一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于控制释放ZIF-8屏蔽壳层的光电化学NSE传感器的制备方法

2022-06-29 16:55:51 来源:中国专利 TAG:

一种基于控制释放zif-8屏蔽壳层的光电化学nse传感器的制备方法
技术领域
1.本发明属于纳米功能材料、免疫分析以及生物传感技术领域,具体将氧化铟纳米颗粒和钒酸铋以及zif-8 (in2o
3 nps/bivo
4 nps/zif-8)作为基底材料,二氧化硅(sio2)负载的葡萄糖氧化酶作为二抗标记物,构建了检测神经元特异性烯醇化酶的光电化学传感器的制备方法。


背景技术:

2.神经元特异性烯醇化酶(nse)是参与糖酵解途径的烯醇化酶中的一种,存在于神经组织和神经内分泌组织中,是一种有前景的用于小细胞癌诊断的疾病标志物,它比其他已知的疾病标志物对脓毒症的诊断更灵敏。nse在正常人体内的含量低于16.3 ng/ml,但当发生小细胞癌(sclc)、神经母细胞瘤时,血清中的含量会迅速增加。临床医学的研究表明,神经元特异性烯醇化酶(nse)是一种在临床上很有应用价值的分子学标记物。这是从2个方面的应用来评述的,一是nse可以作为肺癌和儿童神经母细胞瘤的肿瘤标记物,用于小细胞肺癌(sclc)和非小细胞肺癌(nsclc)的鉴别诊断;监测小细胞肺癌和神经母细胞瘤的病情、治疗反应和预报复发;二是nse的活性改变同神经损伤所致的许多神经性疾病关系密切。目前,对于nse的检测方法有很多,比如酶联免疫分析法、放射免疫分析、荧光或表面等离子体共振等方法,但上述方法具有操作复杂、仪器昂贵等劣势,因此本发明发展的一种操作简便、价格低廉、灵敏度高的检测方法具有重要意义。本发明构建的光电化学传感器是一种利用光电活性物质的光电转换性质确定待分析物浓度的装置,因其检测信号是电信号,激发信号是光源,实现了激发信号与检测信号的分离,具有较低的背景信号和较高的灵敏度,且其制备简便、成本较低,因此在食品分析、环境检测、水质分析、生物分析等领域应用广泛。
3.zif-8是一种生物相容性mof,由zn
2
离子和2-甲基咪唑配体作为桥接单元组成。zif-8可作为ph响应载体,可以再在癌细胞中控制释放抗癌药物多柔比星,表现出良好的ph反应。同时这种有机咪唑酯交联连接到过渡金属的四面体框架结构会对光电信号有很好的屏蔽作用。因此在本项发明中,在氧化铟的基础上通过连续离子层吸附法制备了in2o3/bivo4纳米结构,复合形成的带隙匹配结构促进电子的转移,提高光电信号响应。以sio2负载的葡萄糖氧化酶作为信号标记物,利用其对葡萄糖催化氧化作用,提供zif-8降解的ph环境,使光电化学传感器提高灵敏度。


技术实现要素:

4.本发明的目的之一是分别合成in2o
3 nps、bivo
4 nps及zif-8,构成in2o
3 nps/ bivo
4 nps/zif-8多层复合结构,利用in2o
3 nps、bivo
4 nps之间的带隙匹配结构促进光生电子的转移,利用zif-8对光电信号的屏蔽作用以及对ph的敏感响应作为信号调节。
5.本发明的目的之二是合成sio
2-gox,并将其与信号抗体结合,形成sio
2-gox-ab2生物共轭物。
6.本发明的目的之三是以in2o
3 nps/ bivo
4 nps/zif-8多层复合结构作为光活性调节材料,以sio
2-gox复合物作为信号标记物,通过96-微孔板构建分离式的光电化学免疫传感器,并且用于神经元特异性烯醇化酶快速、灵敏检测。
7.附表说明表1是本发明提供的一种基于控制释放zif-8屏蔽壳层的光电化学nse传感器在血清样本中对nse的检测结果。
8.本发明的技术方案如下:1. 一种基于控制释放zif-8屏蔽壳层的光电化学神经元特异性烯醇化酶传感器的制备方法,制备步骤如下:(1) 制备in2o
3 nps/ bivo
4 nps/zif-8将大块的ito玻璃裁成2.0 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃,依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干,得到干净的ito玻璃。
