一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

功率模块及其制造方法、功率变换器和供电设备与流程

2022-07-30 20:24:33 来源:中国专利 TAG:


1.本技术涉及电路领域,尤其涉及一种功率模块,以及一种功率模块的制造方法、和一种包括该功率模块的功率变换器,以及一种包括该功率变换器的供电设备。


背景技术:

2.功率变换器广泛应用于伺服电机、变频器、逆变器等领域,用于实现交直流转换、直流升压/降压等功能。功率变换器由功率模块及其它电子器件按一定的功能组合形成。功率模块通常存在密封性差的缺陷。且功率模块在工作过程中因为散热不足、瞬时电流过大等原因,可能发生击穿现象。现有的封装材料无法屏蔽击穿的电弧伤害,容易导致功率变换器内大面积的电子器件受损。


技术实现要素:

3.本技术提供一种功率模块、一种功率模块制造方法、以及一种包括该功率模块的功率变换器。在提升功率模块的密封性能同时,还可以控制到功率模块的击穿电弧方向,减小功率模块故障时造成的损害。本技术具体包括如下技术方案:
4.第一方面,本技术提供一种功率模块,包括壳体,壳体包括主壳体、散热片及固定层,主壳体开设有凹槽,且槽口位于第一外表面,固定层设于凹槽的底面;散热片位于与槽口的朝向相背离的一侧;电路组件,收容于凹槽内,电路组件包括散热面和引脚,散热面与固定层焊接固定,引脚朝背离固定层的方向延伸,且引脚的远端伸出第一外表面;以及封装件,封装件填充于凹槽内,用于包覆电路组件,并至少部分露出引脚的远端。
5.本技术提供的功率模块通过在壳体上设置凹槽,形成了底面及侧壁均为金属材质的收容腔。将电路组件收容于凹槽内,可以提升对电路组件的防护强度。其中底面设置的固定层结构,可以对电路组件形成更好的焊接固定效果,并提升电路组件的导热效率。而电路组件的引脚同时伸出壳体外表面和封装件,也保证了功率模块与外部器件之间的连接可靠性。当本技术功率模块发生击穿事故时,凹槽的结构可以对功率模块形成可靠防护,并控制电弧仅朝向凹槽的槽口方向传播,进而减小了功率模块的故障伤害。
6.在一种可能的实现方式中,固定层通过电镀的方式形成于凹槽的底面,或通过嵌设的方式形成于凹槽的底部。
7.在本实现方式中,通过电镀或嵌设的方式,都可以在凹槽的底面形成固定层的结构,并保证固定层在壳体底部的连接可靠性。
8.在一种可能的实现方式中,固定层的主体材质为铜、锡、镍、或银。
9.在一种可能的实现方式中,固定层与散热面之间还设有连接层,连接层的主体材质为锡、银、铜、或树脂。
10.在本实现方式中,采用锡、银、铜、或树脂作为连接层,以将电路组件固定于固定层上,可以保证电路组件与壳体之间的导热效率,提升功率模块的散热效果。
11.在一种可能的实现方式中,主壳体和散热片的主体材质为导热率大于或等于
120w/mk的金属。
12.在一种可能的实现方式中,主壳体和散热片的主体材质为铝。
13.在本实施例中,铝的导热率相对较高,且重量轻、成本低,可以较好的提升功率模块的散热效果,并降低整体成本。
14.在一种可能的实现方式中,电路组件还包括电路板、芯片和键合线,电路板的一侧表面形成散热面,电路板的另一侧表面用于贴设芯片和引脚,键合线连接于芯片与引脚之间。
15.在本实现方式中,电路组件通过搭载于电路板上的芯片实现功率变换功能,并通过引脚实现其与外部器件之间的电性连接。
16.在一种可能的实现方式中,键合线还连接于两个芯片之间。
17.在一种可能的实现方式中,芯片包括金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,mosfet)、绝缘栅双极型晶体管(insulated gate bipolar transistor,igbt)、二极管或三极管中的一者或多者。
18.在一种可能的实现方式中,电路板包括陶瓷基板、第一铜层和第二铜层,第一铜层和第二铜层分别贴附于陶瓷基板的相背两侧,散热面形成于第一铜层上。
