一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种水下无人航行器用的应急上浮装置

2022-07-10 15:20:45 来源:中国专利 TAG:


1.本发明涉及水下无人航行器,特别涉及一种水下无人航行器用的应急上浮装置。


背景技术:

2.水下无人航行器是海洋研究和开发过程中不可或缺的装备,其中大型水下无人航行器具有航程大、载体能力强、可扩展等优点,是水下无人航行器发展一个重要发展方向。为了应对复杂海洋环境,在紧急情况下保护航行器的安全,水下无人航行器均设计有应急上浮装置。传统水下无人航行器的应急上浮一般采用抛压载铁的方式,但随着水下无人航行器的排水量增加,压载铁的重量及数量也会相应的增加,造成压载铁的安装困难、抛载装置结构复杂等问题


技术实现要素:

3.针对上述问题,本发明的目的在于提供一种水下无人航行器用的应急上浮装置,该装置使用抛压载铁及高压气排出压载水联合使用的方式,实现水下无人航行器的应急上浮功能。
4.为了实现上述目的,本发明采用以下技术方案:
5.一种水下无人航行器用的应急上浮装置,包括水下无人航行器及设置于所述水下无人航行器上的抛载装置、高压气排水应急装置及控制电路,其中抛载装置和高压气排水应急装置均与控制电路连接,所述控制电路用于控制所述抛载装置进行抛载及控制所述高压气排水应急装置进行排水,使所述水下无人航行器上浮。
6.所述高压气排水应急装置包括高压气瓶、控制舱及压载水舱,其中高压气瓶的端部设有气瓶阀,所述气瓶阀通过供气管路与所述压载水舱连接,所述压载水舱的底部设有止回阀;所述止回阀通过所述压载水舱的内外压差实现开启。
7.所述压载水舱包括前舱筒及设置于所述前舱筒两端的前舱盖和隔离舱盖,所述前舱盖上设有泄压口,所述前舱筒的顶部设有加水口和排气口,所述加水口和排气口上均设有螺塞;
8.所述隔离舱盖上设有充气口,所述充气口通过管接头与所述供气管路连通。
9.所述控制舱设置于所述压载水舱的一侧,所述控制舱内设有连接在所述供气管路上的节流阀和电磁阀,所述节流阀用于控制气体流量;所述电磁阀与所述控制电路连接。
10.所述控制舱包括后舱筒和后舱盖,其中后舱筒的一端与所述隔离舱盖连接,另一端与后舱盖连接;所述后舱盖上设有水密插件;所述后舱筒内设有漏水传感器。
11.所述抛载装置包括电磁铁和压载铁,其中电磁铁与所述控制电路连接,所述电磁铁通电吸合压载铁。
12.所述控制电路包括控制系统、继电器ⅰ、控制电路ⅰ、控制电路ⅱ及控制电路ⅲ;
13.所述电磁铁通过控制电路ⅰ与控制系统连接,继电器ⅰ设置于控制电路ⅰ上,继电器ⅰ具有常闭触点,使所述电磁铁处于通电状态;
14.所述电磁阀通过控制电路ⅱ与控制系统连接,所述控制电路ⅱ通过控制电路ⅲ与继电器ⅰ连接;
15.当所述控制系统通过控制电路ⅱ开启所述电磁阀时,所述继电器ⅰ断开,使所述电磁铁失电。
16.所述控制电路还包括电池、继电器ⅱ、控制电路ⅳ及控制电路


