一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

使用颗粒制备三维(3D)物体的方法与流程

2022-06-06 02:15:27 来源:中国专利 TAG:

使用颗粒制备三维(3d)物体的方法
1.本发明涉及一种通过使用三维(3d)打印方法制备三维(3d)物体的方法,其中使用3d挤出打印机将具有在0.2-1mm范围内的粒度的颗粒(granulate)用作在所述3d打印方法中待打印的起始材料。在一个优选的实施方案中,使用本发明的方法制备3d生坯。本发明进一步涉及3d物体本身以及用于获得这样的3d物体,特别是3d生坯、3d褐坯(brown body)和3d烧结体的相应方法。
2.近来经常遇到的任务是制备金属或陶瓷体的原型和模型,特别是具有复杂几何形状的原型和模型。尤其是对于原型的制备而言,快速制备工艺是必要的。对于这种所谓的“快速原型”,已知有不同的方法。最经济的一种是熔丝制造法(fff),也称为“熔融沉积成型”(fdm)。
3.熔丝制造法(fff)是一种增材制造技术。通过将热塑性材料挤出通过喷嘴以在挤出后热塑性材料硬化时形成层来制备三维物体。喷嘴被加热以将热塑性材料加热超过其熔融温度和/或玻璃化转变温度,然后由挤出头沉积在基底上以逐层方式形成三维物体。通常选择热塑性材料并控制其温度,使得其在挤出或分配至基底上时基本上立即固化,同时形成多层以形成所需的三维物体。
4.为了形成各层,提供驱动电机以使基底和/或挤出喷嘴(分配头)沿x、y和z轴以预定模式相对于彼此移动。fff方法首次描述于us 5,121,329中。
5.用于制备三维物体的典型材料是热塑性材料。通过熔丝制造来制备三维金属或陶瓷物体只有在金属或陶瓷材料具有低熔点以使得其可被喷嘴加热和熔融时才是可能的。如果金属或陶瓷材料具有高熔点,则必须将粘合剂组合物中的金属或陶瓷材料提供给挤出喷嘴。粘合剂组合物通常包含热塑性材料。当在基底上沉积金属或陶瓷材料在粘合剂中的混合物时,形成的三维物体是所谓的“生坯”,其包含处于粘合剂中的金属或陶瓷材料。为了得到所需的金属或陶瓷物体,必须除去粘合剂,最后必须将该物体烧结。在除去粘合剂之后形成的三维物体是所谓的“褐坯”;烧结后形成的三维物体是所谓的“烧结体”。
6.wo 2016/012486描述了一种熔丝制造法,其中使用包含无机粉末和粘合剂的混合物来制备三维生坯。在熔丝制造工艺之后是脱粘步骤,其中从三维生坯中除去至少一部分粘合剂以形成三维褐坯。脱粘步骤通过在包含气态酸和任选的载气的气氛中在至多180℃的温度下处理三维生坯以避免酸的冷凝来进行。合适的酸是无机酸,例如卤化氢和硝酸,和有机酸,例如甲酸和乙酸。在脱粘步骤之后,对形成的三维褐坯进行烧结以形成三维烧结体。
7.wo 2017/009190描述了一种用于熔丝制造法以制备三维生坯的长丝。所述长丝包括涂覆有壳材料层的芯材料。芯材料包含无机粉末和粘合剂。三维褐坯以及三维烧结体的制备可类似于wo 2016/012486中所述的方法制备。然而,wo 2017/009190中描述的芯-壳长丝更稳定,并且可以容易地在卷线筒上卷绕,这使得它们比wo 2016/012486中公开的那些更容易储存和加工。
8.ep3112133描述了一种3d打印机,其可以使用各种材料的丸粒并且不需要惰性气体而制备大的模制物体。制备粒径为3mm的abs作为粒料。
9.wo 2019/116088描述了一种三维打印机,其可包括供应固化材料的至少一个进料室、构造成从至少一个进料室接收固化材料并将固化材料处理成熔融相的挤出机、构造成从挤出机接收熔融相的熔体泵、以及构造成从熔体泵接收熔融相并将熔融相沉积在连续层中以形成三维物体的打印头。固化材料可以包括聚合物颗粒。
10.如上所述,fff/fdm方法是最常用的3d打印技术之一。然而,存在fdm/fff方法的若干变型,有时将这样的变型概括为术语“fdm/fff方法”,有时甚至将这样的变型视为单独的/不同的3d打印技术。通过用颗粒材料代替在fdm/fff打印方法中用作“传统起始材料”的长丝,可发现常用的fdm/ffm方法的这些变型之一。与常规fff/fdm打印方法中使用的相应长丝相比,颗粒材料在其化学组成方面可以完全或压倒性地相同,但颗粒在其形状方面不同于相应的长丝。长丝方法的缺点是长丝通常在线轴上卷绕,并且长丝在从线轴转移到3d挤出打印机的打印头中时可能断裂。
11.与此相反,基于颗粒的3d挤出打印技术与相应的(常规的基于长丝的)fff/fdm打印技术相比通常更便宜,因为在相应的3d技术内待打印的起始材料不必以长丝的形状提供。
12.根据就长丝的化学组成而言的常规fdm/fff打印技术,各种颗粒可以用作基于颗粒的3d挤出打印技术/方法中的起始材料。待使用的颗粒通常基于聚合物,特别是热塑性材料,其可在3d挤出打印方法中被加热至超过其熔融和/或玻璃化转变温度的温度。除了上述聚合物,特别是热塑性材料之外,待使用的颗粒还可以含有一些无机粉末,例如金属、金属合金或陶瓷材料。如果是,则通过相应的3d打印方法获得3d生坯。与常规fff/fdm打印技术类似,可以除去这种3d生坯的有机/聚合物部分,以获得3d金属或陶瓷物体,例如3d褐坯和3d烧结体。
13.然而,基于颗粒的3d挤出打印技术的问题可在原料(待使用的颗粒)的流动性方面看到。为了获得高质量的待打印的3d物体,必须以均匀的方式将颗粒提供至3d挤出打印机的打印头。在供至3d打印机的挤出头的原料的不均匀/不均一流动性/供应的情况下,打印速度以及待打印的产品的质量都显著降低,因为从喷嘴的挤出速率显著变化。
14.因此,本发明的目的是提供一种制备三维物体如3d生坯的新方法,该方法不显示或仅在较小程度上显示出现有技术的上述缺点。
15.该目的通过一种通过使用三维(3d)打印方法制备三维(3d)物体的方法实现,所述方法包括以下步骤a)至e):
16.a)提供具有在0.2-1mm范围内的粒度的至少一种颗粒,