9.in2o
3 nps的制备如下所示:140-146.5 mg的五水合硝酸铟(in(no3)3·
5h2o)与0.1-1.0 g尿素彻底混合,溶于8-13 ml二甘醇0-2 ml超纯水的混合溶液中,磁力搅拌至完全溶解。转移至含有聚四氟乙烯内胆的反应釜中加热至150-200 ℃反应24 h。待温度冷却到室温后,得到的产品分别用水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到in2o
3 nps。
10.bivo
4 nps的制备是通过连续的离子吸附与反应:分别将10
ꢀµ
l、5-10 mg/ml分散均匀的in2o
3 nps的悬浮液滴涂在ito导电玻璃上,在室温下晾干;然后分别将涂覆in2o
3 nps的ito导电玻璃在15-25 mm bi(no)3和15-25 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环10-20次,bivo
4 nps合成成功,此时电极变为in2o
3 nps/bivo
4 nps电极。
11.zif-8的制备如下所示:30-40 mm二水合乙酸锌与150-160 mm 2-甲基咪唑溶解在5 ml水中震荡3-5 min。在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液,保湿12 h得到in2o
3 nps/bivo
4 nps/zif-8电极。
12.(2) 制备sio
2-gox-ab2检测抗体孵化物溶液sio2纳米微球的制备:65-75 ml的无水乙醇中加入3-5 ml水和5-7 ml的原硅酸乙酯,在搅拌的过程中以每分钟2 ml的速度滴加25%的浓氨水10-20 ml。得到的溶液40 ℃下回流4 h.得到白色产品经过水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到sio2微球。
13.氨化的sio2纳米微球的制备:将1 ml aptes和0.5-1.0 g sio2加入100 ml无水甲苯中,然后将得到的溶液在超声处理30 min后转入70-90 ℃的高压釜中反应24 h。然后将得到的悬浮液离心,用无水乙醇洗涤3次,然后在60 ℃的真空中干燥过夜,得到氨基sio2粉末。
14.醛化的sio2纳米微球的制备:氨化的sio2纳米微球5-10 mg/ml溶液2 ml,加入5 ml戊二醛,25 ℃下搅拌6 h,得到醛化的sio2纳米微球。
15.sio
2-gox-ab2的孵化:取5-10 mg/ml的醛化sio2溶液1 ml,1 ml 10
ꢀµ
g/ml的ab2溶液,1 ml,6-10 mg/ml的葡萄糖氧化酶(gox),在4 ℃恒温振荡箱中恒温孵育12 h。最后,用ph为7.4的磷酸盐缓冲溶液离心清洗3次,并分散于2 ml的ph为7.4的磷酸盐缓冲溶液中。
16.(2) 制备分离式光电化学免疫传感器1) 将2.5 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干;2) 将10
ꢀµ
l、5-8 mg/ml 分散均匀的in2o3的悬浮液滴涂在ito导电玻璃上,在室温下晾干;3) 然后分别将涂覆in2o3的ito导电玻璃在15-25 mm bi(no)3和15-20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20-30次;此时电极变为in2o
3 nps/bivo
4 nps电极;4) 在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液得到in2o
3 nps/bivo
4 nps/zif-8电极;5) 首先取80-100
ꢀµ
l、1
ꢀµ
g/ml nse捕获抗体ab1溶液滴加到96-微孔板中,4℃冰箱保湿过夜,之后用磷酸盐缓冲溶液(pbs)洗涤三次;6) 继续加入100
