一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于微纳光学元件的多碱光电阴极制备方法与流程

2022-09-01 10:37:58 来源:中国专利 TAG:


1.本发明属于光电阴极技术领域,具体涉及一种基于微纳光学元件的多碱光电阴极制备方法。


背景技术:

2.光阴极是各类像管的光电子传感器,承担着将输入光子图像变换为相应时空分布的光电子图像的关键任务。由于光阴极处于光电子成像系统的第一输入面上,因此,其质量和特征直接关系到整个系统的优劣和适用性。一个高灵敏度的光电阴极,必须在所放虑的光谱区域内,对入射光有强烈的吸收。
3.人们在改进光电阴极工艺时,还企图通过光学的方法,增加入射光的吸收,减少透射和反射光的损失来提高光电阴极的灵敏度。微纳光学元件是利用光学的方法增加入射光的吸收。然而,在具有微纳光学元件的avg玻璃基底进行多碱光电阴极制作时,入射光吸收率的增加会影响光电阴极工艺的正常执行。所以,对于具有微纳光学元件的avg玻璃基底,在进行多碱光电阴极制备时,需要新的制备方法。
4.针对该技术问题,需要从阴极制作工艺角度解决微纳光学元件造成的多碱光电阴极工艺异常问题,从而保证基于微纳光学元件的多碱光电阴极灵敏度。


技术实现要素:

5.本发明的目的在于提供一种基于微纳光学元件的多碱光电阴极制备方法,用于带微纳光学元件的高性能微光像增强器多碱光电阴极膜层制备,适用于具有微纳光栅结构的avg玻璃基底的多碱阴极制备工艺。本发明在具有微纳光栅结构的avg玻璃基底上进行多碱光电阴极膜层制备过程时,微纳光学结构对入射光具有衍射增强作用,在多碱光电阴极制备过程中光电流信号得到明显增强,直接影响多碱光电阴极制备工艺。
6.所述的光电流信号得到明显增强是指:在na3sb制备完成后,其光电流值较高。
7.所述的微纳光学结构影响多碱光电阴极制备工艺中,引入k、na蒸汽后,光电流变化速率较快。
8.本发明的方法的具体的步骤包括:
9.步骤一,接通na源电流,引入1-5min的na,使光电流上升到10-15na,继续引入na蒸汽,1-3min后,切断na源电流。
10.步骤二,接通sb源电流,进sb,在具有微纳光学结构的avg内表面上形成na3sb层;
11.步骤三,接通k源、na源和sb源,在此过程中,sb源以100-200ma/min的速率增加,直到光电流快速增加,当光电流达到最大值且出现下降趋势时,切断sb源电流;
12.步骤四,再次接通na源电流,并逐渐增加na蒸汽,使光电流保持下降趋势,当光电流下降到2ua-2.5ua,切断k源、na源和sb源电流,并进行降温处理;
13.步骤五,当温度下降到170℃时,对多碱阴极进行表面激活处理,完成多碱光电阴极的制备。
14.本发明的有益效果:
15.(1)在多碱光电阴极工艺执行过程中,微纳光学元件对多碱阴极制备工艺影响特征明显,易于识别;
16.(2)制备工艺简单,显著地改善微纳光学元件对多碱阴极制备工艺的影响。
附图说明
17.图1:本发明的基于微纳光学元件的多碱光电阴极制备方法的流程图。
18.图2:阴极制备装置示意图。
19.图中:1-k源,2-na源,3-cs源,4-sb源,5-带微纳光学元件的avg玻璃,6-光电阴极。
具体实施方式
20.为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
21.如图1并参照图2所示,一种基于微纳光学元件的多碱光电阴极制备方法,包括:
22.步骤一,接通na源2电流,以20ma/min的加热速率对na源2进行加热,直到光电流上升,引入na,时间为3min,光电流上升到最大值,一般为15na,继续引入na蒸汽,时间为1min,然后切断na源2电流。
23.步骤二,紧接着接通sb源4电流,在具有微纳光学结构的avg玻璃5内表面上形成基底层na3sb。
24.步骤三,接通k源1、na源2和sb源4,使3中元素共同蒸发,形成迭加反应,sb源4电流以100ma/min速率增加,直到光电流快速增加,当光电流到达最大值时,一般为28ua。切断sb源4电流。
25.步骤四,再次接通na源2电流,按照200ma/min的增加速率二次蒸发na蒸汽,使光电流保持下降趋势,当光电流下降到15-20ua时,切断k源1、na源2和sb源4电流,并进行降温处理。
26.步骤五,当温度下降到170℃时,对多碱阴极6进行表面激活处理,完成多碱光电阴极6的制备。
27.技术效果说明:如实施案例所述,采用该多碱光电阴极制备方法在具有微纳光学元件表面进行阴极制备时,制备工艺过程中碱源电流易于控制,基底层特征易于识别;同时,该制备方法工艺流程简单,不涉及复杂不可控工艺过程,经过大量重复试验证实,该工艺方法重复性好,经过测试,采用该制备方法形成的多碱阴极材料性能良好,光阴极灵敏度平均值大于1000ua/lm。
28.需要说明的是,如图2所示的蒸镀装置采用本领域目前所常用的蒸镀装置。