17.b)用至少部分位于三维(3d)挤出打印机的外壳内的至少一个螺杆将所述至少一种颗粒朝向所述3d挤出打印机的至少一个喷嘴进料,
18.c)加热3d挤出打印机的外壳内的至少一种颗粒,
19.d)将步骤c)中获得的至少一种加热的颗粒挤出通过至少一个喷嘴,以获得至少一股挤出的线料,
20.e)由步骤d)获得的所述至少一股挤出的线料逐层形成3d物体。
21.已经令人惊讶地发现,由于在本发明的方法中使用了具有在0.2-1mm范围内的粒度的颗粒,原料的流动性得到了显著改善,导致使用基于颗粒的材料的更快和/或更稳定的3d挤出打印方法。
22.因此,与根据现有技术的使用没有所述特定颗粒尺寸的颗粒的方法相比,以更均匀或稳定的方式提供待打印的材料。由于本发明方法中使用的颗粒的改善流动性,在待打印的3d物体中,就打印物体的各层之间的更均匀的厚度而言,可以获得更高的质量。这同样适用于更好的密度、改善的各个层之间的粘合性和牢固性以及降低的表面粗糙度。
23.在本发明的一个特定实施方案中,其中螺杆以垂直方向或以与垂直方向相差不超过60
°
的角度将颗粒朝向3d挤出打印机内的喷嘴进料,可以看到的另一优点在于,可以避免对用于颗粒的容器的加热,这会由于(增加的)原料的堵塞而导致流动性降低,例如由于相应颗粒的非预期的结合。
24.此外,在本发明的方法中,可以避免在用于颗粒的储存容器中使用搅拌器,因为颗粒的搅拌经常引起颗粒的非预期的尺寸减小,导致非常大量的非常小的颗粒,特别是通过延长搅拌。大量的非常小的颗粒还对颗粒的流动性具有负面影响,导致待打印的3d物体的质量较差。
25.本发明的另一个优点可从以下事实看出,由于使用了基于颗粒的3d挤出打印技术,也可成功地使用相当软的材料,例如包含至少一种热塑性聚氨酯的颗粒和/或包含含纤维或其它填料的聚合物的颗粒。在常规fff/fdm打印技术中,根本不可能使用上述不同类型的长丝形状的材料,或者使用上述不同类型的长丝形状的材料相当复杂。
26.本发明的另一个优点可以在那些使用3d挤出打印机的实施方案中找到,包括所谓的“微型挤出单元”。包括微型挤出单元的3d挤出打印机通常是其中所用螺杆具有相当低的长径比的那些类型的3d挤出打印机。优选地,这种螺杆的长径比低于12,更优选低于8。由于使用了粒径在0.2-1mm范围内的相当小的颗粒,以及使用了长径比相当低的螺杆,颗粒的挤出可以以更均匀、更光滑和/或更软的方式进行,因为颗粒以更好和/或更均匀的方式分布在含有螺杆的3d挤出打印机的区段内。
27.在本发明上下文中,术语“粒度”或“在0.2-1mm范围内的粒度”(就相应颗粒而言)具有以下含义。相应颗粒的d10值为至少0.2mm,d90值为不大于1mm。就要考虑的相应范围(例如0.2-1mm)而言,d10值总是小于相应的d90值。
28.就0.2-1mm的特定范围而言,“d10值”意指10体积%(相应颗粒)具有不大于0.2mm的粒度。就0.2-1mm的特定范围而言,“d90值”意指90体积%(相应颗粒)具有不大于1mm的粒度。
29.在要考虑的范围不同的情况下,例如0.4-0.9mm,相应地确定d10和d90值(对于该特定范围,d10值至少为0.4mm,d90值不大于0.9mm)。
30.相应颗粒的粒度通过本领域技术人员已知的方法测定,例如通过使用x2仪器。除非另外指出,否则这些值涉及相应粒度的体积测定。优选地,各值基于体积的q3分布而相关。
31.就用于测定粒度的方法/仪器(例如x2仪器)而言,通常需要考虑以下内容:在非球形(对于单个颗粒,球形度<0.9)的颗粒的情况下,单个颗粒的各粒度被确定/测量为球形颗粒的当量球径,所述球形颗粒具有与测量的颗粒相同的体积,但具有球形形状。用于动态图像粒度分析方法的典型测量设备可以确定该当量球径。
32.本发明更详细说明如下。
33.本发明的第一主题是一种通过使用三维(3d)打印方法制备三维(3d)物体的方法,
所述方法包括以下步骤a)至e):
34.a)提供具有在0.2-1mm范围内的粒度的至少一种颗粒,
35.b)用至少部分位于三维(3d)挤出打印机的外壳内的至少一个螺杆将所述至少一种颗粒朝向所述3d挤出打印机的至少一个喷嘴进料,
36.c)加热3d挤出打印机的外壳内的至少一种颗粒,
37.d)将步骤c)中获得的至少一种加热的颗粒挤出通过至少一个喷嘴,以获得至少一股挤出的线料,
38.e)由步骤d)获得的所述至少一股挤出的线料逐层形成3d物体。
39.如上文已述的那样,三维(3d)打印技术本身是本领域技术人员已知的,包括基于颗粒材料的3d打印技术。因此,适于在这样的3d打印方法中使用的三维(3d)挤出打印机本身也是本领域技术人员已知的。这同样适用于通过3d打印技术获得的三维(3d)物体本身,这对于本领域技术人员也是已知的。因此,在本发明的方法中可以使用常规3d挤出打印机和/或本领域技术人员知道如何由于其技术技能而改进这种常规3d挤出打印机以便能够实施本发明的方法。
40.本发明方法的步骤a)通过提供具有在0.2-1mm,优选0.4-0.9mm,更优选0.6-0.8mm范围内的粒度的至少一种颗粒而进行。
41.优选步骤a)中使用的颗粒具有
42.i)在0.4-0.9mm范围内的粒度,和/或
43.ii)圆形。
44.术语“圆形”意指大于50%的相应颗粒具有>0.7,更优选>0.9的球形度。优选地,大于70%,甚至更优选大于90%的相应颗粒具有》0.7,更优选》0.9的球形度。球形度可通过本领域技术人员已知的方法来测定。合适的测试方法是例如借助颗粒表征系统(例如)的光学测试方法。
45.在优选的实施方案中,球形度(spht)根据iso 9276-6测定,其中球形度(spht)由式(i)定义:
[0046][0047]
其中:p是测量的颗粒投影的周长,a是测量的被颗粒投影覆盖的面积。非球形颗粒的比例定义为球形度不大于0.7的比例,基于体积。
[0048]
具有在0.2-1mm范围内的粒度的颗粒可以通过本领域技术人员已知的任何方法由常规颗粒(即不限于特定平均粒度的颗粒)获得。优选步骤a)中使用的特定颗粒按如下(从对单个颗粒尺寸没有限制的常规颗粒)获得:
[0049]
i)通过筛分,优选通过多孔板筛分,和/或
[0050]
ii)通过线材挤出,随后切割所得线材,优选通过用旋转刀切割,和/或
[0051]
iii)通过基质压制或研磨,两者随后都筛分。
[0052]
在本发明的方法中可以使用本领域技术人员已知的具有在0.2-1mm范围内的粒度的任何颗粒。可以使用一种单个的颗粒,或者可以使用两种或多种颗粒的混合物。
[0053]
在步骤a)中待使用的颗粒可以选自以下至少一种颗粒(其对于本领域技术人员在
其各自的化学组成方面是已知的):
[0054]
i)包含至少一种聚合物,优选至少一种热塑性聚合物的颗粒,
[0055]
ii)包含至少一种无机粉末和至少一种聚合物的颗粒,优选所述无机粉末为至少一种选自金属、金属合金和陶瓷材料的无机材料的粉末,
[0056]
iii)包含至少一种芯材料(cm)的颗粒,所述芯材料涂覆有至少一种壳材料(sm)的层,或
[0057]
iv)包含至少一种纤维填料(ff)和至少一种聚合物的颗粒,优选纤维填料(ff)为至少一种碳纤维,或
[0058]
v)包含至少一种热塑性聚氨酯的颗粒。
[0059]
在相应颗粒含有至少一种纤维填料(ff)的情况下,可以使用本领域技术人员已知的任何纤维填料。优选地,所述至少一种纤维填料(ff)选自合成纤维和无机纤维,优选选自芳族聚酰胺纤维、玻璃纤维和碳纤维,更优选选自包含e、a或c玻璃的玻璃纤维和碳纤维,最优选选自碳纤维。
[0060]
在相应颗粒含有至少一种聚合物,优选至少一种热塑性聚合物的情况下,可以使用本领域技术人员已知的任何聚合物或热塑性聚合物。热塑性聚合物的合适实例也在以下热塑性聚合物(tp1)的上下文中描述。
[0061]
在相应颗粒含有至少一种无机粉末的情况下,可以使用本领域技术人员已知的任何无机粉末。无机粉末的实例公开在例如wo 2016/012486中。优选地,无机粉末为至少一种选自金属、金属合金和陶瓷材料的无机材料的粉末。wo 2016/012486中也公开了这种类型的无机材料。
[0062]
优选至少一种颗粒为包含以下组分的混合物(m):
[0063]
(a)基于混合物(m)的总体积40-75体积%无机粉末(ip),
[0064]
(b)基于混合物(m)的总体积25-60体积%粘合剂(b),所述粘合剂(b)包含:
[0065]
(b1)基于粘合剂(b)的总重量50-98重量%至少一种聚甲醛(pom),
[0066]
(b2)基于粘合剂(b)的总重量2-35重量%至少一种聚烯烃(po),
[0067]
(b3)基于粘合剂(b)的总重量0-40重量%至少一种其它聚合物(fp)。
[0068]
就混合物(m)的上述定义而言,优选组分(a)的存在量为40-70体积%,组分(b)的存在量为30-60体积%。在存在组分(b3)的情况下,相应含量为至少2重量%。由于组分(b)内任选存在组分(b3),组分(b1)的量相应降低。
[0069]
在本发明上下文中,甚至更优选以下颗粒,其中
[0070]
i)混合物(m)包含基于混合物(m)的总体积为0.1-5体积%的至少一种分散剂作为组分c),和/或
[0071]
ii)无机粉末(ip)为至少一种选自金属、金属合金和陶瓷材料的无机材料的粉末,和/或
[0072]
iii)组分(b1)是聚甲醛(pom)共聚物,其通过聚合以下物质而制备:
[0073]-至少50mol%的甲醛源(b1a),
[0074]-0.01-20mol%的至少一种通式(ii)的第一共聚单体(b1b):
[0075][0076]
其中:
[0077]r1-r4各自相互独立地选自h、c
1-c4烷基和卤素取代的c
1-c4烷基;
[0078]
r5选自化学键、(

cr
5ar5b

)基团和(-cr
5ar5bo–
)基团,
[0079]
其中:
[0080]r5a
和r
5b
各自相互独立地选自h和未取代或至少单取代c
1-c4烷基,
[0081]
其中取代基选自f、cl、br、oh和c
1-c4烷基;
[0082]
n为0、1、2或3;
[0083]

[0084]-0-20mol%的至少一种选自式(iii)化合物和式(iv)化合物的第二共聚单体(b1c):
[0085][0086]
其中:
[0087]
z选自化学键、(-o-)基团和(-o-r
6-o-)基团,
[0088]
其中:
[0089]
r6选自未取代c
1-c8亚烷基和c
3-c8亚环烷基,和/或
[0090]
iv)其它聚合物(fp)为至少一种选自聚醚、聚氨酯、聚环氧化物、聚酰胺、乙烯基芳族聚合物、聚(乙烯酯)、聚(乙烯醚)、聚((甲基)丙烯酸烷基酯)及其共聚物的其它聚合物(fp)。
[0091]“无机粉末(ip)”意指恰好一种无机粉末(ip)以及两种或更多种无机粉末(ip)的混合物。同样适用于术语”无机材料”。“无机材料”意指恰好一种无机材料以及两种或更多种无机材料的混合物。
[0092]“金属”意指恰好一种金属以及两种或更多种金属的混合物。在本发明范围内,金属可选自在熔丝制造方法的条件下为稳定的并且可形成三维物体的元素周期表的任何金属。优选,金属选自铝、钇、钛、锆、钒、铌、铬、钼、钨、锰、铁、羰基铁粉(cip)、钴、镍、铜、银、锌和镉,更优选,金属选自钛、铌、铬、钼、钨、锰、铁、羰基铁粉(cip)、镍和铜。特别优选,金属选自钛、铁和羰基铁粉(cip)。
[0093]
羰基铁粉(cip)为通过纯五羰基铁化学分解而制备的高纯铁粉。
[0094]“金属合金”意指恰好一种金属合金以及两种或更多种金属合金的混合物,在本发明上下文内,术语“金属合金”意指显示出金属性能并且包含金属和其它元素的固溶体或部分固溶体。如上所述,“金属”意指恰好一种金属以及两种或更多种金属的混合物。同样适用于“其它元素”。“其它元素”意指恰好一种其它元素以及两种或更多种其它元素的混合物。
[0095]
固溶体金属合金显示出单一固相微结构,而部分固溶体金属合金显示出两个或更多个固相。这些两个或更多个固相可均匀地分布于金属合金中,但它们也可不均匀地分布在金属合金中。