19.在本实现方式中,电路板可以采用覆铜陶瓷片实现。其第一铜层用于实现与凹槽底面的可靠连接,第二铜层则用于实现芯片、键合线及引脚的电性连接功能。
20.在一种可能的实现方式中,封装件背离底面一侧与第一外表面平齐,或低于第一外表面。
21.在本实施例中,限定封装件的高度,可以保证引脚的远端相对于第一外表面的可靠露出,以保证功率模块与外部器件的连接稳定性。
22.在一种可能的实现方式中,封装件的材料为环氧树脂或硅凝胶。
23.在一种可能的实现方式中,凹槽包括侧壁,侧壁连接于第一外表面与底面之间,在垂直于第一外表面的任意截面上,侧壁的形状为阶梯状。
24.在本实现方式中,将侧壁的截面形状设置为阶梯状,可以提升封装件与侧壁之间的接触面积,保证封装件与侧壁之间的密封效果。
25.在一种可能的实现方式中,凹槽的槽口在底面上的投影收容于底面之内。
26.在本实现方式中,设置凹槽的槽口面积小于其底面面积,使得凹槽能对封装件形成更好的固持效果,提升功率模块的结构稳定性。
27.第二方面,本技术提供一种功率模块的制造方法,包括如下步骤:
28.将芯片贴合于电路板的一侧表面上,并将键合线的一端固定于芯片上;
29.将引脚固定于电路板上,并使得引脚与键合线的另一端导通;将电路板的另一侧表面焊接固定于壳体的固定层上,其中固定层位于壳体开设的凹槽底面上;
30.采用封装材料对凹槽进行填充,以包覆电路板、芯片和键合线,并部分包覆引脚。
31.本技术功率模块制造方法在形成电路组件的结构之后,将电路组件贴设于凹槽的底面上,再对凹槽进行封装,使得本方法可以用于制作本技术第一方面提供的功率模块。可以理解的,采用本技术方法制造的功率模块,也具备了上述功率模块中可靠性高、散热能力强、且击穿时故障伤害相对较小的有益效果。
32.在一种可能的实现方式中,将电路板的另一侧表面焊接固定于壳体的固定层上,
包括:采用锡焊、银烧结、铜烧结、银浆、或半固化片的方式,将电路板的另一侧表面焊接固定于壳体的固定层上。
33.在本实现方式中,因为凹槽底面设置了固定层,使得固定层可以采用上述工艺与电路组件实现连接固定,并提升电路组件与凹槽之间的热传导效率。
34.第三方面,本技术提供一种功率变换器,包括控制模块,以及本技术第一方面提供的功率模块,控制模块用于控制至少一个功率模块的导通和关断,以实现功率变换。
35.第四方面,本技术提供一种供电设备,包括电源和本技术第三方面提供的功率变换器,其中电源与功率变换器电性连接,并通过功率变换器输出电能。
36.可以理解的,在本技术第三方面提供的功率变换器中,因为采用了本技术第一方面提供的功率模块,且本技术第四方面提供的供电设备也因为采用了该功率变换器,使得二者的有益效果均与本技术第一方面所提供的功率模块大致相同此处不做赘述。
附图说明
37.图1是本技术实施例提供的一种功率变换器使用场景的电路图;
38.图2是本技术实施例提供的另一种功率变换器使用场景的电路图;
39.图3是本技术实施例提供的一种功率模块的结构示意图;
40.图4是本技术实施例提供的一种功率模块的分解结构示意图;
41.图5是本技术实施例提供的一种功率模块的截面示意图;
42.图6是本技术实施例提供的一种功率模块中壳体的结构示意图;
43.图7是本技术实施例提供的一种功率模块中壳体另一视角的结构示意图;
44.图8是本技术实施例提供的一种功率模块中电路组件的结构示意图;
45.图9是本技术实施例提供的一种功率模块中电路组件的分解结构示意图;
46.图10是本技术实施例提供的一种功率模块中电路板的分解结构示意图;
47.图11是本技术实施例提供的另一种功率模块的局部截面示意图;
48.图12是本技术实施例提供的再一种功率模块的局部截面示意图;
49.图13是本技术实施例提供的再一种功率模块中凹槽底面的平面结构示意图;
50.图14是本技术实施例提供的一种功率模块的制造方法步骤流程图;
51.图15a-图15f是本技术实施例提供的功率模块制造方法中各个步骤的结构示意图;
52.图16d和图16e是本技术实施例提供的功率模块制造方法中步骤s120另一实现顺序的结构示意图。