ꢀµ
l、质量分数为0.1~1.0 %的牛血清白蛋白溶液,室温下孵育1 h以封闭未结合ab1的非特异性活性位点;7) 继续用pbs洗涤两到三次,加入100
ꢀµ
l、0.1 pg/ml ~ 10 ng/ml nse抗原溶液,室温下孵育1 h;8) 继续加入100
ꢀµ
l sio
2-gox-ab2的孵化物,室温下孵育1 h,用pbs洗涤两到三次后,加入10-25 mm的葡萄糖溶液,孵育1 h。取孵育后的溶液10
ꢀµ
l滴涂在in2o
3 nps/bivo
4 nps/zif-8电极表面,4 ℃冰箱中保湿后晾干,制得了修饰完全的ito电极,即一种检测nse分离式光电化学免疫传感器。
17.2. 所述的检测nse分体式光电化学免疫传感器检测步骤如下:(1) 使用电化学工作站以三电极体系进行测试,饱和甘汞电极为参比电极,铂丝电极为辅助电极,修饰完全的ito电极为工作电极,在10 ml、ph 7.4的含0.1 mol/l抗坏血酸的pbs缓冲溶液进行测试;(2) 用时间-电流法对nse进行检测,设置电压为0 v,运行时间200 s,led灯照射;(3) 当背景电流趋于稳定后,每隔10 s开灯持续照射10 s,然后记录光电流变化,绘制工作曲线;(4) 用血清样品溶液代替nse抗原标准溶液,检测结果利用工作曲线计算得出。
18.3. 本发明所用原材料均可在化学试剂公司或生物制药公司购买。
19.本发明的有益成果(1) 本发明合成的in2o
3 nps/bivo
4 nps/zif-8,in2o
3 nps可以提高ito表面的粗糙程度这利于bivo
4 nps的生长,进而提高捕获光源的能力,同时交错的纳米颗粒结构具有大的比表面积可以增加zif-8的负载量,并且zif-8作为药物释放、生物酶的缓释材料有良好的ph反应以及生物相容性,显著提高了传感器的灵敏度和降低检测限。
20.(2) 本发明合成纳米复合材料sio
2-gox作为检测抗体标记物,构建分离型光电化学免疫传感器。sio2纳米微球由于其良好的生物相容性和大的比表面积作为酶的负载物,可以最大限度负载的生物酶,同时也是nse检测抗体标记物的良好负载材料;在孵育时,不同浓度梯度的抗体标记物负载不同的葡萄糖氧化酶,在gox的作用下与葡萄糖发生反应,生成不同ph的葡萄糖酸,对zif-8降解作用不同,从而光电流恢复的程度不同,构建了一种分
离式的光电化学免疫传感器。
21.(3) 本发明利用纳米复合材料sio
2-gox直接与标志物检测抗体结合,构建分离式免疫传感器,避免电极上沉积材料过多影响光电流强度。同时利用zif-8对光电信号的屏蔽作用以及ph的敏感程度实现光电信号的恢复,极大提高了光电化学传感器的检测灵敏度,具有重要的科学意义和应用价值。
22.(4) 本发明制备的分离式光电化学免疫传感器,用于神经元特异性烯醇化酶的检测,响应时间短,稳定性好,可以实现对nse的简单、快速、高灵敏和特异性检测。本发明制备的传感器对nse的检测范围为0.1 pg/ml ~ 200 ng/ml,检测限为0.02 pg/ml。
具体实施方式
23.现将本发明通过具体实施方式进一步说明,但不限于此实施例11. 一种基于控制释放zif-8屏蔽壳层的光电化学神经元特异性烯醇化酶传感器的制备方法,制备步骤如下:(1) 制备in2o
3 nps/ bivo
4 nps/zif-8将大块的ito玻璃裁成2.0 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃,依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干,得到干净的ito玻璃。
24.in2o
3 nps的制备如下所示:146.5 mg的五水合硝酸铟(in(no3)3·
5h2o)与1 g尿素彻底混合,溶于13 ml二甘醇和2 ml超纯水的混合溶液中,磁力搅拌至完全溶解。转移至含有聚四氟乙烯内胆的反应釜中加热至200 ℃反应24 h。待温度冷却到室温后,得到的产品分别用水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到in2o