[0096]
金属合金可根据本领域技术人员已知的任何方法制备。例如,可将金属熔融并可将其它元素加入熔融金属中。然而,也可将金属和其它元素直接混入混合物(m)中而不预先制备金属合金。金属合金然后在三维物体的制备过程期间形成。
[0097]
关于金属,适用关于金属的上述实施方案和优选项。
[0098]
其它元素可可选自上述金属。然而,其它元素不同于金属合金中所含的金属。
[0099]
其它元素可选自形成在熔丝制造方法的条件下为稳定的金属合金,或者在熔融长丝方法的条件下为稳定的或者与金属形成稳定合金的周期表的任何元素。在本发明一个优选实施方案中,其它元素选自上述金属、硼、碳、硅、磷、硫、硒和碲。特别优选,至少一种其它元素选自上述金属、硼、碳、硅、磷和硫。
[0100]
优选,根据本发明的金属合金包含钢。
[0101]“陶瓷材料”意指恰好一种陶瓷材料以及两种或更多种陶瓷材料的混合物。在本发明上下文中,术语“陶瓷材料”意指金属或第一类金属和非金属或第二类金属的非金属化合物。
[0102]“金属”意指恰好一种金属以及两种或更多种金属化的混合物。同样适用于“非金属”和“第一类金属”以及“第二类金属”。“非金属”意指恰好一种非金属以及两种或更多种非金属的混合物。“第一类金属”意指恰好一种第一类金属以及两种或更多种第一类金属的混合物。“第二类金属”意指恰好一种第二类金属以及两种或更多种第二类金属的混合物。
[0103]
非金属本身是本领域技术人员已知的。根据本发明的非金属可选自周期表的任何非金属。优选,至少一种非金属选自碳、氮、氧、磷和硫。
[0104]
类金属本身是技术人员熟知的。第一类金属和第二类金属可选自周期表的任何类金属。优选,第一类金属和/或第二类金属选自硼和硅。应当了解第一类金属和第二类金属彼此不同。例如,如果第一类金属为硼,则第二类金属选自除硼外的元素周期表的任何其它类金属。
[0105]
在本发明一个实施方案中,陶瓷材料选自氧化物、碳化物、硼化物、氮化物和硅化物。在一个优选实施方案中,陶瓷材料选自mgo、cao、sio2、na2o、al2o3、zro2、y2o3、sic、si3n4、tib和aln。特别优选,陶瓷材料选自al2o3、zro2和y2o3。
[0106]
为制备无机粉末(ip),必须将无机材料粉化。为将无机材料粉化,可使用本领域技术人员已知的任何方法。例如,可将无机材料研磨。研磨例如可在分级磨、锤磨机或球磨机中进行。
[0107]
羰基铁粉(cip)通过纯五羰基铁的化学分解制备。
[0108]
用作组分(a)的无机粉末(ip)的粒度通过激光衍射测量优选为0.1-80μm,特别优
选0.5-50μm,更优选0.1-30μm。
[0109]
就例如与组分(b1)和/或其它聚合物(fp)相关的pom共聚物的上述定义而言,也参考wo 2016/012486的相应定义。
[0110]
在相应颗粒包含基于可用壳材料的层涂覆的核材料的颗粒的情况下,各个核-壳材料是本领域技术人员已知的;例如,在wo 2017/009190或pct/ep 2019/054604中公开了合适的核-壳材料。然而,在两个前述文献的上下文中,公开了呈长丝形式的各个核-壳材料。本领域技术人员知道,这些长丝通常由相应颗粒获得。因此,本领域技术人员知道如何改变上述两个文献中公开的长丝本身和/或如何改变制备这些长丝的各自方法,以获得可用于本发明上下文中的核-壳颗粒材料。
[0111]
在基于核-壳材料的颗粒中或在任何其它包含热塑性聚合物的本发明颗粒中可用作至少一种热塑性聚合物(tp1)的合适热塑性聚合物的实例是选自抗冲改性的乙烯基芳族共聚物、基于苯乙烯的热塑性弹性体(s-tpe)、聚烯烃(po)、脂族-芳族共聚酯、聚碳酸酯、热塑性聚氨酯(tpu)、聚酰胺(pa)、聚苯硫醚(pps)、聚芳基醚酮(paek)、聚砜和聚酰亚胺(pi),更优选选自抗冲改性的乙烯基芳族共聚物、聚烯烃(po)、脂族-芳族共聚酯和聚酰胺(pa)的至少一种热塑性聚合物。
[0112]
在相应颗粒含有至少一种热塑性聚氨酯的情况下,可以使用本领域技术人员已知的任何热塑性聚氨酯。更优选地,相应的至少一种颗粒完全由至少一种热塑性聚氨酯制成。热塑性聚氨酯本身是本领域技术人员已知的,并且公开在例如wo 2016/184771中,或在pct/ep 2019/054604的一个实施方案中作为长丝。
[0113]
优选地,所述至少一种热塑性聚氨酯可通过以下组分的聚合获得:
[0114]
(a)一种或多种有机二异氰酸酯,
[0115]
(b)一种或多种对异氰酸酯呈反应性的化合物,
[0116]
(c)一种或多种扩链剂,优选分子量为60-499g/mol的扩链剂,和
[0117]
(d)任选的至少一种催化剂,和/或
[0118]
(e)任选的至少一种助剂,和/或
[0119]
(f)任选的至少一种添加剂。
[0120]
合适的热塑性聚氨酯具有例如8
×
104g/mol至1.8
×
105g/mol,更优选1.0
×
105g/mol至1.5
×
105g/mol的数均分子量。
[0121]
组分(a)、(b)、(c)和任选的组分(d)、(e)和(f)通常由现有技术已知,并且在下文通过示例的方式进行描述。
[0122]
合适的有机二异氰酸酯(a)是常规的脂族、脂环族、芳脂族和/或芳族异氰酸酯。其实例包括但不限于三亚甲基二异氰酸酯,四亚甲基二异氰酸酯,五亚甲基二异氰酸酯,六亚甲基二异氰酸酯,七亚甲基二异氰酸酯和/或八亚甲基二异氰酸酯,2-甲基五亚甲基1,5-二异氰酸酯,亚丁基1,4-二异氰酸酯,2-乙基亚丁基1,4-二异氰酸酯,五亚甲基1,5-二异氰酸酯,1-异氰酸酯基-3,3,5-三甲基-5-异氰酸酯基甲基环己烷(异佛尔酮二异氰酸酯,ipdi),1,4-和/或1,3-双(异氰酸酯基甲基)环己烷(hxdi),环己烷1,4-二异氰酸酯,1-甲基环己烷2,4-和/或2,6-二异氰酸酯,二环己基甲烷4,4'-、2,4'-和/或2,2'-二异氰酸酯(h12mdi),二苯基甲烷2,2'-、2,4'-和/或4,4'-二异氰酸酯(mdi),亚萘基1,5-二异氰酸酯(ndi),亚甲苯基2,4-和/或2,6-二异氰酸酯(tdi),二苯基甲烷二异氰酸酯,3,3'-二甲基二苯基二异氰