具体实施方式
53.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本技术的一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本技术保护的范围。
54.本技术提供的供电设备包括电源和功率变换器,电源用于提供电能,功率变换器与电源电性连接,用于对电源提供的电能进行功率转换,以实现电能按照预设规格提供给
用电设备,保证用电设备正常工作的效果。供电设备内可以设置半导体电路,功率变换器则应用于半导体电路中,具体可用于实现交直流转换、直流升压/降压等功率变换的功能。本技术供电设备可以为伺服电机、变频器、逆变器等设备。
55.图1为本技术提供的一种功率变换器在半导体电路200中的电路示意图。
56.在图1的示意中,该半导体电路200为升压电路(boost)。具体的,半导体电路200包括电感201、第一功率模块202、第二功率模块203、电容204以及控制模块205。其中,第一功率模块202、第二功率模块203即可为本技术图3-图13所提供的功率模块,控制模块205与第一功率模块202则形成为本技术所提供的功率变换器。
57.本实施例中,半导体电路200用于将自输入端210接收的电源的第一电压升高为第二电压,第二电压自输出端220输出,实现功率变换功能。
58.电感201用于对输入端210提供的电源电能实现储能、释能;
59.电容204连接于输出端220,用于对电感201释能时的电源电能进行滤波后获得第二电压;
60.第二功率模块203具体为二极管,连接于电感201与电容204之间,用于实现电感201单向向输出端220释能;
61.控制模块205与第一功率模块202共同作为半导体电路200的功率变换器,即可控开关使用。该可控开关连接于电感201与输入端210,用于为电感201提供储能路径。
62.具体的,控制模块205用于控制第一功率模块202的导通和关断,当第一功率模块202处于导通状态时,电感201连接于两个输入端210之间,处于储能路径得以存储电能;当第一功率模块202处于关断状态时,电感201经过第二功率模块203连接于输出端220形成释能路径,电感201存储的电能得以释放,实现了半导体电路200的升压效果。
63.图2为本技术提供的另一种功率变换器在半导体电路300中的电路示意图。
64.在图2的示意中,该半导体电路300为逆变电路。具体包括四个功率模块301、控制模块303以及一个电容302。其中,四个功率模块301也为本技术图3-图13提供的功率模块。控制模块303用于控制各个功率模块301的导通和关断,并与各个功率模块301共同作用,形成为本技术提供的功率变换器。
65.四个功率模块301定义为开关q1~q4,构成两个桥臂,且每一桥臂包括两个串联在半导体电路300的正负极的功率模块301。电容302连接于输入端310的正负极之间,用于对半导体电路300的输入端310中的电压、电流进行滤波。
66.在图2所示的半导体电路300中,通过控制模块303的控制,四个功率模块301也作为可控开关使用,并且通过对两个桥臂中四个功率模块301导通、关断状态的控制,构成两个不同的导电路径。
67.具体的,控制模块303具有四个控制端口a\b\c\d,其分别对应控制q1\q2\q3\q4四个功率模块301的导通和关断。当开关q1、q4处于导通状态时,q2、q3处于关断状态,此时半导体电路300中的正负极为正相传输;当开关q2、q3处于导通状态时,开关q1、q4处于关断状态,半导体电路300中的正负极变为反相传输。两种状态下输出端320得到的电压正负极互为反向。由此,图2示意的半导体电路300实现了逆变功能。可以实现直流-交流的转换,或实现交流-直流的转换,实现功率变换功能。
68.从图1和图2可以看出,本技术提供的功率变换器在半导体电路200和半导体电路
300中,通过控制模块205(图2中为控制模块303)与功率模块(第一功率模块202、第二功率模块203、或功率模块301)的配合,虽然具体的工作方式存在差异,但都可以实现半导体电路中的功率变换的功能。
