一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种单相高熵金属二硼化物及其制备方法

2022-07-10 06:50:47 来源:中国专利 TAG:


1.本发明涉及一种单相高熵金属二硼化物及其制备方法,属于超高温陶瓷材料技术领域。


背景技术:

2.过渡金属二硼化物(tmb2)倾向于形成六方alb2型结构(空间群p6/mmm)结构,其中具有准二维环的金属原子层和硼原子层沿c轴堆垛形成层状结构,结构中存在金属键、共价键和离子键,这些键合赋予了tmb2基本的超高温陶瓷特性:高熔点、高电导率和导热性、中等的氧化性和良好的化学稳定性,这些特性使其在高超声速飞行器、超燃冲压发动机、太阳能(太阳能发电厂的接收器)、核反应堆等领域有着广泛的应用。然而,单组元tmb2的性能已无法满足当前工程日益发展的需求。高熵金属二硼化物(he tmb2)不仅可以扩大不同元素之间的固溶极限,还能为无序单相结构的形成提供稳定性,并且有望克服传统材料的应用瓶颈。
3.目前,已报道的he tmb2主要是(hf
0.2 zr
0.2
nb
0.2
ta
0.2
ti
0.2
)b2材料体系,通过五种单组元二硼化物合成的致密度仅为93%。该材料体系致密度较低主要归因于he tmb2中的迟滞扩散效应以及tmb2中存在强化学键,导致烧结性较差。后续的相关研究主要集中在致密度的改善上,先采用反应合成法制备超细的粉体,例如硼热还原反应、硼碳热还原反应等,然后结合固相烧结法制备的块体致密度可达99%,此时该材料体系的杨氏模量为448gpa、剪切模量为190gpa、弯曲强度为339gpa、断裂韧性为3.81mpa
·m1/2
以及硬度为23.7gpa。然而,上述he tmb2的研究仍存在以下缺点:(1)采用反应合成法无法在1800℃以下制备单相he tmb2粉体;(2)固相烧结致密化he tmb2时需要减小起始粉体的粒径;(3)高熵后的断裂韧性与单组元相比没有得到有效提升。因此,寻找更加有效、便利和可行的方法在较低温度下合成单相he tmb2粉体以及具有高致密度、良好力学性能的he tmb2,对he tmb2的应用极为重要。


技术实现要素:

4.有鉴于此,本发明提供一种单相高熵金属二硼化物及其制备方法,该金属二硼化物是由hf、zr、ta、nb、sc以及b组成的,致密度高,力学性能优异;而且该金属二硼化物可以在1600℃低温下制备成单相粉体,并且该粉体不需要细化粒径以及不需要添加烧结助剂就可以烧结得到致密度在90%以上的块体,制备工艺易于操作,制备成本低,适宜工业推广。
5.本发明的目的是通过以下技术方案实现的。
6.一种单相高熵金属二硼化物,所述高熵金属二硼化物化学式简记为he tmscb2,tm为hf、zr、nb和ta,sc的原子摩尔比为x,tm中的四种元素为等原子摩尔比且原子摩尔比之和为1-x,0.1≤x≤0.3。
7.优选地,0.15≤x≤0.25,确保高熵金属二硼化物具有较高的致密度以及良好的力学性能(尤其是断裂韧性明显提高)。
8.一种单相高熵金属二硼化物的制备方法,所述方法包括以下步骤:
9.将tm中各元素对应的氧化物粉体和sc2o3粉体按照化学计量比配料,并加入过量的b4c粉体,先混合均匀,然后将混合粉体转移至真空条件下,加热至1600℃以上(包含1600℃)并保温1h~3h,得到单相高熵金属二硼化物粉体;
10.将单相高熵金属二硼化物粉体装入模具中,采用放电感应等离子烧结在真空或惰性气体保护气氛下烧结,烧结温度为1900℃~2200℃,烧结压力为30mpa~50mpa,烧结时间(或者保温保压时间)为20min~30min,得到单相高熵金属二硼化物块体。
11.优选地,过量的b4c粉体为按照化学计量比加入的b4c粉体质量的115%~140%。
12.优选地,tm中各元素对应的氧化物粉体、sc2o3粉体以及b4c粉体在球磨罐中球磨混合,球料比为(3~7):1,转速为300rpm~500rpm,球磨时间为1h~5h。
13.优选地,单相高熵金属二硼化物粉体制备过程中,以5℃/min~10℃/min的升温速率加热至1600℃以上。
14.优选地,单相高熵金属二硼化物粉体制备过程中,加热温度为1600℃~1800℃。