酸酯,1,2-二苯基乙烷二异氰酸酯,亚苯基二异氰酸酯,及其任何组合。
[0123]
合适的有机二异氰酸酯还有2,4-对亚苯基二异氰酸酯(ppdi)和2,4-四亚甲基亚二甲苯基二异氰酸酯(tmxdi)。
[0124]
优选二苯基甲烷2,2'-、2,4'-和/或4,4'-二异氰酸酯(mdi)和二环己基甲烷4,4'-、2,4'-和/或2,2'-二异氰酸酯(h12mdi)。特别优选二苯基甲烷2,2'-、2,4'-和/或4,4'-二异氰酸酯。
[0125]
有机二异氰酸酯(a)也可为包含至少90重量%,更优选至少95重量%,进一步优选至少98重量%4,4'-二苯基甲烷二异氰酸酯(4,4'-mdi)的异氰酸酯混合物,其余为其他二异氰酸酯。
[0126]
通常,异氰酸酯以单一异氰酸酯或异氰酸酯的混合物形式使用。
[0127]
通常,任何合适的已知组分(b)可用于本发明上下文中。对异氰酸酯呈反应性的化合物(b)优选为多元醇、聚酯醇(即聚酯多元醇)、聚醚醇(即聚醚多元醇)和/或聚碳酸酯二醇,为此通常也使用集合性术语“多元醇”。这些多元醇的数均分子量(mn)为0.5-8kg/mol,优选为0.6-5kg/mol,非常优选为0.8-3kg/mol,特别为1-2kg/mol。
[0128]
此外,这些多元醇优选仅具有伯羟基。多元醇特别优选为线性羟基封端的多元醇。由于制备方法,这些多元醇通常包含少量非线性化合物。因此,它们通常也称为“基本上线性的多元醇”。
[0129]
多元醇作为单一多元醇或多元醇的混合物使用。在另一个优选的实施方案中,多元醇是两种或更多种多元醇的混合物。在一个优选的实施方案中,其是作为化合物(b)的聚酯多元醇和其他多元醇如聚酯多元醇、聚醚多元醇和/或聚碳酸酯二醇的混合物。特别优选聚酯多元醇,和一种或多种聚醚多元醇的混合物。
[0130]
在多元醇混合物的情况下,至少一种聚酯多元醇以大于40重量%,优选大于60重量%,更优选大于80重量%,最优选大于90重量%的量使用,基于混合物的总重量。
[0131]
本发明中的聚醚二醇、聚酯二醇和聚碳酸酯二醇是通常已知的并且常用于制备热塑性聚氨酯的那些。
[0132]
聚酯二醇可以基于具有2-12个碳原子,优选4-8个碳原子的二羧酸,其通常已知用于制备聚酯二醇和多元醇。
[0133]
多元醇的实例是具有2-10个,优选2-6个碳原子的链烷二醇,例如乙二醇、1,3-丙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,10-癸二醇、2,2-二甲基-1,3-丙二醇、2-甲基-1,3-丙二醇、1,2-丙二醇、3-甲基-1,5-戊二醇,和二亚烷基醚二醇如二甘醇和二丙二醇。多元醇的其他实例为2,2-双(羟甲基)1,3-丙二醇和三羟甲基丙烷。取决于所需的性能,多元醇可单独使用,或者如果合适,以彼此的混合物使用。为了保持多元醇的玻璃化转变温度tg非常低,可有利地使用基于支化二醇的聚酯二醇,特别优选基于3-甲基-1,5-戊二醇和2-甲基-1,3-丙二醇。聚酯二醇特别优选基于至少两种不同的二醇,即通过二羧酸与至少两种不同二醇的混合物的缩合制备的聚酯二醇。在其中至少一种是支化二醇,例如2-甲基-1,3-丙二醇的二醇混合物的情况下,支化二醇的量大于40重量%,优选大于70重量%,更优选大于90重量%,基于二醇混合物的总重量。
[0134]
优选的二羧酸例如为:脂族二羧酸,例如琥珀酸、戊二酸、辛二酸、壬二酸、癸二酸,优选己二酸,以及芳族二羧酸,例如邻苯二甲酸、间苯二甲酸和对苯二甲酸。二羧酸可单独
使用或以混合物的形式使用,例如以琥珀酸、戊二酸和己二酸的混合物的形式。同样可使用芳族和脂族二羧酸的混合物。为了制备聚酯醇,可有利地使用相应的二羧酸衍生物如在醇基中具有1-4个碳原子的二羧酸酯、二羧酸酐或二羧酸酰氯以代替二羧酸。聚酯二醇特别优选基于己二酸。在又一个实施方案中,优选基于ε-己内酯的聚酯多元醇。
[0135]
合适的聚酯多元醇例如可具有0.5-3kg/mol,优选0.8-2.5kg/mol,更优选1-2kg/mol,特别是1kg/mol的数均分子量(mn)。
[0136]
合适的聚醚多元醇可通过使一种或多种在亚烷基中具有2-4个碳原子的氧化烯与含有两个活性氢原子的起始物质分子反应而制备。典型的氧化烯为氧化乙烯、1,2-氧化丙烯、表氯醇和1,2-和2,3-氧化丁烯。优选使用氧化乙烯以及1,2-氧化丙烯与氧化乙烯的混合物。氧化烯可单独使用、依次交替使用或作为混合物使用。典型的起始物质分子例如为水、氨基醇如n-烷基二乙醇胺和二醇、乙二醇、1,3-丙二醇、1,4-丁二醇和1,6-己二醇。还可使用起始物质分子的混合物。合适的聚醚多元醇还包括四氢呋喃的含羟基的聚合产物。
[0137]
优选使用的是含羟基的聚四氢呋喃,以及1,2-氧化丙烯和氧化乙烯的共聚醚多元醇,其中超过50%,优选60-80%的羟基为伯羟基,并且其中至少一部分氧化乙烯是末端位置的嵌段。
[0138]
最优选的聚醚多元醇是数均分子量为0.6-3kg/mol,优选为0.8-2.5kg/mol,更优选为1-2kg/mol的含羟基的聚四氢呋喃。
[0139]
优选的多元醇是至少一种聚酯多元醇和至少一种聚醚多元醇的混合物。
[0140]
聚醚多元醇的实例包括但不限于基于通常已知的起始物质和常规氧化烯的那些。
[0141]
可用于本发明上下文中的多元醇可与异氰酸酯反应以制备异氰酸酯预聚物,或与异氰酸酯预聚物反应以制备热塑性聚氨酯。
[0142]
用于与异氰酸酯反应以制备异氰酸酯预聚物的合适多元醇的平均官能度可》2,优选为2.1-3,更优选为2.1-2.7,最优选为2.2-2.5。此外,用于与异氰酸酯预聚物反应以制备tpu的合适多元醇优选具有1.8-2.3,优选1.9-2.2,特别是2的平均官能度。术语“官能度”意指在聚合条件下与异氰酸酯反应的基团的数量。