69.图3示意了本技术提供的一种功率模块100的具体结构。可以理解的,该功率模块100的具体结构也可以作为图1所示第一功率模块202、第二功率模块203、以及图2所示功率模块301的具体结构。该功率模块100的具体结构可以应用到本技术涉及的任意功率变换器中,并作为半导体电路中的任意一个或多个功率模块使用。请结合图4示意的功率模块100的分解图、图5示意的功率模块100的截面示意图一并理解。
70.功率模块100包括壳体10、电路组件20、和封装件30。壳体10包括主壳体11,主壳体11具有相背的第一外表面111和第二外表面112。壳体10还包括固定层12和散热片13。其中散热片13凸设于第二外表面112上,第二外表面112上开设有凹槽14。如图6所示,散热片13的数量为多个,多个散热片13沿同一方向间隔分布于第二外表面112上。壳体10的主体材质为铝,固定层12的主体材质为铜。也即,主壳体11和散热片13的主体材质为铝,铝材具有较轻的重量和较好的导热性,多个散热片13的设置可以增大壳体10的散热面积,有助于提升功率模块100的散热效果。
71.需要提出的是,壳体10的主体材质除铝之外,还可以为导热率大于或等于120w/mk(瓦/米
·
k)的其它金属。导热率即为单位温度梯度(在1m长度内温度降低1k)在单位时间内经单位导热面所传递的热量。现有技术中如铜、银、金等金属,其导热率也大于或等于120w/mk,上述金属也可以作为本技术功率模块100的壳体10主体材质使用。可以理解的,当壳体10的主体材质为铝时,其重量相对较轻,且成本相对较低,因此本技术后续实施例基于壳体10的主体材质为铝进行介绍。
72.另一方面,固定层12的主体材质除铜之外,也可以为锡、镍、或银等金属。这些材质与功率模块100内部器件的连接固定相对稳定,可以提升功率模块100的整体结构稳定性。本技术后续实施例则基于固定层12的主体材质为铜进行介绍。在本技术各实施例中,“a”的主体材质为“b”,应当理解为“a”的材质为“b”,或“a”的材质为含“b”的合金。
73.而在图7所示的第一外表面111一侧,凹槽14开设于第一外表面111上,其具有靠近第一外表面111的槽口141、位于第二外表面112与第一外表面111之间的底面142、以及连接于底面142与第一外表面111之间的侧壁143。侧壁143环绕于底面142的外围,并与底面142合围形成一容置空间的结构。
74.对于本技术功率模块100而言,固定层12设于凹槽14的底面142上。具体的,在一种实施例中,固定层12可以采用电镀的方式形成于底面142上。即在铝材质的主壳体11上进行电镀,以将铜附着于凹槽14的底部,使得底面142形成为固定层12的结构。电镀形成的固定层12结构可以与主壳体11的铝材质形成较好的附着力,不易于从主壳体11上脱落。
75.而在另一种实施例中,凹槽14的底部还可以嵌入铜块。铜块可以通过挤压嵌入凹槽14的底部,并与凹槽14形成过盈配合。通过控制铜块与凹槽14之间的过盈量,也可以保证铜块与主壳体11的铝结构之间可靠连接,使得铜块不易于从主壳体11上脱落。由此,铜块朝向槽口141一侧的外表面即形成为凹槽14的底面142,也实现了凹槽14的底面142形成为固定层12的结构。
76.可以理解的,当固定层12的主体材质为其余材质时,其也可以通过电镀的方式形
成于凹槽14的底面142上,或通过嵌设的方式形成于凹槽14的底面。
77.电路组件20收容于凹槽14之内,底面142的固定层12结构用于与电路组件20焊接固定,并实现对电路组件20的可靠固持。具体的,请参见图8和图9所示的电路组件20的结构示意。其中,图8为电路组件20的结构示意图,图9为电路组件20的分解示意图。