3 nps。
25.bivo
4 nps的制备是通过连续的离子吸附与反应:分别将10
ꢀµ
l、5 mg/ml分散均匀的in2o
3 nps的悬浮液滴涂在ito导电玻璃上,在室温下晾干;然后分别将涂覆in2o
3 nps的ito导电玻璃在25 mm bi(no)3和25 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次,bivo
4 nps合成成功,此时电极变为in2o
3 nps/bivo
4 nps电极。
26.zif-8的制备如下所示:40 mm二水合乙酸锌与160 mm 2-甲基咪唑溶解在5 ml水中震荡5 min。在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液,保湿12 h得到in2o
3 nps/bivo
4 nps/zif-8电极。
27.(2) 制备sio
2-gox-ab2检测抗体孵化物溶液sio2纳米微球的制备:65-75 ml的无水乙醇中加入5 ml水和7 ml的原硅酸乙酯,在搅拌的过程中以每分钟2 ml的速度滴加25%的浓氨水20 ml。得到的溶液40 ℃下回流4 h.得到白色产品经过水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到sio2微球。
28.氨化的sio2纳米微球的制备:将1 ml aptes和1.0 g sio2加入100 ml无水甲苯中,然后将得到的溶液在超声处理30 min后转入70-90 ℃的高压釜中反应24 h。然后将得到的悬浮液离心,用无水乙醇洗涤3次,然后在60 ℃的真空中干燥过夜,得到氨基sio2粉末。
29.醛化的sio2纳米微球的制备:氨化的sio2纳米微球10 mg/ml溶液2 ml,加入5 ml戊二醛,25 ℃下搅拌6 h,得到醛化的sio2纳米微球。
30.sio
2-gox-ab2的孵化:取10 mg/ml的醛化sio2溶液1ml,1 ml 10
ꢀµ
g/ml的ab2溶液,1 ml 10 mg/ml的葡萄糖氧化酶(gox),在4 ℃恒温振荡箱中恒温孵育12 h。最后,用ph为7.4的磷酸盐缓冲溶液离心清洗3次,并分散于2 ml的ph为7.4的磷酸盐缓冲溶液中。
31.(2) 制备分离式光电化学免疫传感器1) 将2.5 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干;2) 将10
ꢀµ
l、8 mg/ml分散均匀的in2o3的悬浮液滴涂在ito导电玻璃上,在室温下晾干;3) 然后分别将涂覆in2o3的ito导电玻璃在25 mm bi(no)3和20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次;此时电极变为in2o
3 nps/bivo
4 nps电极;4) 在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液得到in2o
3 nps/bivo
4 nps/zif-8电极;5) 首先取100
ꢀµ
l、1
ꢀµ
g/ml nse捕获抗体ab1溶液滴加到96-微孔板中,4 ℃冰箱保湿过夜,之后用磷酸盐缓冲溶液(pbs)洗涤三次;6) 继续加入100
ꢀµ
l、质量分数为1.0 %的牛血清白蛋白溶液,室温下孵育1 h以封闭未结合ab1的非特异性活性位点;7) 继续用pbs洗涤两到三次,加入100
ꢀµ
l、0.1 pg/ml ~ 10 ng/ml nse抗原溶液,室温下孵育1 h;8) 继续加入100
ꢀµ
l sio
2-gox-ab2的孵化物,室温下孵育1 h,用pbs洗涤两到三次后,加入25 mm的葡萄糖溶液,孵育1 h。取孵育后的溶液10
ꢀµ
l滴涂在in2o
3 nps/bivo
4 nps/zif-8电极表面,4 ℃冰箱中保湿后晾干,制得了修饰完全的ito电极,即一种检测nse分离式光电化学免疫传感器。