[0143]
作为扩链剂(c),可使用分子量为60-499g/mol,优选为60-400g/mol的通常已知的脂族、芳脂族、芳族和/或脂环族化合物,更优选双官能化合物,例如在亚烷基中具有2-10个碳原子的二胺和/或链烷二醇,特别是1,2-乙二醇、1,4-丁二醇、1,6-己二醇、1,3-丙二醇和/或在亚烷基结构部分中具有2-8个碳原子的二亚烷基-、三亚烷基-、四亚烷基-、五亚烷基-、六亚烷基-、七亚烷基-、八亚烷基-、九亚烷基-和/或十亚烷基-二醇,优选相应的低聚丙二醇和/或聚丙二醇。还可使用扩链剂的混合物。优选1,4-丁二醇、1,2-乙二醇、1,6-己二醇或其组合作为扩链剂。
[0144]
在优选的实施方案中,扩链剂(c)以2-20重量%,优选5-15重量%的量使用,基于组分(a)、(b)和(c)的总重量。
[0145]
作为扩链剂,使用单一扩链剂或扩链剂的混合物。
[0146]
特别地促进有机二异氰酸酯(a)的nco基团与多元醇(b)和组分(c)之间的反应的合适催化剂(d)是现有技术已知和常规的叔胺,例如三乙胺、二甲基环己胺、n-甲基吗啉、2-(二甲氨基乙氧基)乙醇、n,n'-二甲基哌嗪、二氮杂双环[2.2.2]辛烷等,以及特别是有机金属化合物,例如钛酸酯、铋羧酸酯、锌酯、铁化合物如乙酰丙酮酸铁(iii)、锡化合物如二乙
酸锡、二辛酸锡、二月桂酸锡或脂族羧酸的二烷基锡盐,例如二乙酸二丁基锡、二月桂酸二丁基锡等。在铋盐中,铋的氧化态优选为2或3,更优选为3。
[0147]
优选的铋羧酸酯的羧酸具有6-14个碳原子,更优选8-12个碳原子。铋盐的优选实例为新癸酸铋(iii)、2-乙基己酸铋和辛酸铋。
[0148]
如果使用,催化剂通常以0.0001-0.1重量份/100重量份多元醇(b)的量使用。优选锡催化剂,特别是二辛酸锡。
[0149]
除催化剂(d)以外,如果需要,还可加入除组分(a)-(c)以外的常规助剂(e)和/或添加剂(f)。
[0150]
作为助剂(e),可使用例如表面活性物质、阻燃剂、成核剂、润滑蜡、染料、颜料和稳定剂,例如抗氧化、水解、光、热或变色;作为添加剂(f),可使用例如无机和/或有机填料和增强材料。作为水解抑制剂,优选低聚和/或聚合的脂族或芳族碳二亚胺。为了稳定热塑性聚氨酯以防止老化,也可以加入稳定剂。
[0151]
关于任选的助剂和添加剂的进一步细节可参见专业文献,例如plastics additive handbook,第5版,h.zweifel编辑,hanser publishers,munich,2001。
[0152]
除所述的组分a)、b)和c)以及如果合适的话d)和e)以外,还可使用链调节剂,其通常具有31g/mol至3kg/mol的数均分子量。这些链调节剂是仅具有一个异氰酸酯反应性官能团的化合物,例如单官能醇、单官能胺和/或单官能多元醇。这种链调节剂允许设定精确的流变性,特别是在tpu的情况下。链调节剂通常可以以0-5重量份,优选0.1-1重量份的量使用,基于100重量份组分b),并且根据定义包括在组分(c)内。
[0153]
为了调节热塑性聚氨酯的硬度,对异氰酸酯呈反应性的组分(b)和扩链剂(c)可在相对宽的摩尔比范围内变化。已经发现,组分(b)与所用扩链剂(c)总量的摩尔比为10:1至1:10,特别是1:1至1:4是有用的,其中热塑性聚氨酯的硬度随(c)含量的增加而增加。
[0154]
合适的热塑性聚氨酯优选具有根据din 53505通常小于肖氏a 98,更优选60-98肖氏a,甚至更优选70-95肖氏a,最优选75-90肖氏a的肖氏a硬度。
[0155]
优选地,适用于本发明上下文的热塑性聚氨酯具有1.0-1.3g/cm3的密度。根据din 53504的热塑性聚氨酯的拉伸强度大于10mpa,优选大于15mpa,特别优选大于20mpa。适用于本发明上下文的热塑性聚氨酯具有根据din 53516通常小于150mm3,优选小于100mm3的磨耗损失。
[0156]
通常,热塑性聚氨酯通过使(a)异氰酸酯与(b)对异氰酸酯呈反应性的化合物,通常数均分子量(mn)为0.5-10kg/mol,优选0.5-5kg/mol,特别优选0.8-3kg/mol,和(c)数均分子量(mn)为0.05-0.499kg/mol的扩链剂,如果合适的话在(d)催化剂和/或(e)常规添加剂的存在下反应而制备。
[0157]
热塑性聚氨酯可通过两种不同种类的方法制备,即“一步”法和“两步”法,其是现有技术所已知的。
[0158]
根据步骤(ii),向熔融的热塑性聚氨酯中加入异氰酸酯预聚物组合物,并将所得混合物混合以形成熔体。合适的异氰酸酯预聚物将在下文通过实例描述。
[0159]
在该方法中,异氰酸酯预聚物组合物优选在高于20℃的温度下加热和使用,以具有更好的流动性,异氰酸酯预聚物组合物的温度优选低于80℃,以避免不希望的反应,例如脲基甲酸酯交联。
[0160]
就本发明而言,术语“异氰酸酯预聚物”是指异氰酸酯与对异氰酸酯呈反应性的化合物的反应产物,所述反应产物具有0.5-10kg/mol,优选1-5kg/mol的数均分子量。异氰酸酯预聚物是异氰酸酯聚加成反应的中间体。在优选的实施方案中,所述预聚物具有低于-15℃的玻璃化转变温度tg和低于70℃的熔融温度,根据din en iso 11357-1通过dsc测量。
[0161]
合适的异氰酸酯预聚物可优选具有4-27重量份的nco含量,基于异氰酸酯预聚物的重量。根据本发明的合适的异氰酸酯预聚物可以以单一异氰酸酯预聚物或异氰酸酯预聚物的混合物的形式使用。
[0162]
最优选地,异氰酸酯预聚物是二苯基甲烷4,4'-二异氰酸酯和/或二苯基甲烷2,2'-二异氰酸酯和/或二苯基甲烷2,4'-二异氰酸酯(mdi)与基于己二酸、2-甲基-1,3-丙二醇和1,4-丁二醇的聚酯多元醇之间的反应产物,其中所述聚酯多元醇与所述二异氰酸酯的摩尔比为1:1至1:5,优选为1:1.2至1:3,更优选为1:1.5至1:2.5,例如1:2。