78.本技术功率模块100的电路组件20中,包括有电路板21、芯片22、引脚23、以及键合线24。其中电路板21包括相对的两侧表面,其中一侧表面定义为散热面211,另一侧表面定义为连接面212。请进一步参见图10所示的电路板21的分解示意图。本技术电路板21包括依次层叠的第一铜层214、陶瓷基板213、和第二铜层215。其中陶瓷基板213位于第一铜层214和第二铜层215之间,第一铜层214与第二铜层215则分别贴附于陶瓷基板213的相背两侧面位置。本技术电路板21可以采用覆铜陶瓷片实现。
79.第一铜层214背离陶瓷基板213的表面即为电路板21的散热面211,该散热面211还构成为电路组件20的散热面211。第一铜层214用于与凹槽14的底面142(即固定层12)焊接固定;第二铜层215背离陶瓷基板213的表面即为电路板21的连接面212,芯片22、引脚23、以及键合线24则固定于第二铜层215上。其中芯片22的数量可以为一个或多个,各个芯片22均贴合于第二铜层215的连接面212上。在一些实施例中,电路板21的数量也可以为多个,多个电路板21平行排布,并分别与凹槽14的底面142层叠固定。多个电路板21上分别搭载有芯片22和引脚23,其可以用于共同作用实现功率模块100的功能,也可以分别用于实现功率模块100不同的功能,本技术在此不做特别限定。
80.引脚23的数量可以为多个,各个引脚23大致呈长条状,其沿自身长度方向包括相对的固定端231和连接端232。每个引脚23的固定端231均固定于连接面212上,引脚23的连接端232则朝向远离电路板21的方向延伸。进一步,引脚23的连接端232还伸出凹槽14,并露出于第一外表面111之外。也即,引脚23的长度尺寸,大于凹槽14的深度尺寸,以使得引脚23的连接端232能伸出壳体10之外,便于实现引脚23与外部器件之间的连接。
81.进一步的,还可以对第二铜层215进行图案化,配合键合线24的结构,实现两个芯片22之间、和/或芯片22与引脚23之间的电性连接。具体的,键合线24的一端连接至芯片22上,另一端连接至引脚23或另一芯片22上,即实现了键合线24在芯片22与引脚23之间、或键合线24在两个芯片22之间的电性连接。本技术功率模块100中的电路组件20,可以通过芯片22的配合实现预设的功率变化功能,并通过引脚23的连接端232实现与外部器件的连接。
82.需要提出的是,图8和图9中对键合线24的标识,仅用于展示键合线24连接方式的一种可能,并不用于限定功率模块100中键合线24的具体连接关系。以及,在图8-图10所示的对第二铜层215的图案化结构,也仅用于展示第二铜层215图案化的一种可能,并不限定第二铜层215的具体图案化形状。实际使用过程中,可以基于功率模块100的具体使用场景、及功率模块100的功能特性,自由匹配键合线24的位置和连接关系,以及自由匹配第二铜层215的图案化形状。
83.在一些实施例中,芯片22可以包括绝缘栅双极型晶体管(insulated gate bipolar transistor,igbt)、金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,mosfet)、二极管或三极管中的一者或多者。
84.而在第一铜层214一侧,散热面211用于与凹槽14的底面142(即固定层12)焊接固定。具体的,如图5所示,固定层12与散热面211之间还可以设有连接层40。也描述为电路组
件20通过连接层40焊接固定于凹槽14的底面142上。连接层40可以理解为焊料,其主体材质可以为锡、银、铜、或树脂。连接层40的相对两面分别与底面142和散热面211贴合,以将电路组件20焊接固定于凹槽14之内。
85.其中,当连接层40的主体材质为锡时,散热面211与底面142之间可以通过锡焊的方式实现焊接固定;当连接层40的主体材质为银时,散热面211与底面142之间可以通过银烧结或者银浆的方式实现焊接固定;当连接层40的主体材质为铜时,散热面211与底面142之间可以通过铜烧结的方式实现焊接固定;当连接层40的主体材质为树脂时,可以采用半固化片实现散热面211与底面142之间的焊接固定。因为凹槽14的底面142为固定层12,其主体材质为铜,因此便于通过上述各种方式形成连接层40的结构,同时保证了电路组件20与主壳体11之间的导热效率,提升功率模块100的散热性。