17.所述电磁阀通过控制电路ⅳ与电池连接,继电器ⅱ设置于控制电路ⅳ上,继电器ⅱ通过控制电路

与所述电磁铁连接;
18.所述继电器ⅱ具有常闭触点,所述电磁铁在通电状态下,所述继电器ⅱ处于断开状态;
19.当所述电磁铁失电时,所述继电器ⅱ闭合,所述电池通过控制电路ⅳ开启电磁阀。
20.所述高压气排水应急装置还包括充气系统,所述充气系统包括三通接头、截止阀、充气装置、高压气泵及充气管路,其中三通接头连接在所述供气管路上,所述气管路的一端与所述三通接头连接,另一端与高压气泵连接,所述截止阀和充气装置设置于充气管路上。
21.所述充气装置的两侧分别设有泄压阀和放气螺栓,所述充气装置的顶部设有压力表。
22.本发明具有以下优点及有益效果:
23.1.本发明使用高压空气吹除压载水与抛压载铁方式共同实现航行器的应急上浮功能,也可根据需要单独使用其中一种。
24.2.本发明高压气排水应急装置可以通过高压气瓶充气、压载水舱注水、电磁阀复位等操作后,重复使用。
25.3.本发明高压气排水应急装置与抛载装置采用相互激活方式,提高应急装置的可靠性,也可根据需要单独使用其中一种。
26.4.本发明高压气排水应急装置使用止回阀作为压载水舱的排水阀,不需要控制信号,通过压载水舱与外界的压差控制止回阀的启闭,结构简单可靠。
27.5.本发明高压气排水应急装置使用自保持电磁阀作为控制阀,接收到控制器脉冲信号即可保持开启状态,不需要控制系统的持续信号,反应速度快、对控制系统要求低。
附图说明
28.图1为本发明水下无人航行器用的应急上浮装置的结构示意图;
29.图2为图1的俯视图;
30.图3为本发明中抛载装置的结构示意图;
31.图4为本发明中高压气排水应急装置的结构示意图;
32.图5为本发明中压载水舱及控制舱的结构示意图;
33.图6为本发明中充气装置的结构示意图;
34.图7为本发明的控制原理示意图;
35.图8为本发明的工作原理示意图。
36.图中:1为水下无人航行器,2为抛载装置,201为电磁铁,202为压载铁,3为高压气排水应急装置,301为高压气瓶,302为气瓶阀,303为三通接头,304为控制舱,305为压载水舱,306为截止阀,307为充气装置,3071为泄压阀,3072为压力表,3073为放气螺栓,308为高
压气泵,309为充气管路,310为泄压口,311为前舱盖,312为前舱筒,313为隔离舱盖,314为后舱筒,315为后舱盖,316为止回阀,317为加水口,318为管接头,319为节流阀,320为电磁阀,321为漏水传感器,322为水密插件,323为电池,324为继电器ⅱ,326为继电器ⅰ,327为保险插件,328为放气口,330为控制系统,331为控制电路ⅰ,332为控制电路ⅱ,333为控制电路ⅲ,334为控制电路ⅳ,335为控制电路


具体实施方式
37.为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
38.如图1-2所示,本发明提供的一种水下无人航行器用的应急上浮装置,包括水下无人航行器1及设置于水下无人航行器1上的抛载装置2、高压气排水应急装置3及控制电路,其中抛载装置2和高压气排水应急装置3均与控制电路连接,控制电路用于控制抛载装置2进行抛载及控制高压气排水应急装置3进行排水,使水下无人航行器1上浮。
39.如图3所示,本发明的实施例中,抛载装置2包括电磁铁201和压载铁202,其中电磁铁201与控制电路连接,电磁铁201通电吸合压载铁202。
40.如图4-5所示,本发明的实施例中,高压气排水应急装置3包括高压气瓶301、控制舱304及压载水舱305,其中高压气瓶301的端部设有气瓶阀302,气瓶阀302通过供气管路与压载水舱305连接,压载水舱305的底部设有止回阀316;止回阀316通过压载水舱305的内外压差实现开启。止回阀316作为压载水舱305的排水阀,不需要控制信号,通过压载水舱305与外界的压差控制止回阀316的启闭,结构简单可靠。
41.本发明的实施例中,压载水舱305包括前舱筒312及设置于前舱筒312两端的前舱盖311和隔离舱盖313,前舱盖311上设有泄压口310,前舱筒312的顶部设有加水口317和排气口328,加水口317和排气口328上均设有螺塞;隔离舱盖313上设有充气口,充气口通过管接头318与供气管路连通。
42.本发明的实施例中,控制舱304设置于压载水舱305的一侧,控制舱304包括后舱筒314和后舱盖315,其中后舱筒314的一端与隔离舱盖313连接,另一端与后舱盖315连接;后舱盖315上设有水密插件322;后舱筒314内设有漏水传感器321,漏水传感器321可以检测控制舱304是否进水,可以在控制舱304进水时及时发出报警信号。控制舱304内设有连接在供气管路上的节流阀319和电磁阀320,节流阀319用于控制进入压载水舱305内的气流速度;电磁阀320与控制电路连接,控制高压气瓶301与压载水舱305之间管路的通断。
43.如图7所示,本发明的实施例中,控制电路包括控制系统330、继电器ⅰ326、控制电路ⅰ331、控制电路ⅱ332及控制电路ⅲ333;电磁铁201通过控制电路ⅰ331与控制系统330连接,继电器ⅰ326设置于控制电路ⅰ331上,继电器ⅰ326具有常闭触点,使电磁铁201处于通电状态;电磁阀320通过控制电路ⅱ332与控制系统330连接,控制电路ⅱ332通过控制电路ⅲ333与继电器ⅰ326连接;当控制系统330通过控制电路ⅱ332开启电磁阀320时,继电器ⅰ326断开,使电磁铁201失电。
44.如图7所示,在上述实施例的基础上,控制电路还包括电池323、继电器ⅱ324、控制电路ⅳ334及控制电路