15.优选地,x小于0.15时,先将单相高熵金属二硼化物粉体研磨成平均粒径(即d50粒径)为8μm~15μm的粉体,再采用放电感应等离子烧结制备成块体,相应地,致密度达到97%以上。
16.优选地,tm中各元素对应的氧化物粉体、sc2o3粉体以及b4c粉体的粒径均为500nm~3μm。
17.有益效果:
18.(1)scb2作为稀土金属二硼化物使用传统制备工艺下很难合成纯相,因此scb2的应用无法被推广。本发明首次提出含有sc元素的高熵金属二硼化物,且scb2与其他四种过渡金属二硼化物tmb2(tm=hf,ta,nb,zr)固溶形成单相高熵金属二硼化物,不仅能够发挥scb2的特性,还能改善高熵金属二硼化物的力学性能。这主要是因为scb2与tmb2(tm=hf,ta,nb,zr)具有有利的热力学驱动力,即较低的混合焓,所以在合成过程中可以降低吉布斯自由能,促进scb2在较低温度下与tmb2形成单相结构;sc原子的价电子比tm原子的少,在高熵金属二硼化物结构中sc原子与b原子形成的化学键主要为离子键,减少了共价键的程度,从而削弱了化学键,降低了熔点,提高了烧结性,同时共价键的减少改善了高熵金属二硼化物的脆性,显著提高了断裂韧性;sc原子与其他四种tm原子在高熵结构中随机占据亚晶格,形成晶格畸变,导致固溶强化作用,从而提高了其硬度和强度。
19.(2)本发明所述高熵金属二硼化物的制备过程中添加过量的b4c,因为硼碳热还原反应过程会生成硼的氧化物,即b2o3和bo,在真空和高温下快速挥发导致硼源的流失,此外为了使金属氧化物与b4c能够充分反应,不残留金属氧化物,所以添加了过量的b4c。
20.(3)本发明所述高熵金属二硼化物能够在较低温度下(1600℃)制备成单相粉体,而且该粉体不需要细化粒径以及不需要添加烧结助剂就可以烧结得到致密度在90%以上且力学性能优异的块体,制备工艺易于操作,制备成本低,适宜工业推广。
附图说明
21.图1为实施例1制备的(hf
0.225
zr
0.225
ta
0.225
nb
0.225
sc
0.1
)b2粉体的x射线衍射(xrd)谱图。
22.图2为实施例1制备的(hf
0.225
zr
0.225
ta
0.225
nb
0.225
sc
0.1
)b2粉体的激光粒度分析图谱。
23.图3为实施例1制备的(hf
0.225
zr
0.225
ta
0.225
nb
0.225
sc
0.1
)b2块体的元素分析图谱。
24.图4为实施例2制备的(hf
0.2
zr
0.2
ta
0.2
nb
0.2
sc
0.2
)b2粉体的x射线衍射(xrd)谱图。
25.图5为实施例2制备的(hf
0.2
zr
0.2
ta
0.2
nb
0.2
sc
0.2
)b2粉体的激光粒度分析图谱。
26.图6为实施例2制备的(hf
0.2
zr
0.2
ta
0.2
nb
0.2
sc
0.2
)b2块体的元素分析图谱。
27.图7为实施例3制备的(hf
0.175
zr
0.175
ta
0175
nb
0.175 sc
0.3
)b2粉体的x射线衍射(xrd)谱图。
28.图8为实施例3制备的(hf
0.175
zr
0.175
ta
0175
nb
0.175 sc
0.3
)b2粉体的激光粒度分析图谱。
29.图9为实施例3制备的(hf
0.175
zr
0.175
ta
0175
nb
0.175 sc
0.3
)b2块体的元素分析图谱。
具体实施方式
30.下面结合具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径获得。
31.以下实施例中:
32.hfo2粉体、zro2粉体、ta2o5粉体、nb2o5粉体、sc2o3粉体以及b4c粉体的粒径均为500nm~3μm;
33.弹性模量采用脉冲激发共振法测得,测试样品尺寸为3mm
×
15mm
×
40mm的长方体;
34.维氏硬度采用hxd-1000b型显微硬度计(上海泰明光学仪器有限公司),在抛光的块体材料上测得,载荷分别为0.5、1、2、3、5和10n,保压时间为10s;其中,为了避免压痕之间的相互影响,压痕在不同的位置进行,并且两个压痕点之间的距离要大于凹陷对角线长度的三倍以上;