32.2. 所述的检测nse分离式光电化学免疫传感器检测步骤如下:(1) 使用电化学工作站以三电极体系进行测试,饱和甘汞电极为参比电极,铂丝电极为辅助电极,修饰完全的ito电极为工作电极,在10 ml、ph 7.4的含0.1 mol/l抗坏血酸的pbs缓冲溶液进行测试;(2) 用时间-电流法对降钙素原进行检测,设置电压为0 v,运行时间200 s, led灯照射;(3) 当背景电流趋于稳定后,每隔10 s开灯持续照射10 s,然后记录光电流变化,绘制工作曲线;(4) 用血清样品溶液代替nse抗原标准溶液,检测结果利用工作曲线计算得出。
33.实施例21. 一种基于控制释放zif-8屏蔽壳层的光电化学神经元特异性烯醇化酶传感器的制备方法,制备步骤如下:(1) 制备in2o
3 nps/ bivo
4 nps/zif-8将大块的ito玻璃裁成2.0 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃,依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干,得到干净的ito玻璃。
34.in2o
3 nps的制备如下所示:145 mg的五水合硝酸铟(in(no3)3·
5h2o)与1.3g尿素
彻底混合,溶于13 ml二甘醇和2 ml超纯水的混合溶液中,磁力搅拌至完全溶解。转移至含有聚四氟乙烯内胆的反应釜中加热至200 ℃反应24 h。待温度冷却到室温后,得到的产品分别用水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到in2o
3 nps。
35.bivo
4 nps的制备是通过连续的离子吸附与反应:分别将10
ꢀµ
l、10 mg/ml分散均匀的in2o
3 nps的悬浮液滴涂在ito导电玻璃上,在室温下晾干;然后分别将涂覆in2o
3 nps的ito导电玻璃在20 mm bi(no)3和20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次,bivo
4 nps合成成功,此时电极变为in2o
3 nps/bivo
4 nps电极。
36.zif-8的制备如下所示:40 mm二水合乙酸锌与160 mm 2-甲基咪唑溶解在5 ml水中震荡5 min。在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液,保湿12 h得到in2o
3 nps/bivo
4 nps/zif-8电极。
37.(2) 制备sio
2-gox-ab2检测抗体孵化物溶液sio2纳米微球的制备:75 ml的无水乙醇中加入8 ml水和7 ml的原硅酸乙酯,在搅拌的过程中以每分钟2 ml的速度滴加25%的浓氨水20 ml。得到的溶液40 ℃下回流4 h.得到白色产品经过水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到sio2微球。
38.氨化的sio2纳米微球的制备:将1 ml aptes和1.0 g sio2加入100 ml无水甲苯中,然后将得到的溶液在超声处理30 min后转入90 ℃的高压釜中反应24 h。然后将得到的悬浮液离心,用无水乙醇洗涤3次,然后在60 ℃的真空中干燥过夜,得到氨基sio2粉末。
39.醛化的sio2纳米微球的制备:氨化的sio2纳米微球10 mg/ml溶液2 ml,加入5 ml戊二醛,25 ℃下搅拌6 h,得到醛化的sio2纳米微球。
40.sio
2-gox-ab2的孵化:取5 mg/ml的醛化sio2溶液1 ml,1 ml 10
ꢀµ
g/ml的ab2溶液,1 ml 10 mg/ml的葡萄糖氧化酶(gox),在4 ℃恒温振荡箱中恒温孵育12 h。最后,用ph为7.4的磷酸盐缓冲溶液离心清洗3次,并分散于2 ml的ph为7.4的磷酸盐缓冲溶液中。
41.(2) 制备分离式光电化学免疫传感器1) 将2.5 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干;2) 将10