[0163]
在本发明上下文中,异氰酸酯预聚物具有2或大于2,优选2-3,更优选2-2.7,最优选2-2.5的平均异氰酸酯官能度(fn)。
[0164]
此外,增塑剂可用于制备基于热塑性聚氨酯的颗粒的方法中。合适的增塑剂通常是现有技术已知的,例如由david f.cadogan和christopher j.howick“plasticizers”,ullmann's encyclopedia of industrial chemistry 2000,wiley-vch,weinheim已知。
[0165]
合适的增塑剂为c
3-15
,优选c
3-10
多羧酸及其与直链或支化c
2-30
脂族醇的酯、苯甲酸酯、环氧化植物油、磺酰胺、有机磷酸酯、二醇及其衍生物和聚醚。优选的增塑剂为癸二酸、癸二酸酯、己二酸、己二酸酯、戊二酸、戊二酸酯、邻苯二甲酸、邻苯二甲酸酯(例如与c8醇)、壬二酸、壬二酸酯、马来酸、马来酸酯、柠檬酸及其衍生物,参见例如wo 2010/125009,在此引入作为参考。增塑剂可组合使用或单独使用。
[0166]
在制备基于热塑性聚氨酯的颗粒的方法中,可以加入其他添加剂(作为任选的组分f)),例如多亚甲基多苯基多异氰酸酯。
[0167]
就本发明与tpu有关的实施方案而言,术语“其他添加剂”是指将加入所述热塑性聚氨酯、所述异氰酸酯预聚物和所述增塑剂的反应体系中的任何物质,但不包括所述热塑性聚氨酯、所述异氰酸酯预聚物和所述增塑剂。通常,该类物质包括本领域通常使用的助剂和添加剂。
[0168]
在上述实施方案中,优选的是:
[0169]
i)所述一种或多种有机二异氰酸酯(组分a))选自二苯基甲烷-2,2'-、2,4'-和/或4,4'-二异氰酸酯(mdi),和二环己基甲烷-4,4'-、2,4'-和/或2,2'-二异氰酸酯(h12mdi),和/或
[0170]
ii)所述一种或多种对异氰酸酯呈反应性的化合物(组分b))选自多元醇、聚酯醇、聚醚醇和/或聚碳酸酯二醇,和/或
[0171]
iii)所述一种或多种扩链剂(化合物c))选自1,4-丁二醇、1,2-乙二醇和1,6-己二醇。
[0172]
本发明方法的步骤a)中所用的颗粒可以以任何合适的物品提供或供应,例如本领域技术人员已知的(储存)容器。步骤a)中待使用的相应颗粒可完全或部分置于所用3d挤出打印机(外壳)的内部或外部。如果相应容器的尺寸相当大,则这种容器可至少部分地位于3d挤出打印机的外壳的外部。然而,优选将步骤a)中使用的至少一种颗粒置于至少一个储
存容器中,该储存容器可部分或完全位于三维(3d)挤出打印机内部。
[0173]
本发明方法的步骤b)通过用至少部分位于三维(3d)挤出打印机的外壳内的至少一个螺杆将所述至少一种颗粒朝向所述3d挤出打印机的至少一个喷嘴进料来进行。
[0174]
如上所述,在本发明方法中待使用的3d挤出打印机本身是本领域技术人员已知的。然而,优选3d挤出打印机包括至少一个螺杆和至少一个喷嘴,并且螺杆以垂直方向或以与垂直方向相差不超过60
°
,优选不超过45
°
的角度将至少一种颗粒朝向喷嘴进料,更优选螺杆以垂直方向将至少一种颗粒朝向喷嘴进料。
[0175]
还优选的是,3d挤出打印机的外壳包括用于将颗粒朝向外壳中进料的至少一个入口、用于将颗粒从储存容器输送到喷嘴的至少一个螺杆、至少一个加热元件和至少一个喷嘴,优选地至少一个喷嘴、至少一个加热元件和至少一个螺杆的至少一部分位于3d挤出打印机的外壳的至少一个打印头内。
[0176]
还优选的是,在步骤b)中使用的至少一个螺杆是可加热的螺杆。
[0177]
甚至更优选的是,在本发明中待使用的3d挤出打印机是微型挤出打印机或包括微型挤出单元和/或具有包含在相应打印机内的螺杆的相当小的长径比。优选地,步骤b)中所用的至少一个螺杆的长径比低于12,优选低于8。相当短的螺杆的实例是相应螺杆的长度不超过150mm。
[0178]
在本发明上下文中还优选的是,将所述至少一种颗粒通过重力从所述至少一个储存容器转移到所述至少一个螺杆,优选地所述至少一个储存容器位于所述至少一个螺杆的上端,并且所述至少一个储存容器在其下部具有开口,以便将所述至少一种颗粒从所述至少一个储存容器转移到所述至少一个螺杆。
[0179]
本发明方法的步骤c)通过加热3d挤出打印机的外壳内的至少一种颗粒来进行。步骤c)中所用的温度足够高,以至少部分熔融至少一种颗粒。
[0180]
本领域技术人员知道,为了进行本发明方法的步骤c),必须将相应颗粒或两种或多种颗粒的混合物加热到何种温度,因为特定的加热温度取决于所用颗粒的性质。本领域技术人员知道如何确定单个颗粒的相应熔点。
[0181]
在颗粒含有有机聚合物的情况下,在本发明方法的步骤c)中选择的温度通常在相应颗粒中所含的至少一种聚合物的熔点范围内。“在熔点范围内”意指要选择的温度通常比相应颗粒内所含的至少一种聚合物的各熔点高至少1℃,优选高至少5℃,更优选高至少10℃。本领域技术人员还知道,步骤c)中使用的温度必须与对所用的相应颗粒进行挤出所需的温度一样高。
[0182]
本发明方法的步骤c)中使用的加热设备是本领域技术人员已知的。加热设备通常直接与相应的3d挤出打印机的喷嘴连接。然而,一方面的加热设备和另一方面的喷嘴通常是彼此独立操作的两个设备。例如,加热设备的温度可与喷嘴的温度相同,然而,加热设备的温度也可低于喷嘴的相应温度。加热设备的温度通常与将相应颗粒/聚合物保持在可流动状态所需的温度一样高。
[0183]
优选地,至少一种颗粒的加热在3d挤出打印机的至少一个打印头中进行,并且至少一个打印头包括步骤b)中使用的至少一个螺杆的至少一部分和至少一个喷嘴。
[0184]
本发明方法的步骤d)通过将步骤c)中获得的所述至少一种加热的颗粒挤出通过3d挤出打印机的打印头的喷嘴以获得至少一股挤出的线料来进行。
[0185]