35.弯曲强度通过三点弯曲实验得到,测试设备为万能力学试验机,用于测试的长条样品尺寸为3mm
×
4mm
×
36mm,跨距为30mm,压头移动速度为0.5mm/min;其中,在测试前,样品进行三面抛光,且受拉面作45
°
倒角处理以降低边缘性破坏的可能性;
36.断裂韧性通过三点弯曲实验得到,测试设备为万能力学试验机,采用单边切口梁法测试,样品尺寸为3mm
×
6mm
×
40mm,切口深度为3mm,宽度为0.15mm,跨距为24mm,压头移动速度为0.05mm/min。
37.实施例1
38.(1)将hfo2粉体、zro2粉体、ta2o5粉体、nb2o5粉体、和sc2o3粉体按照摩尔比4.5:4.5:2.25:2.25:1:17.74加入尼龙球磨罐中,球料比为3:1,在300rpm转速下球磨混合5h,得到混合均匀的混合粉体;
39.(2)将混合粉体转移至真空条件下,以10℃/min的升温速率加热至1700℃并保温1h,得到单相高熵金属二硼化物粉体,化学式简记为he tm
0.9
sc
0.1
b2(或者(hf
0.225
zr
0.225
ta
0.225
nb
0.225 sc
0.1
)b2);
40.(3)将he tm
0.9
sc
0.1
b2粉体装入石墨模具中,采用放电感应等离子烧结在氩气保护气氛下烧结,烧结温度为2000℃,烧结压力为50mpa,烧结时间30min,得到单相he tm
0.9
sc
0.1
b2块体。
41.对步骤(2)获得的he tm
0.9
sc
0.1
b2粉体进行xrd表征,从图1中可以看出,he tm
0.9
sc
0.1
b2粉体的衍射峰为六方alb2型结构,无探测到其他衍射峰,说明合成的he tm
0.9
sc
0.1
b2粉体为均匀的单相结构。
42.采用激光粒度分析仪对步骤(2)获得的he tm
0.9
sc
0.1
b2粉体进行测试,从图2的测试结果可以看出,he tm
0.9
sc
0.1
b2粉体的平均粒径为66.66μm。
43.步骤(3)所获得的单相he tm
0.9
sc
0.1
b2块体的理论密度为8.56g/cm3,实际测试密度为7.71g/cm3,则相对密度为90%。若将步骤(2)获得的he tm
0.9
sc
0.1
b2粉体进行研磨形成平均粒径为10μm(即d50=10μm),然后再按照步骤(3)的条件进行烧结,相应得到实际测试密度为8.38g/cm3以及相对密度为98%的块体。
44.采用扫描电子显微镜的eds模式对步骤(3)获得的he tm
0.9
sc
0.1
b2块体进行元素粉体,根据图3的测试结果可知,hf、ta、nb、zr和sc五种金属元素分布均匀,没有发现团聚或偏析的现象,说明he tm
0.9
sc
0.1
b2块体具有均匀的高熵单相结构。
45.对步骤(3)制备的he tm
0.9
sc
0.1
b2块体进行力学性能测试,测试结果详见表1。从表1中可以看出,he tm
0.9
sc
0.1
b2整体的力学性能比传统致密度为99%的高熵金属二硼化物(hf
0.2 zr
0.2
nb
0.2
ta
0.2
ti
0.2
)b2高出很多,硬度高31%,杨氏模量高19%,剪切模量高17%,断裂韧性高65%。
46.表1
[0047][0048]
实施例2
[0049]
(1)将hfo2粉体、zro2粉体、ta2o5粉体、nb2o5粉体、sc2o3粉体和b4c粉体按照摩尔比4:4:2:2:2:17.48加入尼龙球磨罐中,球料比为3:1,在300rpm转速下球磨混合5h,得到混合均匀的混合粉体;
[0050]
(2)将混合粉体转移至真空条件下,以10℃/min的升温速率加热至1600℃并保温1h,得到单相高熵金属二硼化物粉体,化学式简记为he tm
0.8
sc
0.2
b2(或者(hf
0.2
zr
0.2
ta
0.2
nb
0.2
sc
0.2
)b2);
[0051]
(3)将he tm
0.8
sc
0.2
b2粉体装入石墨模具中,采用放电感应等离子烧结在真空条件下烧结,烧结温度为2000℃,烧结压力为40mpa,烧结时间30min,得到单相he tm
0.8
sc
0.2
b2块体。
[0052]
对步骤(2)获得的he tm
0.8
sc
0.2
b2粉体进行xrd表征,从图4中可以看出,he tm