86.相较于现有技术中采用导热硅脂贴合电路板与散热器的方案,本技术功率模块100中连接层40的导热效率更高,且结构更稳定,不会出现如导热硅脂工作时间较长后发生卷曲、脱落的现象,可以提升功率模块100的使用寿命。且本技术功率模块100通过在主壳体11上设置散热片13,电路组件20工作时所产生的热量可以直接通过壳体10进行散热,相较于现有技术功率模块省去了导热板的结构,其热传导效率更高,也获得了更好的散热效果。
87.封装件30填充于凹槽14内,封装件30的外表面同时与凹槽14的底面142和侧壁143贴合,并包覆电路组件20的大部分结构,仅露出引脚23的连接端232。封装件30的材料可以为环氧树脂(epoxy molding compound,emc)或硅凝胶。封装件30对电路板21、芯片22、引脚23的固定端231、以及键合线24的包覆,可以对这些器件形成密封防护,防止外界水汽侵入电路组件20内,造成电路组件20的损害。且封装件30与底面142与侧壁143的贴合,也进一步阻止了外界水汽侵入凹槽14内的风险。
88.如图5所示,封装件30包括第一表面31,第一表面31为封装件30背离凹槽14的底面142一侧的表面。在图5的示意中,第一表面31与主壳体11的第一外表面111平齐。此时,封装件30完全填满凹槽14。封装件30与凹槽14的侧壁143之间的贴合面积较大,可以增加封装件30与侧壁143之间的固持力,提升封装件30在凹槽14内的连接稳定性。同时,第一表面31与第一外表面111平齐,使得封装件30对电路组件20的包覆体积也较大,可以形成更好的防护效果。
89.而在另一些实施例中,封装件30的第一表面31也可以低于第一外表面111。也即封装件30的第一表面31与底面142之间的距离,小于凹槽14的深度。此时,封装件30整体收容于凹槽14之内。封装件30对电路组件20的包覆,也可以形成较好的密封效果。
90.因为引脚23的连接端232位于第一外表面111之外,而封装件30的第一表面31与第一外表面111平齐、或低于第一外表面111的限定,可以保证引脚23的连接端232外露于封装件30之外。封装件30为绝缘材质,当外部器件与引脚23进行连接时,连接端232处不会形成封装件30的材料,可以保证到引脚23与外部器件之间的可靠导通。
91.由此,外部器件可以通过引脚23实现与功率模块100的电性连接。电信号经一侧引脚23(可以是为个)进入本技术功率模块100之后,经键合线24进入芯片22之内,并在完成功率转换后可以经键合线24传输至另一侧引脚23(可以为多个)输出,达到本技术功率模块100的功率变换效果。
92.对于现有技术功率模块而言,其电路组件通常仅通过封装件的结构包覆。在发生
击穿现象时,类似封装件的结构不足以屏蔽击穿所产生的电弧,现有技术功率模块的四周器件会因此受到损害。而本技术功率模块100的电路组件20收容于凹槽14之内,凹槽14的底面142和侧壁143均为金属结构。当功率模块100在工作过程中因为散热不足、瞬时电流过大等原因,发生击穿现象时,金属结构的底面142和侧壁143能够限制电弧向外扩散,对功率模块100周围的器件起到了防护效果。击穿所产生的电弧伤害仅会从凹槽14的槽口141方向射出,使得本技术功率模块100在发生击穿时的电弧方向可控,减小了伤害范围。
93.可以理解的,本技术所提供的功率变换器也因为对上述功率模块100的应用,而具备了可靠性高、散热能力强、以及发生故障时伤害相对较小等特点。而本技术供电设备因为采用了该功率变换器,而达到了相似的有益效果。
94.一种实施例请参见图11,在垂直于第一外表面111的任意截面上,凹槽14的侧壁143的形状还可以构造为阶梯状。因为封装件30采用灌注的工艺形成于凹槽14之内,因此封装件30与侧壁143接触的表面,也随侧壁143的形状形成为阶梯状。阶梯状的侧壁143可以与同为阶梯状的封装件30形成更大的接触面积,进而对封装件30形成更大的固持力,保证封装件30在凹槽14内的结构稳定性。可以连接的,在另一些实施例中,侧壁143的截面形状还可以为弧形、梯形、波浪形等其它形状,对应封装件30的表面也形成为与之匹配的结构,同样可以达到增大封装件30与侧壁143接触面积的效果。
