模块、整流模块和电池模块。
31.市电模块:在车载充电器充电模式下,控制继电器k3、k4闭合,继电器k1、k2断开,市电n端接通连接点n,市电l端接通连接点l,实现向pfc逆变电路的功率传输。
32.pfc逆变电路模块:控制继电器k5断开,使得第一绕组la1脱离电机控制模式下的星型连接,作为单独的阻感元器件置于pfc逆变电路模块中。桥臂q1、桥臂q2由双绕组电机控制模式下的截止状态切换为使能状态,由桥臂ut1、桥臂ub1、桥臂q1、桥臂q2共同构成两相桥臂,上下两端同时并接电容c1,各个桥臂由其门极信号控制通断,共同实现pfc的逆变升压。
33.逆变模块:由桥臂vt1、桥臂vb1、桥臂wt1、桥臂wb1共同组成两相桥臂,通过控制各功率开关管的门极信号实现逆变功能,输出高频交变电压。
34.隔离变压器模块:控制继电器k5、继电器k6断开使得第一绕组la1和第四绕组la2脱离电机控制模式下的星型连接,第二绕组lb1和第三绕组lc1自动串接构成变压器的原边,绕组第五lb2和第六绕组lc2自动串接构成变压器的副边,通过合理配置两组绕组的匝数,即可实现隔离变压器变压功能,第一双绕组电机绕组模块中三相绕组与第二双绕组电机绕组模块中三相绕组的匝数不同,用于控制切换为车载充电器充电模式下隔离变压器模块原边和副边的匝数比,实现该模块的升压功能,根据实际需求合理配置绕组匝数,实现隔离变压器模块的升压需求。
35.整流模块:由桥臂vt2、桥臂vb2、桥臂wt2、桥臂wb2共同组成两相桥臂,桥臂上下两
端分别与电容c2两端连接,通过控制各功率开关管的门极信号实现整流功能,输出直流充电电压为电池充电。
36.电池模块:此时控制继电器 k1、继电器k2断开,电池在结构上只与整流模块连接,接受其输出的电功率进行充电。
37.综上,双绕组电机控制模式和车载充电器充电模式的模式切换条件如图3所示,在车载充电器充电模式下,控制继电器k1、继电器k2、继电器k5和继电器k6开关,控制继电器k3和继电器k4闭合,在双绕组电机控制模式下,控制继电器k1、继电器k2、继电器k5和继电器k6闭合,控制继电器k3和继电器k4断开。
38.本发明的拓扑结构中所涉及的所有功率开关管及继电器开关均可以替换为任意具有类似开关特性的器件。
39.以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献