本发明方法的步骤e)通过由步骤d)中获得的所述至少一股挤出的线料逐层形成3d物体来进行。
[0186]
本发明的步骤d)和e)本身是本领域技术人员已知的。在本发明的方法中可使用任何常规的3d挤出打印机,包括bowden打印机。这种传统的3d挤出打印机通常包含打印头,所述打印头包括本领域技术人员已知的喷嘴。由于在步骤c)中获得的相应加热颗粒的挤出,在步骤d)中获得所用颗粒的相应挤出线料。例如,如果步骤d)的挤出中断一定的时间段,则所用的颗粒可被不同的颗粒代替,并且随后继续挤出。因此,由于中断前后相应颗粒在相应化学组成方面可能不同,因此可获得新型的挤出线料。可以这样做从而提供在本发明方法的步骤e)中逐步(逐层)构建的各层内具有不同的单独化学组成的3d物体。
[0187]
根据步骤e)以逐层方式形成3d物体是本领域技术人员所已知的。通常,相应的打印机,特别是包括喷嘴的打印头,可以在z方向和/或x或y方向上移动,从而逐步获得相应的3d物体。通常,将3d物体本身放置在可以在z方向和/或x或y方向上移动的板上。为了完整起见,必须指出x、y和z方向是相对于笛卡尔坐标系的。
[0188]
在本发明的优选实施方案中,在步骤e)中获得的3d物体是三维(3d)生坯。在本发明方法中使用颗粒的情况下,通常获得3d生坯,其含有至少一种无机粉末和/或至少纤维填料。这种颗粒还可含有(作为任选组分)聚合物材料,例如热塑性聚合物。优选地,在本发明上下文中,在使用基于上述定义的混合物(m)的颗粒和/或基于如wo 2016/012486中公开的无机粉末的颗粒的情况下获得3d生坯。
[0189]
在本发明方法中获得3d生坯的情况下,还优选步骤e)之后是步骤f),其中从三维生坯中除去至少部分粘合剂(b)以形成三维(3d)褐坯。
[0190]
还优选步骤f)之后是步骤g),其中烧结三维(3d)褐坯以形成三维(3d)烧结体。
[0191]
上述用于将3d生坯转移到3d褐坯中以及任选地进一步转移到3d烧结体中的步骤是本领域技术人员已知的。这些技术公开在例如wo 2017/009190和/或wo 2016/012486中。
[0192]
因此,本发明的另一主题是通过如上所述的本发明方法制备的三维(3d)物体。优选地,这种3d物体是3d生坯。
[0193]
本发明的另一主题还是通过本发明方法制备的三维(3d)褐坯,其中步骤e)之后是步骤f)。
[0194]
本发明的另一主题是通过本发明方法制备的三维(3d)烧结体,其中步骤e)之后是步骤f),步骤f)之后是步骤g)。
[0195]
以下通过实施例更详细地说明本发明,但本发明不限于此。
实施例
[0196]
发明实施例e1和比较例c2和c3
[0197]
至少一种颗粒的提供(步骤a))
[0198]
颗粒的制备
[0199]
用切碎机研磨catamold evo 316l丸粒,其丸粒尺寸为2-4mm(c3),获得细粒。研磨后,通过筛分分级细粒,获得不同的级分(0.5-1mm(e1);1-2mm(c2))。
[0200]
catamold evo 316l丸粒包含不锈钢316l颗粒、作为主要粘合剂的聚甲醛(pom)和作为次要粘合剂的聚乙烯(pe)。
[0201]
通过使用三维打印方法(步骤b)至e))制备三维物体
[0202]
来自3d打印机制造商pollen am的p系列打印机用作三维(3d)挤出打印机。delta运动型打印机处理丸粒或细粒;可以加热打印床和打印机空间。使用硬化钢喷嘴以使磨损最小化。为了确保在打印期间与构建板的良好粘合以及在打印后部件的容易移除,使用来自geckotech的ez-stik hot构建板。
[0203]
典型的打印参数示于表1中。
[0204]
表1
[0205]
喷嘴温度[℃]210-240构建板温度[℃]80-120红外辐射加热器[℃]0-240挤出机温度[℃]160-180层高[mm]0.1-0.2喷嘴直径[mm]0.4-0.8打印速度[mm/min]900-2400
[0206]
用至少部分位于三维(3d)挤出打印机的外壳内的螺杆将不同级分的细粒各自朝向3d挤出打印机的喷嘴进料(步骤b)),然后在3d挤出打印机的外壳内加热(步骤c))。随后,将步骤c)中获得的细粒的加热级分各自挤出通过喷嘴,以获得至少一股挤出的线料(步骤d)),并且由所述至少一股挤出的线料逐层形成3d物体(三维(3d)生坯)(步骤e))。
[0207]
在图1中,示出了所形成的3d物体。3d物体a)由粒度为0.5-1mm的级分(e1)形成,3d物体b)由粒度为1-2mm的级分(c2)形成,3d物体c)由丸粒(c3)形成。
[0208]
从图1中可以看出,具有0.5-1mm粒度的细粒(e1)导致恒定的挤出速率、打印线一致性,并因此导致最光滑的表面。由于挤出速率的不稳定性,颗粒尺寸越大,层外观越突出。
[0209]
褐坯和烧结体的制备
[0210]
步骤f)
[0211]
在步骤e)之后,从所述三维生坯中除去至少部分粘合剂(b)以形成三维(3d)褐坯:
[0212]
在40升脱粘合剂炉(naberterm cdb 40)中,在110℃下使用hno3(>98%)进行脱粘合剂,硝酸的进料通常为60ml/h,吹扫气体(氮气)的通过量为840l/h。
[0213]
当达到5.7%的最小脱粘合剂损失时,脱粘合剂的过程结束。
[0214]
步骤g)
[0215]
在步骤f)之后,烧结所述三维(3d)褐坯以形成三维(3d)烧结体:
[0216]
烧结在具有100%清洁和干燥的氢气(露点<-40℃)的气氛中进行。使用纯度为99.6%的al2o3作为烧结载体。使用以下烧结循环:
[0217]
1)室温-5k/min-600℃,保持1h,
[0218]
2)600℃-5k/min-1380℃,保持3h
[0219]
3)炉冷却
[0220]
在烧结过程的早期阶段,剩余的粘合剂成分被烧掉,并且热解产物通过吸风机去除。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献