95.在图11的示意中,侧壁143的阶梯结构,其槽口141处的宽度大于底面142处的宽度。即侧壁143的阶梯结构呈上大下小的状态。该结构有利于封装件30的灌注,避免在封装件30内部产生气泡,影响封装件30的密封效果。
96.而在另一些实施例中,如图12所示,侧壁143的阶梯结构还可以呈上小下大的状态。也即,槽口141处的宽度,小于底面142处的宽度。此时,侧壁143的阶梯结构中,平行于底面142的抵接面1431与封装件30的贴合方向朝向底面142一侧,抵接面1431可以对封装件30形成朝向底面142方向的抵持力。在该抵持力的作用下,凹槽14能对封装件30形成更好的固持效果。
97.另一方面,当本技术功率模块100在长期使用后,封装件30受热疲劳效应的影响,可能产生变形,进而使得封装件30与侧壁143之间可能出现开裂、连接不牢的现象。此时抵接面1431处依然可以保持其与封装件30的可靠贴合,即阶梯结构的侧壁143依然可以与封装件30形成部分贴合的状态,从而保证了封装件30密封的可靠性,延长了功率模块100的使用寿命。
98.一种实施例请参见图13,其可以理解为图12所示结构中底面142的平面示意图。在图13的示意中,槽口141在底面142上形成投影141a。该投影141a收容于底面142之内。由此,在侧壁143的周缘上,可以形成连续的抵接面1431的结构,进而提升侧壁143对封装件30的固持效果。可以理解的,侧壁143的截面还可以呈弧形、梯形等其它形状,也可以实现槽口141的投影141a收容于底面142之内的效果。此时,封装件30靠近槽口141处的面积相对较小,而靠近底面142处的面积相对较大,封装件30在凹槽14之内的连接也更稳固,不易于从凹槽14中脱落。
99.图14示意了本技术提供的一种功率模块的制造方法流程图。在本实施例中,功率模块100的制作方法包括如下步骤:
100.s110、将芯片22贴合于电路板21的一侧表面上,并将键合线24的一端固定于芯片
22上;
101.s120、将引脚23固定于电路板21上,并使得引脚23与键合线24的另一端导通;将电路板21的另一侧表面焊接固定于壳体10的固定层12上,其中固定层12位于壳体10开设的凹槽14的底面142;
102.s130、采用封装材料对凹槽14进行填充,以包覆电路板21、芯片22和键合线24,并部分包覆引脚23。
103.具体的,本实施例功率模块的制造方法,用于实现上述的功率模块100结构。具体可以参见图15a-图15f的结构示意。
104.在步骤s110中,先提供一电路板21,电路板21可以为覆铜陶瓷基板。电路板21包括相对的散热面211和连接面212。然后,如图15a所示,在电路板21的连接面212上铺设焊料层51,该焊料层51的位置对应到后续搭载芯片22的位置设置。在图15b的示意中,芯片22贴装于连接面212上设有焊料层51的位置。芯片22可以采用焊锡回流、银烧结、或铜烧结的方式完成贴装。而在图15c的示意中,在芯片22上架设键合线24。键合线24可以连接于两个芯片22之间,也可以连接于芯片22与连接面212之间。可以理解的,当键合线24架设于芯片22与连接面212之间时,键合线24远离芯片22的一端,用于与后续搭载的引脚23连通。
105.在步骤s120中,如图15d所示,将引脚23的固定端231焊接于电路板21的连接面212上。且引脚23与键合线24远离芯片22的一端导通。而引脚23的连接端232则朝向背离电路板21的方向延伸。由此可以形成本技术功率模块100中电路组件20的结构。然后,如图15e所示,将电路板21的散热面211焊接固定于壳体10的固定层12上。具体的,固定层12位于主壳体11开设的凹槽14的底面142处。在底面142与散热面211之间通过设置连接层40,可以实现散热面211与固定层12之间的焊接固定。在完成本步骤之后,引脚23的连接端232的高度,高于凹槽14的深度,即引脚23的连接端232伸出凹槽14。