0.8
sc
0.2
b2粉体的衍射峰为六方alb2型结构,无探测到其他衍射峰,说明合成的he tm
0.8
sc
0.2
b2粉体为均匀的单相结构。
[0053]
采用激光粒度分析仪对步骤(2)获得的he tm
0.9
sc
0.1
b2粉体进行测试,从图5的测试结果可以看出,he tm
0.8
sc
0.2
b2粉体的平均粒径为57.4μm。
[0054]
步骤(3)所获得的单相he tm
0.8
sc
0.2
b2块体的理论密度为8.02g/cm3,实际测试密度为7.76g/cm3,则相对密度为96.7%。
[0055]
采用扫描电子显微镜的eds模式对步骤(3)获得的he tm
0.8
sc
0.2
b2块体进行元素粉体,根据图6的测试结果可知,hf、ta、nb、zr和sc五种金属元素分布均匀,没有发现团聚或偏
析的现象,说明he tm
0.8
sc
0.2
b2块体具有均匀的高熵单相结构。
[0056]
对步骤(3)制备的he tm
0.8
sc
0.2
b2块体进行力学性能测试,测试结果详见表2。从表2中可以看出,he tm
0.8
sc
0.2
b2整体的力学性能比传统致密度为99%的高熵金属二硼化物(hf
0.2 zr
0.2
nb
0.2
ta
0.2
ti
0.2
)b2高出很多,硬度高28%,杨氏模量高19%,剪切模量高23%,断裂韧性高41%。
[0057]
表2
[0058][0059]
实施例3
[0060]
(1)将hfo2粉体、zro2粉体、ta2o5粉体、nb2o5粉体、和sc2o3粉体按照摩尔比3.5:3.5:1.75.:1.75:3:17.23加入尼龙球磨罐中,球料比为3:1,在300rpm转速下球磨混合5h,得到混合均匀的混合粉体;
[0061]
(2)将混合粉体转移至真空条件下,以10℃/min的升温速率加热至1600℃并保温2h,得到单相高熵金属二硼化物粉体,化学式简记为he tm
0.7
sc
0.3
b2(或者(hf
0.175
zr
0.175
ta
0175
nb
0.175 sc
0.3
)b2);
[0062]
(3)将he tm
0.7
sc
0.3
b2粉体装入石墨模具中,采用放电感应等离子烧结在氩气保护气氛下烧结,烧结温度为2000℃,烧结压力为50mpa,烧结时间30min,得到单相he tm
0.7
sc
0.3
b2块体。
[0063]
对步骤(2)获得的he tm
0.7
sc
0.3
b2粉体进行xrd表征,从图7中可以看出,he tm
0.7
sc
0.3
b2粉体的衍射峰为六方alb2型结构,无探测到其他衍射峰,说明合成的he tm
0.7
sc
0.3
b2粉体为均匀的单相结构。
[0064]
采用激光粒度分析仪对步骤(2)获得的he tm
0.7
sc
0.3
b2粉体进行测试,从图8的测试结果可以看出,he tm
0.7
sc
0.3
b2粉体的平均粒径为66.66μm。
[0065]
步骤(3)所获得的单相he tm
0.7
sc
0.3
b2块体的理论密度为7.47g/cm3,实际测试密度为7.33g/cm3,则相对密度为98.2%。
[0066]
采用扫描电子显微镜的eds模式对步骤(3)获得的he tm
0.7
sc
0.3
b2块体进行元素粉体,根据图9的测试结果可知,hf、ta、nb、zr和sc五种金属元素分布均匀,没有发现团聚或偏析的现象,说明he tm
0.7
sc
0.3
b2块体具有均匀的高熵单相结构。
[0067]
对步骤(3)制备的he tm
0.7
sc
0.3
b2块体进行力学性能测试,测试结果详见表3。从表3中可以看出,he tm
0.7
sc
0.3
b2整体的力学性能比传统致密度为99%的高熵金属二硼化物(hf
0.2 zr
0.2
nb
0.2
ta
0.2
ti
0.2
)b2高出很多,硬度高26%,杨氏模量高19%,剪切模量高18%,弯曲强度高16%。
[0068]
表3
[0069][0070]
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的
保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献