一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

多相内流激励下的输流管道振动响应预测方法

2022-07-31 09:09:53 来源:中国专利 TAG:


1.本发明涉及一种输流管道振动响应预测方法。


背景技术:

2.针对输流管道的动力学研究具有广泛的工业应用背景。比如:石油工程中采油管柱、集输工程中输送管道、深海工程中钻井管柱、生产管柱等大长径比输流管道在内部流体作用下的振动响应以及系统稳定性特征等问题。除此之外,针对输流立管的动力学研究理论还可以非常方便地推广至航空、化工、生物工程、以及核工程等领域。输流管道结构的结构振动现象是一种典型的非线性流固耦合问题,该问题的特点为:两个介质之间的相互作用,变形固体在流体载荷的作用下会发生形变或位移,这种形变或位移又会反过来影响流体的运动,从而改变流体载荷的分布和大小。
3.目前针对内流激励下输流管道振动响应的研究绝大多数都是集中在内部为单相内流的情况。而随着海洋资源开采的快速发展,比如针对深海油气开采工程中的生产立管、以及深海采矿工程中的提升管道,结构内部的流体很明显不再是单相内流,而是复杂的多相内流。与单项内流激励下输流管道的振动响应问题相比,多相内流下输流管道振动响应问题提出了新的挑战。与单相内流相比,多相内流的激励特性不仅和内流流速有关,还和固相与液相的体积分数比值、以及固相与液相的速度比值(即:滑移因子)有关。针对这种多相内流激励下的输流管道振动响应问题,只有不断地提出并完善理论分析手段,通过建立新模型、提出新方法、研发新技术,才能正确认识、科学计算、准确预报其振动响应特性,从而为深水资源开采工程中大长径比输流管道早期的合理设计、以及服役期的安全工作提供技术保障。


技术实现要素:

4.本发明为了解决目前输流管道振动响应预测都是基于内部为单相内流的情况,从而不能很好对多相内流情况下的输流管道振动响应进行预测的问题。
5.多相内流激励下的输流管道振动响应预测方法,包括以下步骤:
6.针对多相内流激励下的输流管道,将内部流体按照气相、液相、固相三种相成分表示内流的质量、动量和动能,并通过滑移因子建立气相、液相、固相之间流动速度的联系;基于单相内流激励下的输流立管的振动方程,将单相内流按照包含气相、液相、固相三种相成分的内流确定多项内流激励下输流管道振动方程;
7.然后对多项内流激励下输流管道振动方程进行无量纲化,并将无量纲化的多项内流激励下输流管道振动方程在时间与空间上进行离散,再根据爱恩斯坦求和法则进行化简确定多项内流激励下输流管道振动方程的最终形式,多项内流激励下输流管道振动方程的最终形式求解,实现输流管道振动响应预测。
8.进一步地,将内部流体按照气相、液相、固相三种相成分表示内流的质量mi、动量
项miui和动能项如下:
9.mi=m
l
ms mgꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
10.miui=m
lul
m
sus
mgugꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0011][0012]
其中,m
l
表示为单位长度液体质量,ms表示为单位长度固体质量,mg表示为单位长度气体质量。u
l
表示为液体速度,us表示为固体速度,ug表示为气体速度。
[0013]
进一步地,通过滑移因子建立的气相、液相、固相之间流动速度联系如下:
[0014]
ug=αu
l
,us=βu
l (5)
[0015]
其中,α为气液两相速度滑移因子,β为固液两相速度滑移因子。
[0016]
进一步地,单相内流激励下的输流立管的振动方程可写作:
[0017][0018]
其中,e为弹性模量,i截面惯性矩,ei为输流立管的弯曲刚度;w为管道横向位移,z为管道轴向坐标变量;mi代表单位长度流体质量,t为时间;ui为管道中内流流速;m
p
代表单位长度结构质量;为顶端拉力;a为管道截面积,l为输流管道长度,ε0是管道的初始应变;代表顶端流体压力;υ为泊松比;b
bool
为边界约束,当没有边界约束时,b
bool
=0,反之b
bool
=1;g代表重力加速度。
[0019]
进一步地,多项内流激励下输流管道振动方程如下:
[0020][0021]
其中,c为材料耗散系数,m
p
为管道的结构质量;η