技术特征:
1.一种基于微纳光学元件的多碱光电阴极制备方法,其特征在于,包括下列步骤:步骤一,准备好蒸镀装置,接通na源(2)电流,引入1-5min的na,使光电流上升到10-15na,继续引入na蒸汽,1-3min后,切断na源(2)电流;步骤二,接通sb源(4)电流,进sb,在具有微纳光学结构的avg玻璃(5)内表面上形成na3sb层;步骤三,接通k源(1)、na源(2)和sb源(4),在此过程中,sb源(4)以一定的速率增加,直到光电流快速增加,当光电流达到最大值且出现下降趋势时,切断sb源(4)电流;步骤四,再次接通na源(2)电流,并逐渐增加na蒸汽,使光电流保持下降趋势,当光电流下降到一定程度时,切断k源(1)、na源(2)和sb源(4)电流,并进行降温处理;步骤五,当温度下降一定温度时,对多碱阴极进行表面激活处理,完成多碱光电阴极(6)的制备。2.根据权利要求1所述的基于微纳光学元件的多碱光电阴极制备方法,其特征在于,在步骤三中,所述一定的速率增加是指以100-200ma/min的速率增加。3.根据权利要求1所述的基于微纳光学元件的多碱光电阴极制备方法,其特征在于,在步骤四中,所述逐渐增加na蒸汽是指na蒸汽增加速率为20-200ma/min。4.根据权利要求1所述的基于微纳光学元件的多碱光电阴极制备方法,其特征在于,在步骤四中,当光电流下降到2ua-2.5ua时,切断k源(1)、na源(2)和sb源(4)电流。5.根据权利要求1-4任一项所述的基于微纳光学元件的多碱光电阴极制备方法,其特征在于,在步骤五中,当温度下降到170℃时,对多碱阴极进行表面激活处理。

技术总结
本发明公开了一种基于微纳光学元件的多碱光电阴极制备方法,包括:接通Na源电流,引入一定量的Na,使光电流上升到一定高度,继续引入Na蒸汽,一定时间后,接通Sb源电流,并使之同时蒸发,在具有微纳光学结构的AVG内表面上形成Na3Sb层;接通K源、Na源和Sb源,Sb源电流以一定速率增加-快速增加-下降时,切断Sb源电流;接通Na源电流,以一定速率增加Na蒸汽,使光电流保持下降趋势,当光电流下降到一定高度时,切断K源、Na源和Sb源电流,降温处理,对多碱阴极进行表面激活,完成多碱光电阴极的制备。本发明能够显著地改善微纳光学元件对多碱阴极制备工艺的影响。制备工艺的影响。制备工艺的影响。


技术研发人员:高兵祥 钟梓源 李磊 马怀超 李臻 李金沙 龚燕妮 赵恒 马锦雅
受保护的技术使用者:北方夜视技术股份有限公司
技术研发日:2022.05.17
技术公布日:2022/8/30
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献