ꢀµ
l、5 mg/ml 分散均匀的in2o3的悬浮液滴涂在ito导电玻璃上,在室温下晾干;3) 然后分别将涂覆in2o3的ito导电玻璃在20 mm bi(no)3和20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次;此时电极变为in2o
3 nps/bivo
4 nps电极;4) 在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液得到in2o
3 nps/bivo
4 nps/zif-8电极;5) 首先取100
ꢀµ
l、1
ꢀµ
g/ml nse捕获抗体ab1溶液滴加到96-微孔板中,4 ℃冰箱保湿过夜,之后用磷酸盐缓冲溶液(pbs)洗涤三次;6) 继续加入100
ꢀµ
l、质量分数为1.0 %的牛血清白蛋白溶液,室温下孵育1 h以封闭未结合ab1的非特异性活性位点;7) 继续用pbs洗涤两到三次,加入100
ꢀµ
l、0.1 pg/ml ~ 10 ng/ml nse抗原溶液,室温下孵育1 h;
8) 继续加入100
ꢀµ
l sio
2-gox-ab2的孵化物,室温下孵育1 h,用pbs洗涤两到三次后,加入25 mm的葡萄糖溶液,孵育1 h。取孵育后的溶液10
ꢀµ
l滴涂在in2o
3 nps/bivo
4 nps/zif-8电极表面,4 ℃冰箱中保湿后晾干,制得了修饰完全的ito电极,即一种检测nse分离式光电化学免疫传感器。
42.2. 所述的检测nse分离式光电化学免疫传感器检测步骤如下:(1) 使用电化学工作站以三电极体系进行测试,饱和甘汞电极为参比电极,铂丝电极为辅助电极,修饰完全的ito电极为工作电极,在10 ml、ph 7.4的含0.1 mol/l抗坏血酸的pbs缓冲溶液进行测试;(2) 用时间-电流法对降钙素原进行检测,设置电压为0 v,运行时间200 s,led灯照射;(3) 当背景电流趋于稳定后,每隔10 s开灯持续照射10 s,然后记录光电流变化,绘制工作曲线;(4) 用血清样品溶液代替nse抗原标准溶液,检测结果利用工作曲线计算得出。
43.实施例31. 一种基于控制释放zif-8屏蔽壳层的光电化学神经元特异性烯醇化酶传感器的制备方法,制备步骤如下:(1) 制备in2o
3 nps/ bivo
4 nps/zif-8将大块的ito玻璃裁成2.0 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃,依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干,得到干净的ito玻璃。
44.in2o
3 nps的制备如下所示:146 mg的五水合硝酸铟(in(no3)3·
5h2o)与0.8 g尿素彻底混合,溶于14 ml二甘醇和1 ml超纯水的混合溶液中,磁力搅拌至完全溶解。转移至含有聚四氟乙烯内胆的反应釜中加热至180 ℃反应24 h。待温度冷却到室温后,得到的产品分别用水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到in2o
3 nps。
45.bivo
4 nps的制备是通过连续的离子吸附与反应:分别将10
ꢀµ
l、5 mg/ml分散均匀的in2o
3 nps的悬浮液滴涂在ito导电玻璃上,在室温下晾干;然后分别将涂覆in2o
3 nps的ito导电玻璃在25 mm bi(no)3和20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次,bivo
4 nps合成成功,此时电极变为in2o
3 nps/bivo
4 nps电极。
46.zif-8的制备如下所示:45 mm二水合乙酸锌与160 mm 2-甲基咪唑溶解在5 ml水中震荡5 min。在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液,保湿12 h得到in2o