为η对应空间导数的一阶导数,撇代表空间导数,撇的个数为导数的阶数;e为弹性模量,i截面惯性矩,ei为输流立管的弯曲刚度;w为管道横向位移,z为管道轴向坐标变量;mi代表单位长度流体质量,t为时间;ui为管道中内流流速;m
p
代表单位长度结构质量;为顶端拉力;a为管道截面积,l为输流管道长度,ε0是管道的初始应变;代表顶端流体压力;υ为泊松比;b
bool
为边界约束,当没有边界
约束时,b
bool
=0,反之b
bool
=1;g代表重力加速度;
[0022]ml
表示为单位长度液体质量,ms表示为单位长度固体质量,mg表示为单位长度气体质量;u
l
表示为液体速度,us表示为固体速度,ug表示为气体速度;α为气液两相速度滑移因子,β为固液两相速度滑移因子。
[0023]
进一步地,对多项内流激励下输流管道振动方程进行无量纲化的过程包括以下步骤:
[0024]
设无量纲横向位移为η,无量纲轴向坐标为ξ,无量纲时间为τ,分别表示如下:
[0025][0026]
其中,d为输流管道半径;
[0027]
对上式作微分运算,可得到:
[0028][0029]
设液相速度不变,将公式(8)代入原方程(6),得到无量纲方程为
[0030][0031]
其中,分别为无量纲液、气、固质量比;为无量纲流速;为无量纲初始顶张力;为无量纲初始压力;λ为无量纲加速度;q
l
、qs、qg分别为无量纲液、固、气体积分数;c
1-c6为无量纲常系数。
[0032]
进一步地,无量纲常系数c
1-c6如下:
[0033][0034]
其中,ρ
l
表示为液体密度,ρs表示为固体密度,ρg表示为气体密度;a
acc
为管道内流加速度。
[0035]
进一步地,将无量纲化的多项内流激励下输流管道振动方程在时间与空间上进行离散的过程采用伽辽金法。
[0036]
进一步地,采用伽辽金法将无量纲化的多项内流激励下输流管道振动方程在时间与空间上进行离散的过程包括以下步骤:
[0037]
离散的形式为
[0038][0039]
其中,φj(ξ)为空间振型;为时间系数;n为伽辽金截断指数;
[0040]
将公式(11)代入公式(10),得到
[0041][0042]
其中,参数上面带有点
·
表示对应参数的时间导数,点的个数为导数的阶数;代表对应时间导数,点的个数为导数的阶数;φ1′
、φ1″
、φ1″″
为φ1对应空间导数,撇的个数为导数的阶数;
[0043]
整理得到
[0044][0045]
其中,a
1-a3表示为
[0046][0047]
进一步地,根据爱恩斯坦求和法则进行化简确定多项内流激励下输流管道振动方程的最终形式的过程包括以下步骤:
[0048]
根据爱恩斯坦求和法则化简为
[0049][0050]
将公式左侧乘振型函数φi,并在无量纲区域0-1间进行积分,得到
[0051][0052]
将φj,改写为矩阵形式,得到
[0053][0054]
以φi展开为四个式子f1,f2,f3,f4:
[0055][0056]
上式为振动方程最终形式。
[0057]
本发明具有以下有益效果:
[0058]
本发明以多相内流激励下大长径比输流管道作为研究对象,建立了气液固多相内流激励下结构振动响应的数值预报模型以及数值分析方法。该模型和方法可有效地预报输流管道在具有不同内流特征(包括:内流速度、固相与液相体积比值、以及滑移因子)的流体激励下的结构振动响应以及系统稳定性特征。
附图说明
[0059]
图1为多相内流示意图(固、液、气);
[0060]
图2为输流立管的振动位移均方根值;
[0061]
图3为输流立管的振动包络线图;
[0062]
图4为输流立管中点的振动位移时程图。
具体实施方式
[0063]
具体实施方式一:
[0064]
本实施方式为一种多相内流激励下的输流管道振动响应建模及预测方法,包括以下步骤:
[0065]
步骤1:建立多相内流激励下输流管道的振动方程,具体如下:
[0066]
单相内流激励下的输流立管的振动方程可写作:
[0067][0068]
其中,e为弹性模量,i截面惯性矩,ei为输流立管的弯曲刚度;w为管道横向位移,z为管道轴向坐标变量;mi代表单位长度流体质量,t为时间;ui为管道中内流流速;m
p
代表单位长度结构质量;为顶端拉力;a为管道截面积,也代表流体微元横截面积,l为输流管道长度,ε0是管道的初始应变;代表顶端流体压力;υ为泊松比;b
bool
为边界约束,当没有边界约束时,b
bool
=0,反之b
bool
=1;g代表重力加速度;
[0069]
多相内流的相成分要比单项内流复杂得多。如图1所示,当内流含有气相、液相、以及固相三种相成分时,其内部流体的质量mi、动量项miui和动能项可分别表示为
[0070]
mi=m
l
ms mgꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
[0071]
miui=m
lul
m
sus
mgugꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0072][0073]
其中,m
l
表示为单位长度液体质量,ms表示为单位长度固体质量,mg表示为单位长度气体质量。u
l
表示为液体速度,us表示为固体速度,ug表示为气体速度。
[0074]
在多相流中,由于各流相的密度不同,轻质相的流速大于重质相的流速,这样会进一步导致不同相之间的流动速度不同,它们之间可通过滑移因子建立联系,如下:
[0075]
ug=αu
l
,us=βu
l (5)
[0076]
其中,α为气液两相速度滑移因子,β为固液两相速度滑移因子。
[0077]
因此,多项内流激励下输流管道振动方程可进一步写作:
[0078][0079]
其中,c为材料耗散系数,m
p
为管道的结构质量;η