106.在步骤s130中,如图15f所示,采用封装材料在凹槽14内进行注塑,以制作封装件30的结构。其中封装件30的材料可以为环氧树脂或硅凝胶。封装件30同时与凹槽14的底面142和侧壁143接触,并用于包覆电路板21、芯片22、键合线24和位于凹槽14内的引脚23,进而对功率模块100中的电路组件20形成密封保护。封装件30的注塑高度小于或等于主壳体11凹槽14的深度,以使得封装件30不会渗出凹槽14之外,避免封装件30对露出于凹槽14的引脚23部分形成覆盖,以保证功率模块100与外部器件的连接可靠性。
107.由此,通过上述功率模块的制造方法,可以得到本技术提供的功率模块100。可以理解的,通过本技术方法制作得到的功率模块100,也同时具备了上述功率模块100所带来的可靠性高、散热能力强、以及发生故障时伤害相对较小等特点。本实施例在此不再进一步赘述。
108.需要提出的是,本技术方法在步骤s120中,“将电路板21的另一侧表面焊接固定于壳体10的固定层12上”,可以采用锡焊、银烧结、铜烧结、银浆、或半固化片的方式。因为凹槽14的底面142设置为固定层,在采用上述工艺与电路组件20实现固定连接后,可以提升电路组件20与凹槽14之间的热传导效率。
109.另一方面,在步骤s120中,并不严格限制引脚23和散热面211的装配顺序。基于焊接引脚23和散热面211各自使用的焊料不同,可以按照不同焊料之间的熔点高低,匹配设置步骤s120中引脚23和散热面211的装配顺序。
110.例如,在图15d和图15e所示的分解步骤中,先将引脚23固定于电路板21上,形成完整的电路组件20之后,再将电路组件20固定于凹槽14内(即完成散热面211与底面142之间的固定连接)。该制造顺序适用于引脚23的焊料熔点高于散热面211的焊料熔点的情况。
111.具体的,在图15d所示将引脚23固定于电路板21上的实施例中,可以采用锡膏印刷、焊片贴装、以及银膏印刷等方式实现。例如当采用锡膏印刷时,可以采用型号为sac305的锡膏(焊料),其熔点在217℃左右;而在图15e所示将散热面211焊接固定于底面142上时,可以采用低温无铅焊接的方式实现。例如采用低温锡焊,焊料可以为锡铋焊料(snbi),其熔点在139℃左右,较引脚23的焊料熔点更低。由此,在完成了引脚23与电路板21的固定之后,将散热面211焊接固定于底面142的过程中,其焊接温度不会造成引脚23处的焊料重熔,保证引脚23与电路板21之间的连接稳定性。
112.而在图16d和图16e所示的分解步骤中,步骤s120还可以先将散热面211焊接固定于底面142上,再于电路板21的连接面212上固定引脚23。该制造顺序适用于引脚23的焊料熔点低于散热面211的焊料熔点的情况。
113.具体的,在图16d所示将散热面211焊接固定于底面142上时,可以采用锡焊的方式实现,焊料可以为锡锑焊料(snsb),其熔点在235℃-245℃之间;而在图16e所示将引脚23固定于电路板21上的实施例中,同样可以采用锡膏印刷、焊片贴装、以及银膏印刷等方式。例如采用型号为sac305的锡膏(焊料),其熔点在217℃左右,较锡锑焊料的熔点更低。由此,在将引脚23固定于电路板21上的过程中,其焊接温度不会造成散热面211处的焊料重熔,保证散热面211与底面142之间的连接稳定性。
114.以上描述,仅为本技术的具体实施例,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,例如减少或添加结构件,改变结构件的形状等,都应涵盖在本技术的保护范围之内;在不冲突的情况下,本技术的实施例及实施例中的特征可以相互组合。因此,本技术的保护范围应以权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献