335,电磁阀320通过控制电路ⅳ334与电池323连接,继电器ⅱ324设置于控制电路ⅳ334上,继电器ⅱ324通过控制电路

335与电磁铁201连接;继电器ⅱ324
具有常闭触点,电磁铁201在通电状态下,继电器ⅱ324处于断开状态;当电磁铁201失电时,继电器ⅱ324闭合,电池323通过控制电路ⅳ334开启电磁阀320。
45.本实施例中,抛载装置2的电磁铁201在正常状态时会由控制系统330供电保持磁力,保持压载铁202不与水下无人航行器1分离。抛载装置2的电磁铁201断电方式有两种,一种为控制系统330判定需要进行应急上浮时,会直接断开电磁铁201供电,电磁铁201的磁力消失,压载铁202与水下无人航行器1分离;另一种为高压气排水应急装置3的控制舱304内的继电器ⅰ326控制,在控制系统330为电磁阀320供电时,继电器ⅰ326会断开电磁阀320的供电,电磁铁201的磁力消失,压载铁202与水下无人航行器1分离。
46.进一步地,控制电路ⅱ332上设有保险插件327,保险插件327可以控制电磁阀320是否启用。保险插件327未插入时,电磁阀320不会开启,在航行器下水前插入保险插件327,回收后及时拔除保险插件327。
47.如图4、图8所示,在上述实施例的基础上,高压气排水应急装置3还包括充气系统,充气系统包括三通接头303、截止阀306、充气装置307、高压气泵308及充气管路309,其中三通接头303连接在供气管路上,气管路309的一端与三通接头303连接,另一端与高压气泵308连接,截止阀306和充气装置307设置于充气管路309上。
48.如图6所示,本发明的实施例中,充气装置307的两端均安装有管接头,一端的管接头与高压气泵308的出口连接,另一端的管接头与截止阀306连接,截止阀306的另一端与三通接头303连接。充气装置307的两侧分别设有泄压阀3071和放气螺栓3073,充气装置307的顶部设有压力表3072。充气装置307的压力表3072可以检测充气过程压力,充气装置307的泄压阀3071在空气压力超过设定值后泄压;充气装置307的放气螺塞3073在拆卸管路前卸除管路内的剩余压力。
49.本发明的工作原理是:
50.当抛载装置2的电磁铁201断电后,压载铁202与水下无人航行器1分离,为水下无人航行器1提供应急浮力。航行器完成回收后,将新的压载铁202放置在预定位置,电磁铁201恢复供电后会重新吸附压载铁202。
51.电磁阀320的线圈由两个电路并联控制,一路为控制系统330直接控制,在需要应急上浮时控制系统330直接为电磁阀320通电,电磁阀320开启;另一路通过由继电器ⅱ324控制,当控制系统330断开电磁铁201供电时会通过继电器ⅱ324由电池323为电磁阀320通电。电磁阀320开启后无论供电是否继续,电磁阀320都会保持开启状态,高压气瓶301与压载水舱305之间的管路被联通。高压气瓶301内的高压空气流经气瓶阀302、电磁阀320、节流阀319及连接管路进入压载水舱305,压载水舱305的内部压力升高。当压载水舱305的内、外压力差超过止回阀316的开启压力时,止回阀316开启,压载水舱305内部的水、空气流经止回阀316在压力作用下排出压载水舱305,为航行器提供应急浮力。
52.在拆卸压载水舱305的螺钉时,需要先拆卸泄压口310的螺塞,将压载水舱305内的剩余压力卸掉,保证拆卸过程的安全,泄压完成后将螺塞重新安装并锁紧。
53.为压载水舱305注水时,需要先卸掉加水口317、排气口328的螺塞,通过加水口317向压载水舱305注水,当压载水舱305灌满时水会从排气口328溢出,然后重新安装加水口317、排气口328的螺塞并锁紧。
54.为高压气瓶301充气前,通过控制系统330将电磁阀320复位,电磁阀320由开启状
态变为关闭状态。为高压气瓶301充气时,先关闭气瓶阀302,拆除三通接头303上的死堵,通过管路将三通接头303与截止阀306连接;然后开启气瓶阀302、截止阀306,打开高压气泵308为高压气瓶301充气。当高压气瓶301的压力达到设定值后,高压气泵308自动关闭;然后关闭截止阀306、气瓶阀302,断开截止阀306与三通接头303连接,重新安装三通接头303的死堵;最后开启气瓶阀302,完成高压气瓶301的充气过程。
55.本发明使用高压空气吹除压载水与抛压载铁方式共同实现航行器的应急上浮功能,高压气排水应急装置与抛载装置采用相互激活方式,提高应急装置的可靠性,也可根据需要单独使用其中一种。高压气排水应急装置使用自保持电磁阀作为控制阀,接收到控制器脉冲信号即可保持开启状态,不需要控制系统的持续信号,反应速度快、对控制系统要求低。
56.以上所述仅为本发明的实施方式,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进、扩展等,均包含在本发明的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献