为η一阶导数,对应空间导数,后续用撇代表空间导数,撇的个数为导数的阶数。
[0080]
步骤2:对步骤1)得到的振动方程进行无量纲化,具体如下:
[0081]
为了更好的观察物理模型在不同尺度上的变化,对振动方程进行无量纲化。设无量纲横向位移为η,无量纲轴向坐标为ξ,无量纲时间为τ,分别表示如下:
[0082][0083]
其中,d为输流管道半径;
[0084]
对上式作微分运算,可得到:
[0085][0086]
若内流为定常流动,即液相速度不变此时a
acc
=0。将公式(8)代入原方程(6),得到无量纲方程为
[0087][0088]
其中,分别为无量纲液、气、固质量比;为无量纲流速;为无量纲初始顶张力;为无量纲初始压力;λ为无量纲加速度;q
l
、qs、qg分别为无量纲液、固、气体积分数;c
1-c6为无量纲常系数,当结构几何属性、物理属性以及边界条件确定后,这些系数不再发生变化,表示如下:
[0089][0090]
其中,ρ
l
表示为液体密度,ρs表示为固体密度,ρg表示为气体密度;a
acc
为管道内流加速度。
[0091]
步骤3:提出多相内流激励下输流管道振动响应的数值分析方法,具体如下:
[0092]
利用伽辽金法将方程(9),即最终的振动方程,在时间与空间上进行离散,使得复杂的高阶偏微分方程转化为容易求解的低阶常微分方程。
[0093][0094]
其中,φj(ξ)为空间振型,不同的固定方式的振型不同,取决于实际情况;为时间系数,表示当前时间τ下该振型的贡献量;n为伽辽金截断指数,表示离散到第n阶振型。
[0095]
将公式(11)代入公式(10),得到
[0096][0097]
其中,参数上面带有点
·
表示对应参数的时间导数,点的个数为导数的阶数;代表对应时间导数,点的个数为导数的阶数;φ1′
、φ1″
、φ1″″
为φ1对应空间导数,撇的个数为导数的阶数;
[0098][0099]
其中,a
1-a3表示为
[0100][0101]
根据爱恩斯坦求和法则,上式继续化简为
[0102][0103]
将公式左侧乘振型函数φi,并在无量纲区域0-1间进行积分,得到
[0104][0105]
将φj,改写为矩阵形式,可以得到
[0106][0107]
以φi展开为四个式子f1,f2,f3,f4:
[0108][0109]
上式为振动方程最终形式,可以利用牛顿迭代法求解。设n 1时间步的解(就是第n 1时间步的第j阶模态/振型的响应贡献率,即最终的响应)为
[0110][0111]
其中,jn为第n步的雅可比矩阵,表达式如下
[0112][0113]
实施例
[0114]
利用表1所示的有量纲参数对模型进行求解,得到图2-4的输流管道振动rms值、输流管道振动包络线、输流管道中点振动时程曲线。
[0115]
表1多相内流有量纲参数
[0116][0117]
图2为输流立管的振动位移均方根(rms)值;图3为输流立管的振动包络线图;图4为输流立管中点的振动位移时程图。由图1可知,管道的振动位移均方根值由无量纲空间位置0-0.5表现为线性增加,随后0.5-0.8空间位置增加速率变大,在0.8左右取到最大值,随后在0.8-1无量纲空间位置内由最大值迅速递减到0。由图3可知,管道中点表现为衰减振动,在0-20的无量纲时间内,振动幅值迅速衰减至0左右,之后立管中点保持在-1.05左右,呈现屈曲状态。
[0118]
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权力要求书所界定的为准。同时,需要说明的是,本发明的说明书及其附图中给出了本发明书及其附图中给出了发明较佳的实施方式,但是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施方式,这些实施方式不作为对本发明内容的额外限制,提供此实施方式的目的是使对本发明的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施方式,均视为本发明说明书记
载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。本发明要求保护范围由所附的权利要求书及其等效物界定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献