3 nps/bivo
4 nps/zif-8电极。
47.(2) 制备sio
2-gox-ab2检测抗体孵化物溶液sio2纳米微球的制备:75 ml的无水乙醇中加入3 ml水和7 ml的原硅酸乙酯,在搅拌的过程中以每分钟2 ml的速度滴加25%的浓氨水15 ml。得到的溶液40 ℃下回流4 h.得到白色产品经过水和乙醇离心清洗几次,最后在真空干燥箱中干燥过夜后得到sio2微球。
48.氨化的sio2纳米微球的制备:将1 ml aptes和1.0 g sio2加入100 ml无水甲苯中,然后将得到的溶液在超声处理30 min后转入80 ℃的高压釜中反应24 h。然后将得到的悬浮液离心,用无水乙醇洗涤3次,然后在60 ℃的真空中干燥过夜,得到氨基sio2粉末。
49.醛化的sio2纳米微球的制备:氨化的sio2纳米微球5 mg/ml溶液2 ml,加入5 ml戊
二醛,25 ℃下搅拌6 h,得到醛化的sio2纳米微球。
50.sio
2-gox-ab2的孵化:取8 mg/ml的醛化sio2溶液1ml,1 ml 10
ꢀµ
g/ml 的ab2溶液,1 ml 10 mg/ml的葡萄糖氧化酶(gox),在4 ℃恒温振荡箱中恒温孵育12 h。最后,用ph为7.4的磷酸盐缓冲溶液离心清洗3次,并分散于2 ml的ph为7.4的磷酸盐缓冲溶液中。
51.(2) 制备分离式光电化学免疫传感器1) 将2.5 cm
ꢀ×ꢀ
0.8 cm的ito导电玻璃依次用丙酮、乙醇和超纯水分别超声清洗30 min,氮气吹干;2) 将10
ꢀµ
l、5 mg/ml 分散均匀的in2o3的悬浮液滴涂在ito导电玻璃上,在室温下晾干;3) 然后分别将涂覆in2o3的ito导电玻璃在25 mm bi(no)3和20 mm nh4vo3溶液中蘸60 s,称之为一个循环,每一个循环要用超纯水轻轻冲洗,并且重复上述循环20次;此时电极变为in2o
3 nps/bivo
4 nps电极;4) 在in2o
3 nps/bivo
4 nps电极上滴涂10
ꢀµ
l zif-8溶液得到in2o
3 nps/bivo
4 nps/zif-8电极;5) 首先取100
ꢀµ
l、1
ꢀµ
g/ml nse捕获抗体ab1溶液滴加到96-微孔板中,4 ℃冰箱保湿过夜,之后用磷酸盐缓冲溶液(pbs)洗涤三次;6) 继续加入100
ꢀµ
l、质量分数为1.0 %的牛血清白蛋白溶液,室温下孵育1 h以封闭未结合ab1的非特异性活性位点;7) 继续用pbs洗涤两到三次,加入100
ꢀµ
l、0.1 pg/ml ~ 10 ng/ml nse抗原溶液,室温下孵育1 h;8) 继续加入100
ꢀµ
l sio
2-gox-ab2的孵化物,室温下孵育1 h,用pbs洗涤两到三次后,加入30 mm的葡萄糖溶液,孵育1 h。取孵育后的溶液10
ꢀµ
l滴涂在in2o
3 nps/bivo
4 nps/zif-8电极表面,4 ℃冰箱中保湿后晾干,制得了修饰完全的ito电极,即一种检测nse分离式光电化学免疫传感器。
52.2. 所述的检测nse分离式光电化学免疫传感器检测步骤如下:(1) 使用电化学工作站以三电极体系进行测试,饱和甘汞电极为参比电极,铂丝电极为辅助电极,修饰完全的ito电极为工作电极,在10 ml、ph 7.4的含0.1 mol/l抗坏血酸的pbs缓冲溶液进行测试;(2) 用时间-电流法对降钙素原进行检测,设置电压为0 v,运行时间200 s, led灯照射;(3) 当背景电流趋于稳定后,每隔10 s开灯持续照射10 s,然后记录光电流变化,绘制工作曲线;(4) 用血清样品溶液代替nse抗原标准溶液,检测结果利用工作曲线计算得出。
53.实施例4实施例1~3所述的分离式光电化学免疫传感器对经元特异性烯醇化酶nse的检测范围为0.1 pg/ml~50 ng/ml,检测限为0.02 pg/ml;可以实现简单、快速、高灵敏和特异性检测。
54.说明书附表
【表号】表1。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献